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Optimally space-localized band-limited wavelets on Sq−1
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Abstract

The localization of a function can be analyzed with respect to different criteria. In this paper, we focus on the uncertainty relation
on spheres introduced by Goh and Goodman [Uncertainty principles and asymptotic behavior, Appl. Comput. Harmon. Anal. 16
(2004) 69–89], where the localization of a function is measured in terms of the product of two variances, the variance in space
domain and the variance in frequency domain. After deriving an explicit formula for the variance in space domain of a function in
the space Ws

n,q of spherical polynomials of degree at most n + s which are orthogonal to all spherical polynomials of degree at
most n, we are able to identify—up to rotation and multiplication by a constant—the polynomial in Ws

n,q with minimal variance in
space-domain, or in other words, to determine the optimally space-localized polynomial in Ws

n,q .
© 2006 Published by Elsevier B.V.
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1. Introduction

It is well-known that uncertainty principles provide a way of measuring a trade-off between space and frequency
localizations of a given function. The starting point of this work is the uncertainty principle on spheres introduced by
Goh and Goodman [3]. As pointed out there, under certain assumptions on the parity and the codomain of the functions,
this general uncertainty principle reduces to other known uncertainty relations studied before by other authors [1,2,9,12].
In fact, Breitenberger [1] introduced the uncertainty principle on the circle. Later, Narcowich and Ward [9] initiated the
study of the uncertainty principle on higher dimensional spheres. Then the following articles by Freeden et al. [2] and
Rösler and Voit [12] investigated ramifications of [9]. In particular, [12] answered a question concerning optimality
posed in [9].

Throughout this paper we will focus on the space Ws
n,q of polynomials of degree at most n + s (s ∈ N) on the

(q −1)-dimensional sphere Sq−1 ⊆ Rq , which are orthogonal to the space Vn,q of polynomials on Sq−1 of degree less
or equal to n. Our aim is to derive an explicit formula for the optimally space-localized polynomials in Ws

n,q according
to the uncertainty relation introduced in [3], or in other words, to determine the polynomials in Ws

n,q with minimal
variance in space-domain. While the problem of characterizing the optimally space-localized spherical polynomials of
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degree at most n has already been treated before in Mhaskar et al. [7], the optimally space-localized polynomials in
Ws

n,q = Vn+s,q�Vn,q have only been presented in their explicit form for q = 2 in [10] and q = 3 in [6].
The obtained optimally space-localized polynomials in Ws

n,q and in Vn,q as described in [7] are positive definite
functions on the sphere, since the coefficients in their Gegenbauer expansion are all nonnegative. Along the same lines
as in [9], these functions can now be used to construct a polynomial multiresolution-analysis on the sphere. Hereby, the
scaling spaces Vn,q and the wavelet spaces Ws

n,q are spanned by translates of an optimally space-localized polynomial
in Vn,q or Ws

n,q , respectively, where by translates we mean that the localized functions, which as we will see are zonal
polynomials on the sphere, are centered at the nodes of a fundamental system of the corresponding space.

The article is organized as follows. After introducing in Section 2 the necessary notation, we review in Section 3 the
uncertainty principle for functions on Sq−1 and determine an explicit formula for the variance in space-domain of any
polynomial in Ws

n,q . This explicit formula allows us to characterize the optimally space-localized function in Ws
n,q .

Finally, the cases of q = 2 and 3 are reviewed in the light of the new result.

2. Fundamentals

Let Rq be the q-dimensional Euclidean space with inner product and norm defined as usual by x · y =∑q
k=1xk yk

and ‖x‖2 =√
x · x and let Sq−1 ={x ∈ Rq : ‖x‖2 = 1} be the unit sphere in Rq . If {e1, . . . , eq} denotes the canonical

orthonormal basis of Rq , then any point �q ∈ Sq−1 may be represented as

�q = teq +
√

1 − t2 �q−1, t ∈ [−1, 1], (2.1)

where �q−1 is a unit vector in the space spanned by {e1, . . . , eq−1} and t = eq · �q . Let d�q denote the surface element
of Sq−1. For given functions F, G : Sq−1 −→ C, we introduce the inner product and norm

〈F, G〉 =
∫

Sq−1
F(�q)G(�q) d�q(�q), ‖F‖ =√〈F, F 〉.

As usual, we let L2(Sq−1) denote the Hilbert space of all measurable functions F : Sq−1 −→ C satisfying ‖F‖ < ∞.
In view of the above parameterization of Sq−1, the surface element d�q can be written as d�q = (1 − t2)(q−3)/2 dt

d�q−1, yielding a recursive formula for the computation of the surface of the (q − 1)-dimensional sphere, see e.g.
Müller [8]:

�q := |Sq−1| =
∫

Sq−1
d�q(�q) =

∫
Sq−2

∫ 1

−1
(1 − t2)(q−3)/2 dt d�q−1(�q−1) = 2�q/2

�(q/2)
.

An important subspace of L2(Sq−1) is the space Harmm(Sq−1) of spherical harmonics of degree m, m ∈ N0. It can
be shown that

N(q, m) := dim Harmm(Sq−1) =
{ (2m + q − 2)�(m + q − 2)

�(m + 1)�(q − 1)
, m�1,

1, m = 0.

A seminal result in the theory of spherical harmonics is the so-called addition theorem, which provides the following
closed expression for the reproducing kernel of Harmm(Sq−1): Given an arbitrary real-valued L2(Sq−1)-orthonormal
basis {Sl(q, ·) : l = 1, . . . , N(q, m)} of Harmm(Sq−1), we have

N(q,m)∑
l=1

Sl(q, �) Sl(q, �) = N(q, m)

�q

C
(q−2)/2
m (� · �), �, � ∈ Sq−1, (2.2)

where C
(q−2)/2
m denotes the Gegenbauer polynomial of index (q − 2)/2 and degree m normalized according to the

condition C
(q−2)/2
m (1) = 1. For the proof of this fundamental result, we refer to Müller [8, Theorem 2]. Let

G
j
m(t) := (1 − t2)j/2 dj

dtj
C

(q−2)/2
m (t), j = 0, . . . , m, m ∈ N0. (2.3)
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In particular, for j = 0 we have G0
m = C

(q−2)/2
m . Starting with the three-term recurrence relation for the Gegenbauer

polynomials (see e.g. [11, Section 3])

tC
(q−2)/2
m (t) = �mC

(q−2)/2
m+1 (t) + (1 − �m)C

(q−2)/2
m−1 (t), m ∈ N0, (2.4)

with �m =(m+q −2)/(2m+q −2), C(q−2)/2
−1 ≡ 0 and C

(q−2)/2
0 ≡ 1, it is not difficult to derive a three-term recurrence

relation for the functions G
j
m.

Proposition 1. Let j ∈ N0. The functions G
j
m, m�j, m ∈ N0, defined as in (2.3) satisfy the three-term recurrence

relation

tG
j
m(t) = �j

mG
j
m+1(t) + 	j

mG
j
m−1(t), m = j, j + 1, . . . , (2.5)

where G
j
j−1,q ≡ 0, Gj

j (t)=(1−t2)j/2j ! aj , aj being the leading coefficient of C(q−2)/2
j , and the recurrence coefficients

are given by

�j
m := (m + q − 2)(m − j + 1)

(m + 1) (2m + q − 2)
, 	j

m := m(m + j + q − 3)

(2m + q − 2) (m + q − 3)
. (2.6)

Proof. For simplicity of notation, let Cm := C
(q−2)/2
m and let C

(j)
m denote the jth derivative of Cm. On the one hand,

taking jth derivatives on both sides of Eq. (2.4) leads to

jC
(j−1)
m (t) + tC

(j)
m (t) = �m C

(j)
m+1(t) + (1 − �m)C

(j)
m−1(t). (2.7)

On the other hand, considering the following equality for the Gegenbauer polynomials Cm, (see e.g. [4, Chapter 5])

tC′
m(t) − m

m + q − 3
C′

m−1(t) = mCm(t).

and taking (j − 1)st derivatives on both sides of this equation, we come up with

tC
(j)
m (t) − m

m + q − 3
C

(j)
m−1(t) = (m − j + 1)C

(j−1)
m (t),

or in other words,

C
(j−1)
m (t) = 1

m − j + 1
tC

(j)
m (t) − m

(m + q − 3) (m − j + 1)
C

(j)
m−1(t).

Substituting this expression for C
(j−1)
m into relation (2.7), yields

tC
(j)
m (t) = (m − j + 1)(m + q − 2)

(m + 1)(2m + q − 2)
C

(j)
m+1(t)

+ m − j + 1

m + 1

(
m

2m + q − 2
+ mj

(m − j + 1)(m + q − 3)

)
C

(j)
m−1.

Finally, using the factorization

(m + q − 3)(m − j + 1) + j (2m + q − 2) = (m + 1)(m + j + q − 3)

and multiplying the above equation by (1 − t2)j/2, we obtain the desired recurrence relation. �

According to Müller [8, Lemma 14], we know that∫ 1

−1
G

j
m(t)G

j
l (t) (1 − t2)(q−3)/2 dt = (
j

m)2 �m,l , (2.8)
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where the normalization constant (
j
m)2 is given by

(
j
m)2 := �q

�q−1

m!
(m − j)!

�(m + j + q − 2)

�(m + q − 2)N(q, m)
. (2.9)

In particular, we denote 
m := 
0
m. The following proposition provides a relation between the recurrence coefficients

�j
m, 	j

m and the norms (
j
m)2.

Proposition 2. Let �j
m, 	j

m and (
j
m)2 be defined as above. Then

�j
m (
j

m+1)
2 = 	j

m+1(

j
m)2 for all m ∈ N. (2.10)

Proof. The proof follows directly from using the definitions of �j
m, 	j

m, (
j
m)2 and N(q, m) and applying the property

�(n + 1) = n�(n) of the Gamma function. �

Making use of Proposition 2, the three-term recurrence relation for the normalized functions g
j
m := G

j
m/
j

m reads

tg
j
m(t) = �j

m g
j
m+1(t) + �j

m−1 g
j
m−1(t), m = j, j + 1, . . . , (2.11)

where the recurrence coefficients �j
m are given by

�j
m = �j

m 
j
m+1


j
m

=
(

(m − j + 1)(m + j + q − 2)

(2m + q − 2)(2m + q)

)1/2

, m�j .

Let n ∈ N and let g
j
m(·; n + 1) be the functions defined by the three-term recurrence relation

tg
j
m(t; n + 1) = �j

m+n+1g
j
m+1(t; n + 1) + �j

m+ng
j
m−1(t; n + 1), m = j, j + 1, . . . , (2.12)

where we have shifted the subindex of the recurrence coefficients in (2.11) by n+1. By the derivation of the recurrence
relation (2.5) and the construction of the functions g

j
m(·; n + 1), it is clear that

(1 − t2)j/2 dj g0
m(t; n + 1)

dtj
= g

j
m(t; n + 1) for t ∈ R. (2.13)

Let Vn,q denote the space of spherical polynomials of degree less or equal to n on Sq−1. As it is well known, Vn,q =⊕n
m=0Harmm(Sq−1). Let s ∈ N. Throughout this work we will focus on the space Ws

n,q := Vn+s,q�Vn,q of spherical
polynomials of degree at most n + s which are orthogonal to Vn,q . We will call this space wavelet space and denote its
dimension with Ms := ∑n+s

m=n+1N(q, m). Using the parameterization (2.1) of Sq−1 in local coordinates, an orthogonal
basis for Ws

n,q is given by the spherical harmonics

Sm,j,k(q, �q) = G
j
m(t)Sj,k(q − 1, �q−1),

where m = n + 1, . . . , n + s, j = 0, . . . , m and k = 1, . . . , N(q − 1, j) and

{Sj,k(q − 1, �q−1) : j = 0, . . . , m, k = 1, . . . , N(q − 1, j)}

is an orthonormal basis of Vm,q−1 =⊕m
j=0Harmj (S

q−2).
The goal of this paper is to compute the optimally space-localized polynomial in Ws

n,q . For this purpose, the

localization is measured in terms of the generalized uncertainty relation on Sq−1 studied in [3]. We consider the
expansion of P ∈ Ws

n,q in the basis of spherical harmonics Sm,j,k and derive an explicit formula for the variance in
space-domain.
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3. An uncertainty principle on the Sq−1

As it is shown in [3, Corollary 5.1], the variances in space and momentum domain of a function F ∈ C1(Sq−1) with∫
Sq−1 �q |F(�q)|2 d�q(�q) �= 0 can be computed as

varS(F ) =
⎛⎝( ∫

Sq−1 |F(�q)|2 d�q(�q)

‖ ∫Sq−1 �q |F(�q)|2 d�q(�q)‖2

)2

− 1

⎞⎠1/2

,

and

varM(F) =
(∫

Sq−1 |∇Sq−1F(�q)|2 d�q(�q)∫
Sq−1 |F(�q)|2 d�q(�q)

)1/2

,

where ∇Sq−1 is the usual surface gradient on Sq−1. With this notation, the uncertainty relation presented in [3] reads

U(F) := varS(F ) varM(F)� (q − 1)

2
.

In the following lemma, we derive an explicit formula for the variance in space domain of any polynomial P ∈ Ws
n,q

with
∫

Sq−1 �q |P(�q)|2 d�q �= 0.

Lemma 1. Let n, s ∈ N and let {Sm,j,k(q, �q) = G
j
m(t)Sj,k(q − 1, �q−1)}m,j,k be the above-mentioned orthogonal

basis of Ws
n,q . Given P ∈ Ws

n,q , let

P(�q) =
n+s∑

m=n+1

m∑
j=0

N(q−1,j)∑
k=1

am,j,kG
j
m(t)Sj,k(�q−1)

be its expansion in the basis {Sm,j,k}. If

2
n+s−1∑
m=n+1

m∑
j=0

N(q−1,j)∑
k=1

�j
m(
j

m+1)
2Re{am,j,kam+1,j,k} �= 0,

then the variance in space-domain of P can be computed as

varS(P ) =
⎛⎝( ∑n+s

m=n+1
∑m

j=0
∑N(q−1,j)

k=1 |am,j,k|2 (
j
m)2

2
∑n+s−1

m=n+1
∑m

j=0
∑N(q−1,j)

k=1 �j
m(
j

m+1)
2Re{am,j,kam+1,j,k}

)2

− 1

⎞⎠1/2

. (3.1)

The constants �j
m and 
j

m are defined as in (2.6) and (2.9), respectively.

Proof. Making use of the orthonormality of {Sj,k} and the orthogonality of {Gj
m} according to (2.8), it is straightforward

to check that

‖P ‖2 =
∫

Sq−1
|P(�q)|2 d�q(�q) =

∫
Sq−2

∫ 1

−1
|P(�q−1, t)|2(1 − t2)(q−3)/2 dt d�q−1(�q−1)

=
n+s∑

m=n+1

m∑
j=0

N(q−1,j)∑
k=1

|am,j,k|2 (
m,j )
2.

Let us now compute �S(P ) := ∫
Sq−1 �q |P(�q)|2 d�q(�q). We can assume without loss of generality that the first (q−1)

components of �S(P ) are equal to zero. Indeed, if �S(P ) /∈ span{eq}, then we can find an orthogonal transformation
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Q ∈ SO(q) such that Q · �S(P ) = ‖�S(P )‖2eq . Accordingly, we are in a position to construct a polynomial P̂ (·) :=
P(Q∗ · (·)) ∈ Ws

n,q with the desired center in eq -direction, namely

�S(P̂ ) =
∫

Sq−1
�q |P(Q∗ · �q)|2 d�q(�q)

�q=Q·q=
∫

Q∗(Sq−1)

Q · q |P(q)|2| det Q| d�q(q)

= Q ·
∫

Sq−1
q |P(q)|2 d�q(q) = Q · �S(P ) = ‖�S(P )‖2eq .

Thus, let us assume that
∫

Sq−1 �q |P(�q)|2 d�q(�q) = ‖ ∫Sq−1 �q |P(�q)|2 d�q(�q)‖2eq . The qth component of �S(P )

is then given by

∫
Sq−2

∫ 1

−1
t

∣∣∣∣∣∣
n+s∑

m=n+1

m∑
j=0

N(q−1,j)∑
k=1

am,j,kG
j
m(t) Sj,k(�q−1)

∣∣∣∣∣∣
2

(1 − t2)(q−3)/2 dt d�q−1(�q−1)

=
n+s∑

m,m′=n+1

min(m,m′)∑
j=0

N(q−1,j)∑
k=1

am,j,kam′,j,k

∫ 1

−1
tG

j
m(t)G

j

m′(t)(1 − t2)(q−3)/2 dt .

Applying the three-term recurrence relation (2.5), we have that

∫ 1

−1
tG

j
m(t)G

j

m′(t)(1 − t2)(q−3)/2 dt = �j
m(
j

m+1)
2�m+1,m′ + 	j

m(
j
m−1)

2�m−1,m′ .

Substituting this equation into the above expression, performing an index shift in m′ and making use of relation (2.10),
we finally obtain the desired expression for ‖ ∫Sq−1 �q |P(�q)|2 d�q(�q)‖2, namely

n+s−1∑
m=n+1

m∑
j=0

N(q−1,j)∑
k=1

�j
m(
j

m+1)
2am,j,kam+1,j,k + 	j

m+1(

j
m)2am+1,j,kam,j,k

= 2
n+s−1∑
m=n+1

m∑
j=0

N(q−1,j)∑
k=1

�j
m(
j

m+1)
2 Re{am,j,kam+1,j,k}. �

3.1. Optimally space-localized wavelet functions

With the help of Eq. (3.1), we are now in a position to compute the optimally space-localized polynomials in Ws
n,q .

Theorem 1. Let n, s ∈ N and let xs
max denote the largest zero of the associated Gegenbauer polynomial gs(·; n + 1)

defined as in (2.12) for j = 0. Then

varS(P ∗) = min{varS(P ): P �= 0, P ∈ Ws
n,q} =

√
1 − (xs

max)
2

xs
max

,

and an optimally space-localized spherical polynomial—up to rotation and multiplication by a constant—is given by

P ∗(·) = 1

�q

n+s∑
m=n+1

√
N(q, m) gm−(n+1)(x

s
max; n + 1)C

(q−2)/2
m (eq · (·)). (3.2)
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Proof. According to the explicit expression for the variance in space-domain presented in Eq. (3.1), minimizing varS(P )

over all P ∈ Ws
n,q is equivalent to maximizing the reciprocal quotient

2
∑n+s−1

m=n+1
∑m

j=0
∑N(q−1,j)

k=1 �j
m(
j

m+1)
2 Re {am,j,k am+1,j,k}∑n+s

m=n+1
∑m

j=0
∑N(q−1,j)

k=1 |am,j,k|2(
j
m)2

over all coefficient vectors a = (am,j,k)m=n+1,...,n+s;j=0,...,m;k=1,...,N(q−1,j) in CMs \0.

Let xm,j,k := am,j,k

j
m. Using this notation and changing the summation order of the sums both in denominator and

numerator, the above quotient can be written as

2
∑n+s−1

j=0
∑N(q−1,j)

k=1

∑n+s−1
m=max(j,n+1)�

j
m Re {xm,j,k xm+1,j,k}∑n+s

j=0
∑N(q−1,j)

k=1

∑n+s
m=max(j,n+1)|xm,j,k|2

with �j
m = �j

m
j
m+1/


j
m. This quotient of sums can now be interpreted as a Rayleigh quotient x∗Mn,sx/(x∗x), where x

is a vector with its components ordered in the way given by the summation indices j, k, m, i.e.

(xn+1,0,1, . . . , xn+s,0,1, xn+1,1,1, . . . , xn+s,1,1, . . . , xn+1,1,N(q−1,1), . . . , xn+s,1,N(q−1,1),

xn+1,2,1, . . . , xn+s,2,1, . . . , xn+1,2,N(q−1,2), . . . , xn+s,2,N(q−1,2), . . . ,

xn+1,n+1,1, . . . xn+s,n+1,1, . . . , xn+1,n+1,N(q−1,n+1), . . . , xn+s,n+1,N(q−1,n+1),

xn+2,n+2,1, . . . , xn+s,n+2,1, . . . , xn+2,n+2,N(q−1,n+2), . . . , xn+s,n+2,N(q−1,n+2),

. . . , xn+s,n+s,1, . . . , xn+s,n+s,N(q−1,n+s)),

and Mn,s is the block diagonal matrix

Mn,s = diag

⎛⎜⎜⎝J0
n+1,s , J1

n+1,s , . . . , J1
n+1,s︸ ︷︷ ︸

N(q−1,1) times

, J2
n+1,s , . . . , J2

n+1,s︸ ︷︷ ︸
N(q−1,2) times

, . . . , Jn+1
n+1,s , . . . , Jn+1

n+1,s︸ ︷︷ ︸
N(q−1,n+1) times

× Jn+2
n+2,s , . . . , Jn+2

n+2,s︸ ︷︷ ︸
N(q−1,n+2) times

, Jn+3
n+3,s , . . . , Jn+3

n+3,s︸ ︷︷ ︸
N(q−1,n+3) times

, . . . , Jn+s
n+s,s , . . . , Jn+s

n+s,s︸ ︷︷ ︸
N(q−1,n+s) times

⎞⎟⎟⎠
with Jj

n+1,s ∈ Rs×s , j = 0, . . . , n + 1, given by

Jj
n+1,s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �j
n+1 0

�j
n+1 0 �j

n+2 0

�j
n+2 0 �j

n+3
. . .

. . .
. . .

�j
n+s−2 0 �j

n+s−1

�j
n+s−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.3)
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and Jj
j,s ∈ R(n+s−j+1)×(n+s−j+1), j = n + 2, . . . , n + s given by

Jj
j,s =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �j
j 0

�j
j 0 �j

j+1 0

�j
j+1 0 �j

j+2
. . .

. . .
. . .

�j
n+s−2 0 �j

n+s−1

�j
n+s−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4)

The matrices (3.4) arise from deleting the first j −(n+1) columns and rows of the matrices (3.3). Note that for j =n+s

we have Jn+s
n+s−1,s = 0 ∈ R1×1.

Let �max(Mn,s), �max(J
j
n+1,s), j =0, . . . , n+1, and �max(J

j
j,s), j =n+2, . . . , n+ s, denote the largest eigenvalues

of the symmetric matrices Mn,s , Jj
n+1,s and Jj

j,s , respectively. Thus, by the Theorem of Rayleigh-Ritz (see Horn and
Johnson [5, p. 176]), we know that

max
x �=0

x∗Mn,sx
x∗x

��max(Mn,s) = max

{
max

j=0,...,n+1
{�max(J

j
n+1,s)}, max

j=n+2,...,n+s
{�max(J

j
j,s)}

}
with equality if and only if x is an eigenvector of Mn,s with eigenvalue �max(Mn,s). We have dropped the absolute
value in the first equality since, as we will see later, the eigenvalues of Jj

n+1,s and Jj
j,s are distributed symmetrically

around the origin. Hence, our problem reduces to finding the largest eigenvalue of Mn,s . Note now that the tridiagonal
matrices Jj

n+1,s and Jj
j,s are the so-called Jacobi matrices corresponding to the functions g

j
m(·; n+1), j =0, . . . , n+1

and g
j
m(·; j), j = n + 2, . . . , n + s. Rewriting the three-term recurrence relation (2.12) in compact matrix notation as

tgj
m(t; n + 1) = Jj

n+1,sgj
m(t; n + 1) + �j

n+sg
j
s (t; n + 1)es , j = 0, . . . , n + 1,

and

tqj
m(t; j) = Jj

j,sqj
m(t; j) + �j

n+sg
j
n+s−j+1(t; j)en+s−j+1, j = n + 2, . . . , n + s,

with

gj
m(t; n + 1) = (g

j
0 (t; n + 1), g

j
1 (t; n + 1), . . . , g

j
s−1(t; n + 1))T ∈ Rs ,

and

qj
m(t; j) = (g

j
0 (t; j), g

j
1 (t; j), . . . , g

j
n+s−j (t; j))T ∈ R(n+s−j+1),

we draw the conclusion that the zeros of the functions g
j
s (·; n+1), j =0, . . . , n+1, and of the functions g

j
n+s−j+1(·; j),

j =n+2, . . . , n+s, or according to (2.13) the zeros of the jth derivatives of gs(·; n+1), j =0, . . . , n+1, and of the jth
derivatives of gn+s−j+1(·; j), j =n+2, . . . , n+ s, with exception of the zero at t =±1, constitute the spectrum of the

corresponding matrices Jj
n+1,s and Jj

j,s . Since these functions are orthogonal with respect to a symmetric measure, we

know that the eigenvalues of the matrices Jj
n+1,s and Jj

j,s are symmetrically distributed around the origin. On the one
hand, by virtue of Rolle’s Theorem, the zeros of the derivatives of the associated Gegenbauer polynomial gs(·; n + 1)

are located in between the zeros of gs(·; n + 1) and consequently

max
j=0,...,n+1

{�max(J
j
n+1,s)} = �max(J0

n+1,s) = xs
max,

where xs
max denotes the largest zeros of gs(·; n + 1). On the other hand, taking into account that the zeros of

g
j
n+s−j+1(·; j), j = n + 2, . . . , n + s, lie in between the zeros of gn+s−j+1(·; j), j = n + 2, . . . , n + s, we can

conclude that

�max(J0
j,s)��max(J

j
j,s), j = n + 2, . . . , n + s. (3.5)
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Since J0
j,s , j = n + 2, . . . , n + s, is the submatrix of J0

n+1,s , obtained by deleting the first j − (n + 1) columns

and rows of J0
n+1,s , we can claim that the largest eigenvalue of J0

n+1,s is greater than the largest eigenvalue of J0
j,s ,

j = n + 2, . . . , n + s, i.e.

�max(J
0
n+1,s)��max(J0

j,s), j = n + 2, . . . , n + s. (3.6)

Combining inequalities (3.5) and (3.6), the largest eigenvalue is finally given by

max

{
max

j=0,...,n+1
{�max(J

j
n+1,s)}, max

j=n+2,...,n+s
{�max(J

j
j,s)}

}
= �max(J0

n+1,s) = xs
max,

and its corresponding eigenvector is

�

⎛⎜⎝g0(x
s
max; n + 1), g1(x

s
max; n + 1), . . . , gs−1(x

s
max; n + 1), 0, . . . , 0︸ ︷︷ ︸

Ms−s times

⎞⎟⎠
T

, � ∈ R.

Let us assume � = 1/
√

�q . With this choice, we obtain that

am,j,k =
⎧⎨⎩

gm−(n+1)(x
s
max; n + 1)√

�q 
j
m

for j = 0, k = 1, m = n + 1, . . . , n + s,

0 otherwise.

Making then use of (3.1), the minimal variance in space-domain attains the value

varS(P ∗) =
((

1

xs
max

)2

− 1

)1/2

=
√

1 − (xs
max)

2

xs
max

.

It now remains to prove that the choice of the just computed coefficients yields in fact the polynomial in (3.2). Here,
the observation

Sm,j,k(q, eq)


j
m

= G
j
m(1)Sj,k(q − 1, 0)


j
m

=
{ 1√

�q−1
m

, j = 0,

0 otherwise,

plays the key role, since it enables us to write the optimally space-localized polynomial in the requested form (note that
S0,1 ≡ 1/

√
�q−1). Indeed, after an application of the addition theorem (2.2), the optimal polynomial P ∗ is given by

P ∗ = 1√
�q

n+s∑
m=n+1

gm−(n+1)(x
s
max; n + 1)

√
�q−1
m

m∑
j=0

N(q,j)∑
k=1

Sm,j,k


j
m

Sm,j,k(eq)


j
m

=
√

�q−1√
�3

q

n+s∑
m=n+1

gm−(n+1)(x
s
max; n + 1)
mN(q, m)C

(q−2)/2
m (eq · (·))

= 1

�q

n+s∑
m=n+1

gm−(n+1)(x
s
max; n + 1)

√
N(q, m)C

(q−2)/2
m (eq · (·)),

where in the last equality, we have used that 
m = (�q/�q−1 N(q, m))1/2. This completes the proof. �

3.2. Remarks

For q = 2, the Gegenbauer polynomials {C0
k }k∈N0

are the Tschebyscheff polynomials of the first kind

Tk(x) = cos(k arccos x), x ∈ [−1, 1].
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Table 1
Uncertainty product of the polynomials �n

n,b∗ ∈ Wn
n,3 with n = 2j for j = 2, . . . , 9

n varS(�n

n,b∗ ) varM(�n

n,b∗ ) U(�n

n,b∗ )

4 0.7210 7.0380 5.0742
8 0.3616 13.0886 4.7323

16 0.1858 25.1771 4.6771
32 0.0949 49.3476 4.6836
64 0.0481 97.6850 4.6968

128 0.0242 194.3581 4.7061
256 0.0122 387.7033 4.7115
512 0.0061 774.3934 4.7144

Using the three-term recurrence relation of the Tschebyscheff polynomials of the second kind {Uk}k∈N0

xUk(x) = 1
2Uk+1(x) + 1

2Uk−1(x), k = 0, 1, . . . ,

with U−1(x) = 0, U0(x) = 1 and U1(x) = 2x, we realize that the associated Tschebyscheff polynomials of the first
kind Tk(·; n + 1) are the classical Tschebyscheff polynomials of the second kind Uk(cos �) = sin(k + 1)�/ sin �. The
largest zero of Us(cos �) is cos(�/(s + 1)) and hence by Theorem 1, the optimally space-localized polynomial in Ws

n,2
has the form

1

2�

n+s∑
k=n+1

Uk−(n+1)(x
s
max)

√
2

�
Tk(cos �) = 1√

2�3 sin �/(s + 1)

n+s∑
k=n+1

sin
(k − n)�

s + 1
cos k�.

Considering the index shifts n + 1 → m and n + s → n, the resulting polynomials coincide, up to a normalization
constant, with the optimally-space localized even polynomial wavelets studied in [10].

For q = 3, the Gegenbauer polynomials {C1/2
k }k∈N0

are the Legendre polynomials {Pk}k∈N0
. As it is pointed out in

[6, Theorem 5.8], the uncertainty product of a polynomial of the form

�s
n,b = 1

4�

n+s∑
m=n+1

(2m + 1)bmPm(e3 · (·)), (3.7)

with b ∈ Cs\0 such that
∑n+s

m=n+1mbmbm−1 �= 0 can be computed as

1�

⎛⎝(∑n+s
m=n+1b

2
m(2m + 1)

2
∑n+s

m=n+1mbmbm−1

)2

− 1

⎞⎠1/2(∑n+s
m=n+1b

2
m m (m + 1) (2m + 1)∑n+s

m=n+1b
2
m (2m + 1)

)1/2

.

In particular, note that by taking b∗
m := pm−(n+1)(x

s
max; n + 1)/

√
(2m + 1), we arrive at the optimally-space localized

polynomial in Ws
n,3. This localized function coincides with the one obtained in [6, Chapter 5], where the aim was to

compute the polynomial in Ws
n,3 with minimal variance in space-domain according to the uncertainty principle on S2

introduced in [9].
On the other hand, for b = 1 := (1, . . . , 1)T ∈ Rs , we obtain the reproducing kernel of Ws

n,3, for which it is known

that is optimally L2(S2)-localized in the sense that∥∥∥∥∥ �s
n,1

�s
n,1(�)

∥∥∥∥∥= min{‖Q‖ : Q ∈ Ws
n,q and Q(�) = 1}.

Let us compute and compare the uncertainty products of the optimally space-localized and optimally L2(S2)-localized
polynomials in Ws

n,3. Note that for b=1 := (1, . . . , 1)T ∈ Rs , the uncertainty product of the optimally L2(S2)-localized
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Fig. 1. On the right hand side we display plots of the wavelet function �10
10,1 and the optimal space localized wavelet function �10

10,b∗ . On the left

hand side we plot the values of the corresponding coefficient vectors b = 1 and b∗. Note that the kernel �10
10,b∗ exhibits a smoother behavior around

the peak e3 than the function �10
10,1.

polynomials in Ws
n,3 attains the value

U(�s
n,1) = varS(�s

n,1) · varF (�s
n1) =

√
(2s − 1) (n2 + 1

2 (1 + s)2 + n (2 + s))

(s − 1)
.
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In particular, for s = 2 and n we obtain

U(�2
n,1) = O(n) and U(�n

n,1) = O(n1/2).

Table 1 displays the values of the uncertainty product of the optimally space-localized wavelet in Wn
2j ,3

(j =2, . . . , 9).
Since we do not know an explicit formula for the zeros of the associated Legendre polynomial ps(·; n + 1) (s ∈ N)

or equivalently for the eigenvalues of the matrix J0
n+1,s in (3.3) with �0

m = m/
√

4m2 − 1, all the table values had to be
computed numerically. As the variance in space domain decreases with n, the variance in momentum domain grows.
However, the decay of varS(�n

n,b∗) seems to be stronger than the growth of varM(�n
n,b∗), so that in the end, the product

of these two quantities, i.e. the uncertainty product, only shows a slight increase with n.
In Fig. 1, we illustrate the behavior of the coefficients b∗

m (m = n + 1, . . . , 2n) which lead to the optimally space-
localized polynomial �10

10,b∗ . In addition, we display the wavelet function arising from the mentioned choice of the

coefficient vector b∗. A direct comparison of the plots of the two wavelet functions �10
10,1 and �10

10,b∗ shows how the
space localization of the polynomials (3.7) is improved by selecting the coefficient vector b∗.
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