New Extrapolation Estimates

María J. Carro¹

Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, 08071 Barcelona, Spain E-mail: carro@mat.ub.es

Communicated by L. Carleson

Received July 6, 1999; revised December 1, 1999; accepted December 6, 1999

Given a sublinear operator T satisfying that

CORE

rovided by Elsevier - Publisher Connector

for every measurable set A and every 1 , with C independent of A and p, we show that

$$\sup_{r>0} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{1 + \log^+ r} \lesssim \int_{\mathscr{M}} |f(x)| \, (1 + \log^+ |f(x)|) \, d\mu(x).$$

This estimate allows us to improve Yano's extrapolation theorem and also to obtain that for every $f \in L \log L(\mu)$,

$$\lim_{r \to \infty} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \lesssim \|f\|_{1}.$$

Other types of extrapolation results are also given. © 2000 Academic Press

1. INTRODUCTION

In 1951, Yano (see [Y, Z]), using the ideas of Titchmarsh [T], proved that for every sublinear operator satisfying

$$\left(\int_{\mathcal{M}} |Tf(x)|^p \, dv(x)\right)^{1/p} \leq \frac{C}{p-1} \left(\int_{\mathcal{M}} |f(x)|^p \, d\mu(x)\right)^{1/p},$$

¹ This work has been partially supported by the DGICYT, Grant PB97-0986 and by the CIRIT, Grant 1999SGR 00061.

where \mathcal{N} and \mathcal{M} are two finite measure spaces, $T: L \log L(\mu) \to L^1(\nu)$ is bounded.

The purpose of this work is to show, using a different argument, that under a weaker condition on the operator T, namely

$$\left(\int_{\mathcal{N}} |T\chi_{\mathcal{A}}(x)|^{p} dv(x)\right)^{1/p} \leq \frac{C}{p-1} \mu(\mathcal{A})^{1/p}$$

for every measurable set $A \subset \mathcal{M}$ and every 1 , with C independent of A and p,

$$\sup_{r>0} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{1 + \log^+ r} \leq K \int_{\mathscr{M}} |f(x)| \left(1 + \log^+ |f(x)|\right) \, d\mu(x),$$

where λ_{Tf}^{ν} is the distribution function of Tf with respect to ν , and μ and ν are two σ -finite measures. This estimate allows us to improve Yano's theorem. Also, under the above condition on T, we obtain that, for every $f \in L \log L(\mu)$,

$$\lim_{r \to \infty} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \leq C \, \|f\|_{1}$$

In the setting of weak extrapolation results we have to mention the work of Sjölin [Sj], who was able to obtain endpoint estimates for a sublinear operator T satisfying the restricted weak-type estimate

$$\sup_{y \ge 0} y \lambda_{T\chi_{A}}^{\nu}(y)^{1/p} \le \frac{C}{p-1} \mu(A)^{1/p}, \tag{1}$$

with μ and ν finite measures. Some years later, Soria [So] improved the above extrapolation result by showing that if T satisfies that $\sup_{y>0} y\lambda_{T\chi_A}^{\nu}(y) \leq C/(p-1) \ \mu(A)^{1/p}$, for every measurable set A, every $1 , and <math>\nu$ an arbitrary σ -finite measure, then T applies the space B_{φ}^{*} boundedly into $L^{1,\infty}$ with $\varphi(t) = t(1 + \log^+ 1/t)$ (see Section 4 for the definition of B_{φ}^{*}).

In this paper, we shall prove an extrapolation estimate for an operator T satisfying (1) in a general measure space.

Also, in the 1990s, the extrapolation theory was extended to the setting of compatible couples of Banach spaces in the work of Jawerth and Milman (see [JM1, JM2]). See also the work of Sobukawa [S].

Constants such as C will denote universal constants (independent of f and p and, whenever it makes sense, independent also of r) and may change from one occurrence to the next. As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C such that $(1/C) f \leq g \leq Cf$, while the symbol $f \leq g$ means that $f \leq Cg$. We shall write $||g||_p$ to

denote either $||g||_{L^{p}(\mu)}$ or $||g||_{L^{p}(\nu)}$, and $\lambda_{g}^{\nu}(y) = \nu(\{x \in \mathcal{N}; |g(x)| > y\})$ is the distribution function of g with respect to the measure ν (see [BS]). Throughout this paper (\mathcal{N}, ν) and (\mathcal{M}, μ) are two σ -finite measure spaces.

Finally, let us mention that the theory developed in this paper can be easily extended to the case of a sublinear operator T satisfying

$$\|Tf\|_p \leqslant \frac{1}{\varphi(p)} \|f\|_p,$$

for every $1 , where <math>\varphi$ is essentially an increasing function such that $\varphi(p)$ tends to zero as p tends to 1. In particular, we can take $\varphi(p) = (p-1)^{\alpha}$ with $\alpha > 0$.

The author thanks F. Soria for his useful comments and remarks.

2. SOME PREVIOUS RESULTS AND A GENERAL PRINCIPLE

For simplicity, throughout this paper we shall assume that T is sublinear operator in the sense that $|T(\lambda f)| = |\lambda| |Tf|$ and

$$\left| T\left(\sum_{j=0}^{\infty} f_j\right)(x) \right| \leq \sum_{j=0}^{\infty} |Tf_j(x)|, \quad \text{a.e. } x.$$

As usual, if T is sublinear in the classical sense, we can adapt out proofs by first considering bounded functions and then extending the result by some density argument.

PROPOSITION 2.1. If a function f satisfies that, for every 1 ,

$$||Tf||_{L^{p}(\nu)} \leq \frac{1}{p-1} ||f||_{L^{p}(\mu)},$$

then, for every $r \ge e^{1/(p_0-1)}$,

$$\frac{\int_{\mathscr{N}} (|Tf(x)| - 1/r)_{+} dv(x)}{\log r} = \frac{\int_{1/r}^{\infty} \lambda^{\nu}_{Tf}(y) dy}{\log r}$$
$$\leqslant K \int_{\mathscr{M}} |f(x)|^{1 + 1/\log r} d\mu(x), \tag{2}$$

where $K = \sup_{p \ge 1} (e/p)(p-1)^{1-p}$. If in addition $f \in L^1 \cap (\bigcup_{p>1} L^p)$, we have that

$$\lim_{r \to \infty} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \leq K \int_{\mathscr{M}} |f(x)| \, d\mu(x).$$
(3)

Proof. For every r > 0 and 1 ,

$$\begin{split} \int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy &= \int_{1/r}^{\infty} y^{p-1} \lambda_{Tf}^{\nu}(y) \frac{1}{y^{p-1}} \, dy \leqslant r^{p-1} \int_{1/r}^{\infty} y^{p-1} \lambda_{Tf}^{\nu}(y) \, dy \\ &\leqslant r^{p-1} \frac{1}{p} \, \|Tf\|_{p}^{p} \leqslant \frac{1}{p} \left(\frac{1}{p-1}\right)^{p-1} \frac{r^{p-1}}{p-1} \, \|f\|_{p}^{p} \\ &\leqslant \frac{K}{e} \frac{r^{p-1}}{p-1} \, \|f\|_{p}^{p}. \end{split}$$

Taking now $p = 1 + 1/\log r$ with $r \ge e^{1/(p_0 - 1)}$, we obtain (2).

The last part follows immediately from applying the dominated convergence theorem.

From now on, we shall assume that the estimates on the operator T hold for $1 ; that is, we shall work with <math>p_0 = 2$. The general case follows with the obvious modifications.

LEMMA 2.2. For every $0 \leq r \leq s \leq \infty$,

$$\int_{r}^{s} \lambda_{\Sigma_{k} f_{k}}^{\nu}(y) \, dy \leq \inf_{\Sigma_{k} a_{k}=1} \sum_{k} \int_{a_{k} r}^{s} \lambda_{f_{k}}^{\nu}(y) \, dy.$$

Proof. For every $\sum a_k = 1$, we have that

$$\begin{split} \int_{r}^{s} \lambda_{\Sigma_{k=0}}^{v} f_{k}(y) \, dy &= \int_{\mathcal{N}} \left(\min\left(\left| \sum_{k=0}^{\infty} f_{k}(x) \right|, s \right) - r \right)_{+} \, dv(x) \\ &\leq \int_{\mathcal{N}} \left(\sum_{k=0}^{\infty} \min(|f_{k}(x)|, s) - r \right)_{+} \, dv(x) \\ &\leq \sum_{k=0}^{\infty} \int_{\mathcal{N}} \left(\min(|f_{k}(x)|, s) - a_{k}r \right)_{+} \, dv(x) \\ &= \sum_{k=0}^{\infty} \int_{a_{k}r}^{s} \lambda_{f_{k}}^{v}(y) \, dy, \end{split}$$

from which the result follows.

DEFINITION 2.3. We say that a function d is a dyadic function and we write $d \in D$ if $d = \sum_{k \in \mathbb{Z}} 2^k \chi_{A_k}$ with A_k pairwise disjoint measurable sets. Similarly, we say that d is a dyadic⁺ function and we write $d \in D^+$ if $d = \sum_{k=0}^{\infty} 2^k \chi_{A_k}$ with A_k as before.

LEMMA 2.4. Let f be a positive function. Then:

(a)
$$f = \sum_{i=0}^{\infty} d_i$$
 with $d_i \in D$ and $d_i \leq f/2^j$.

(b) $f \ can \ be \ written \ as \ f = B + S_d$, where $0 \le B \le \min(1, f)$ and $S_d = \sum_{j=0}^{\infty} d_j$ with $d_j \in D^+$ and $d_j \le f/2^j$.

Proof. The proof of (a) can be found in [So] (see also [Sj]) and the proof of (b) is a modification of (a) as follows: Let $f_0 = f$, $\underline{f_0} = f\chi_{\{f \le 1\}}$, $\overline{f_0} = f\chi_{\{f \ge 1\}}$ and let us write

$$\overline{f_0} = \overline{f_0} - \sum_{k=0}^{\infty} 2^k \chi_{E_{k,0}} + \sum_{k=0}^{\infty} 2^k \chi_{E_{k,0}} = f_1 + \sum_{k=0}^{\infty} 2^k \chi_{E_{k,0}} = f_1 + d_0,$$

where $E_{k,0} = \{x: 2^k \le f_0(x) < 2^{k+1}\}$. Then $f = \underline{f_0} + d_0 + f_1$ and it holds that $d_0 \le \overline{f_0} \le f$, $d_0 \in D^+$, and $f_1 \le f/2$.

Analogously, we write

$$f_1 = \underline{f_1} + \overline{f_1} = \underline{f_1} + \left(\overline{f_1} - \sum_{k=0}^{\infty} 2^k \chi_{E_{k,1}}\right) + \sum_{k=0}^{\infty} 2^k \chi_{E_{k,1}} = \underline{f_1} + f_2 + d_1,$$

where $E_{k,1} = \{x : 2^k \leq f_1(x) < 2^{k+1}\}.$

Following with this construction, we obtain that $f = B + S_d$, where $B = \sum_j f_j$, and one can easily see that the required properties on B and S_d are satisfied.

This lemma allows us to formulate some general principles which are very useful to obtain the boundedness of sublinear operators in (essentially) quasi-normed lattice spaces.

THEOREM 2.5 (General Principles). Let T be a sublinear operator. Let $E = \{f; \|f\|_E < \infty\}$, where $\|\cdot\|_E$ is a positively homogeneous functional satisfying the lattice property $(|f| \leq |g| \Rightarrow \|f\|_E \leq \|g\|_E)$, and let $(F, \|\cdot\|_F)$ be a quasi-normed space. Then

$$\|Tf\|_F \leqslant C \|f\|_E, \tag{4}$$

for every $f \in E$, if and only if one of the following conditions holds:

(i) Equation (4) holds for every function $d \in D$. Equivalently, there exists a constant C > 0 such that, for every $d \in D$ with $||d||_E = 1$, $||Td||_F \leq C$.

(ii) Equation (4) holds for every function $d \in D^+$ and every B such that $||B||_{\infty} \leq 1$.

(iii) Equation (4) holds for every function $d \in D^+$ with $||d||_E \leq 1$ and there exists a constant C > 0 such that $||TB||_F \leq C$, for every B such that $||B||_{\infty} \leq 1$ and $||B||_E \leq 1$.

Proof. We shall only prove (iii) since the proofs of (i) and (ii) follow the same pattern. The necessary condition is clear. Let us then prove the sufficient condition. Since *E* satisfies the lattice property, we only need to show (4) for positive functions *f*, and since both $\|\cdot\|_E$ and $\|\cdot\|_F$ are positively homogeneous, it is enough to show that $\|Tf\|_F \leq C$ for every $\|f\|_E = 1$. By the previous lemma, we write $f = B + \sum_{j=0}^{\infty} d_j$, and we have that $\|B\|_E \leq 1$ and $\|d_j\|_E \leq 1$, for every $j \geq 0$. Let $\alpha > 0$ be such that $\|\cdot\|_F^{\alpha}$ is subadditive (see [BL]). Then

$$\begin{split} \|Tf\|_{F}^{\alpha} &\leqslant \|TB\|_{F}^{\alpha} + \sum_{j=0}^{\infty} \|Td_{j}\|_{F}^{\alpha} \lesssim \left(1 + \sum_{j=0}^{\infty} \|d_{j}\|_{E}^{\alpha}\right) \\ &\lesssim \left(1 + \sum_{j=0}^{\infty} \|2^{-j}f\|_{E}^{\alpha}\right) \leqslant C, \end{split}$$

and the result follows.

3. RESTRICTED STRONG-TYPE EXTRAPOLATION

THEOREM 3.1. Let T be a sublinear operator satisfying

$$\|Tf\|_{L^{p}(\nu)} \leqslant \frac{1}{p-1} \|f\|_{L^{p}(\mu)},$$
(5)

for every $f \in L^{p}(\mu)$ and every $1 . Then, for every <math>f \in L \log L(\mu)$,

$$\sup_{r>0} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{1 + \log^+ r} \lesssim \int_{\mathscr{M}} |f(x)| \left(1 + \log^+ |f(x)|\right) d\mu(x). \tag{6}$$

Proof. Let $f \in L \log L(\mu)$ and let us write

$$f = \sum_{k=0}^{\infty} f_k = f \chi_{\{|f(x)| \le 1\}} + \sum_{k=1}^{\infty} f \chi_{\{2^{k-1} \le |f(x)| < 2^k\}}.$$

Then, by Lemma 2.2, we have that, for $r \ge e$,

$$\frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \leq \sum_{k=0}^{\infty} \frac{\log r \, 2^{k+1}}{\log r} \frac{\int_{1/(r2^{k+1})}^{\infty} \lambda_{Tf_{k}}^{\nu}(y) \, dy}{\log r \, 2^{k+1}}$$
$$\lesssim \sum_{k=0}^{\infty} (1+k) \frac{\int_{1/(r2^{k+1})}^{\infty} \lambda_{Tf_{k}}^{\nu}(y) \, dy}{\log r \, 2^{k+1}}$$

Now, by Proposition 2.1, we get that, for $r \ge e$, and $k \ge 1$,

$$\begin{split} \frac{\int_{1/(r2^{k+1})}^{\infty} \lambda_{Tf_{k}}^{\nu}(y) \, dy}{\log r \, 2^{k+1}} \lesssim \int_{\mathscr{M}} |f_{k}(x)|^{1+1/\log(r2^{k+1})} \, d\mu(x) \\ \lesssim \int_{\{2^{k-1} \leqslant |f(x)| < 2^{k}\}} |f(x)| \, 2^{k/\log(r2^{k+1})} \, d\mu(x) \\ \lesssim \int_{\{2^{k-1} \leqslant |f(x)| < 2^{k}\}} |f(x)| \, d\mu(x), \end{split}$$

and similarly for k = 0. Therefore,

$$\sup_{r \ge e} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \lesssim \sum_{k} (1+k) \int_{\{2^{k-1} \le |f(x)| < 2^k\}} |f(x)| \, d\mu(x)$$
$$\approx \int_{\mathcal{M}} |f(x)| (1+\log^+|f(x)|) \, d\mu(x),$$

from which the result follows.

Remark 3.2. (1) It is important to observe that if

$$\int_{1}^{\infty} \lambda_{Tf}(y) \, dy \lesssim \int_{\mathscr{M}} |f(x)| (1 + \log^+ |f(x)|) \, d\mu(x), \tag{7}$$

then

$$\begin{split} \int_{1/r}^{\infty} \lambda_{Tf}(y) \, dy &= (1/r) \int_{1}^{\infty} \lambda_{T(rf)}(z) \, dy \\ &\lesssim \int_{\mathscr{M}} |f(x)| (1 + \log^+(r \mid f(x) \mid)) \, d\mu(x) \\ &\lesssim (1 + \log^+ r) \int_{\mathscr{M}} |f(x)| (1 + \log^+(\mid f(x) \mid)) \, d\mu(x), \end{split}$$

and therefore (6) and (7) are equivalent.

(2) A second important remark for our purposes is that we have only used condition (5) on the functions f_k .

Our next result improves Yano's extrapolation theorem.

THEOREM 3.3. If T is a sublinear operator satisfying that for every measurable set A and every 1 ,

$$\|T\chi_A\|_p \leq \frac{1}{p-1} \mu(A)^{1/p},$$
(8)

then $T: L \log L(\mu) \to L^1(\nu) + L^{\infty}(\nu)$ is bounded.

Proof. Since $L^1(v) + L^{\infty}(v)$ and $L \log L(\mu)$ are normed spaces, we can apply Theorem 2.5(iii) and hence it is enough to show that $||Td||_{L^1(v) + L^{\infty}(v)} \leq ||d||_{L \log L(\mu)}$ for every function $d \in D^+$ with $||d||_{L \log L(\mu)} \leq 1$ and that for every B such that $||B||_{L \log L} \leq 1$ and $||B||_{\infty} \leq 1$, $||TB||_{L^1(v) + L^{\infty}(v)} \leq C$.

such that $||B||_{L\log L} \leq 1$ and $||B||_{\infty} \leq 1$, $||TB||_{L^{1}(\nu)+L^{\infty}(\nu)} \leq C$. Now, for the first case, let $d = \sum_{k=0}^{\infty} 2^{k} \chi_{A_{k}}$ with $||d||_{L\log L} \leq 1$ and let $j \leq 0$ be such that $2^{j-1} \leq ||d||_{L\log L} \leq 2^{j}$. We have that $d_{k} = d\chi_{\{2^{k} \leq d < 2^{k+1}\}} = 2^{k} \chi_{A_{k}}$, and by Theorem 3.1 and Remark 3.2(2) we obtain that

$$\int_{1}^{\infty} \lambda_{Td}^{\nu}(y) \, dy \lesssim \int_{\mathscr{M}} |d(x)| (1 + \log^{+}(|d(x)|)) \, d\mu(x). \tag{9}$$

Now, since $d/2^{j} \in D^{+}$, we get

$$\int_{2^j}^{\infty} \lambda_{Td}^{\nu}(y) \, dy \lesssim \int_{\mathscr{M}} |d(x)| \left(1 + \log^+\left(\frac{|d(x)|}{2^j}\right)\right) d\mu(x).$$

Consequently, the function $(|Td(x)| - 2^{j})_{+} \in L^{1}$ and

$$|Td(x)| = (|Td(x)| \chi_{\{|Td(x)| < 2^{j}\}} + 2^{j}\chi_{\{|Td(x)| \ge 2^{j}\}}) + (|Td(x)| - 2^{j}) \chi_{\{|Td(x)| \ge 2^{j}\}} \in L^{\infty}(v) + L^{1}(v).$$
(10)

Moreover,

$$\begin{aligned} \|Td\|_{L^{1}(\nu)+L^{\infty}(\nu)} &\lesssim 2^{j} + \int_{\mathscr{M}} |d(x)| \left(1 + \log^{+}\left(\frac{|d(x)|}{2^{j}}\right)\right) d\mu(x) \\ &\lesssim \|d\|_{L\log L(\mu)}. \end{aligned}$$

To prove the second part, let *B* be such that $||B||_{L\log L} \leq 1$ and $||B||_{\infty} \leq 1$. By interpolation, we have that *T* is of strong-type (p, p) for every 1 and therefore

$$\int_{1}^{\infty} \lambda_{TB}^{\nu}(y) \, dy \leq \int_{1}^{\infty} \lambda_{TB}^{\nu}(y) \, y^{p-1} \, dy \leq \int_{\mathscr{M}} |B(x)|^{p} \, d\mu(x)$$
$$\leq \int_{\mathscr{M}} |B(x)| \, d\mu(x) \leq \|B\|_{L\log L} \leq 1.$$
(11)

and by the same argument used in (10), we obtain the result.

COROLLARY 3.4. If T is a sublinear operator satisfying (8), then T satisfies (6).

Proof. We can assume that $f \ge 0$. Then let us write $f = B + \sum_{j=0}^{\infty} d_j$ as in Lemma 2.4. By Lemma 2.2,

$$\int_{3}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy \leq \int_{1}^{\infty} \lambda_{TB}^{\nu}(y) \, dy + \sum_{j=0}^{\infty} \int_{1/2^{j}}^{\infty} \lambda_{Td_{j}}^{\nu}(y) \, dy$$

Now, since $B \leq f$ we obtain, by (11), that

$$\int_{1}^{\infty} \lambda_{TB}^{\nu}(y) \, dy \leq \int_{\mathcal{M}} f(x) \, d\mu(x).$$

Also, to estimate the second term, we observe that, by (9) and the fact that $2^{j}d_{j} \leq f$,

$$\int_{1/2^{j}}^{\infty} \lambda_{Td_{j}}^{\nu}(y) \, dy = \int_{1/2^{j}}^{\infty} \lambda_{T(2^{j}d_{j})}^{\nu}(2^{j}y) \, dy = 2^{-j} \int_{1}^{\infty} \lambda_{T(2^{j}d_{j})}^{\nu}(y) \, dy$$
$$\lesssim 2^{-j} \int_{\mathscr{M}} f(x)(1 + \log^{+}(f(x))) \, d\mu(x).$$

Summing in $j \ge 0$ and applying Remark 3.2(1) we obtain the result. Let us now show that (3) also holds, for every $f \in L \log L$.

THEOREM 3.5. Let T be a sublinear operator satisfying (8). Then, for every $f \in L \log L(\mu)$,

$$\lim_{r \to \infty} \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r} \lesssim \|f\|_{1} \quad and \quad \lim_{y \to 0} y \lambda_{Tf}^{\nu}(y) \lesssim \|f\|_{1}.$$

roof. If
$$\varepsilon > 0$$
,

$$\frac{\int_{1/r}^{\infty} \lambda_{T(\varepsilon f)}^{\nu}(y) \, dy}{\log r} = \frac{\int_{1/r}^{\infty} \lambda_{Tf}^{\nu}(y/\varepsilon) \, dy}{\log r} = \varepsilon \frac{\int_{1/(\varepsilon r)}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log r}$$

$$= \varepsilon \frac{\log(\varepsilon r)}{\log r} \frac{\int_{1/(\varepsilon r)}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log(\varepsilon r)},$$

and, if we apply (6) to the function εf , with $f \in L \log L$, we obtain that, for every $r \ge e$,

$$\frac{\log(\varepsilon r)}{\log r} \frac{\int_{1/(\varepsilon r)}^{\infty} \lambda_{Tf}^{\nu}(y) \, dy}{\log(\varepsilon r)} \lesssim \int_{\mathscr{M}} |f(x)| (1 + \log^+(\varepsilon |f(x)|)) \, d\mu(x)$$

From this estimate and letting first r tend to infinity and then ε tend to zero, we obtain the first inequality. The second follows immediately from L'Hôpital's rule.

Remark 3.6. (i) If for a v-measurable function g we define

$$q(g) = \lim_{r \to \infty} \frac{\int_{1/r}^{\infty} \lambda_g^{\nu}(y) \, dy}{\log r},$$

we have, by Lemma 2.2, that q is a seminorm and thus Theorem 3.5 says that if $S = \{g; q(g) < \infty\}$, T can be extended to a bounded operator from $L^{1}(\mu)$ into the completion of S with respect to q.

(ii) If we take T = M to be the Hardy-Littlewood maximal operator, then it is known (see [CS]) that $y\lambda_{Mf}(y)$ is equivalent to a decreasing function. As a consequence, we have that $\lim_{y\to 0} y\lambda_{Tf}^{\nu}(y) \approx \sup_{y>0} y\lambda_{Tf}^{\nu}(y)$ and the second inequality in Theorem 3.5 is nothing but the weak-type estimate (1, 1) for M.

Finally, let us just mention that we cannot expect to get the weak-type (1, 1) estimate for T since it is known (see [K]) that there are operators T satisfying (1) for which the weak-type (1, 1) estimate does not hold.

4. RESTRICTED WEAK-TYPE EXTRAPOLATION

In this section, we shall assume that our sublinear operator T satisfies the following restricted weak-type condition: there exists a constant C > 0such that, for every measurable set A and every 1 ,

$$\sup_{y>0} \lambda_{T\chi_{A}}^{\nu}(y)^{1/p} \ y \leq \frac{C}{p-1} \mu(A)^{1/p}.$$
(12)

Pr

First, we observe that condition (12) is equivalent to having that

$$\sup_{y>0} (\sup_{1< p\leqslant 2} y^p(p-1)) \lambda^{\nu}_{T\chi_A}(y) \leq \mu(A),$$

and hence, taking $p = 1 + 1/(1 + \log^+(1/y))$,

$$\sup_{y>0} \frac{y}{1+\log^+(1/y)} \lambda_{T\chi_A}^{\nu}(y) \leq \mu(A).$$
(13)

Now, the space $L^{1}(v) + L^{\infty}(v)$ is characterized as the set of measurable functions such that

$$\|f\|_{L^{1}(\nu)+L^{\infty}(\nu)} = \int_{0}^{1} f_{\nu}^{*}(s) \, ds = \int_{0}^{\infty} \min(1, \lambda_{f}^{\nu}(y)) \, dy < \infty.$$

This last equality leads us to define a weak-type version of this space as follows: let $W(L^1 + L^{\infty})$ (weak- $(L^1 + L^{\infty})$) be the set of measurable functions such that

$$\|f\|_{W(L^{1}+L^{\infty})} = \sup_{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}} \min(1, \lambda_{f}^{\nu}(y)) \, dy < \infty.$$

Observe that $||f||_{W(L^1+L^{\infty})} \approx \sup_{r>0} \int_r^{2r} \min(1, \lambda_f^{\nu}(y)) dy$ and that this last expression is a quasi-norm. Also, if the measure ν is finite, then $L^1(\nu) + L^{\infty}(\nu) = L^1(\nu)$ and the space $W(L^1 + L^{\infty})$ is the weak-type space $L^{1,\infty}$.

Let us also recall (see [So]) that the space B_{φ^*} mentioned in the Introduction was defined as the set of measurable functions such that

$$\|f\|_{B_{\varphi^*}} = \int_0^\infty \varphi(\lambda_f(y)) \left[1 + \log\left(\frac{\|f\|_{\varphi}}{y\varphi(\lambda_f(y))}\right) \right] dy < \infty,$$

where $||f||_{\varphi} = \int_0^{\infty} \varphi(\lambda_f(y)) dy.$

THEOREM 4.1. If T satisfies (12) and $\varphi(t) = t(1 + \log^+ 1/t)$, then

$$T: B_{\omega^*} \to W(L^1 + L^\infty)$$

is bounded.

Proof. Since $W(L^1 + L^{\infty})$ and B_{φ^*} are quasi-normed lattices, we can apply our first general principle, Theorem 2.5(i). That is, we have to see that $||Td||_{W(L^1 + L^{\infty})} \leq C$ for every $d \in D$ such that $||d||_{B_{\varphi^*}} = 1$.

Hence let $d = \sum_{k \in \mathbb{Z}} 2^k \chi_{A_k} \in D$ and let us assume that $||d||_{B_{\varphi^*}} = 1$. If we write $E_k = \bigcup_{j=k+1}^{\infty} A_k$, we obtain that $d = \sum_{k \in \mathbb{Z}} 2^k \chi_{E_k}$. Then, to show that

there exists a constant C such that $||Td||_{W(L^1+L^{\infty})} \leq C$, it is enough to prove that $\sup_{j\geq 0} \int_{2^j}^{2^{j+1}} \lambda_{Td}^{\nu}(y) dy \leq C$. By Lemma 2.2 and (13) we have that

$$\sup_{j \ge 0} \int_{2^{j}}^{2^{j+1}} \lambda_{(\sum_{k \in \mathbb{Z}} 2^{k} | T\chi_{E_{k}}|)}^{2^{j+1}}(y) \, dy$$

$$\leq \sup_{j \ge 0} \inf_{\sum_{k} a_{k} = 1} \sum_{k} 2^{k} \int_{a_{k} 2^{j/2^{k}}}^{2^{j+1}/2^{k}} (\lambda_{|T\chi_{E_{k}}|}^{\nu})(y) \, dy$$

$$\lesssim \sup_{j \ge 0} \inf_{\sum_{k} a_{k} = 1} \sum_{k} 2^{k} \mu(E_{k}) \int_{a_{k} 2^{j/2^{k}}}^{2^{j+1}/2^{k}} \frac{(1 + \log^{+}(1/y))}{y} \, dy.$$

A simple computation shows that if we take

$$a_k = \frac{2^k \mu(E_k)(1 + \log^+(1/\mu(E_k)))}{\sum_j 2^j \mu(E_j)(1 + \log^+(1/\mu(E_j)))},$$

then the above expression is equivalent to $||d||_{B_{\alpha^*}} = 1$.

REFERENCES

- [BS] C. Bennett and R. Sharpley, "Interpolation of Operators," Academic Press, San Diego, 1988.
- [BL] J. Bergh and J. Löfström, "Interpolation Spaces: An Introduction," Springer-Verlag, New York/Berlin, 1976.
- [CS] M. J. Carro and J. Soria, The Hardy–Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. 55 (1997), 146–158.
- [JM1] B. Jawerth and M. Milman, "Extrapolation Theory with Applications," Memoirs of the American Mathematical Society, Vol. 89, Amer. Math. Soc., Providence, 1991.
- [JM2] B. Jawerth and M. Milman, New results and applications of extrapolation theory. Interpolation spaces and related topics, *Israel Math. Conf. Proc.* 5 (1992), 81–105.
- [K] J. Kahane, "Some Random Series of Functions," Heath, Lexington, MA, 1968.
- [Sj] P. Sjölin, An inequality of Paley and convergence a.e. of Walsh–Fourier series, Ark. Mat. 7, No. 3 (1969), 551–570.
- [S] T. Sobukawa, Extrapolation theorem on some quasi-Banach spaces, *Tokyo J. Math.* 18 (1995), 417–423.
- [So] F. Soria, On an extrapolation theorem of Carleson–Sjölin with applications to a.e. convergences of Fourier series, *Studia Math.* **94** (1989), 235–244.
- [T] E. C. Titchmarsh, Additional note on conjugate functions, J. London Math. Soc. 4 (1929), 204–206.
- [Y] S. Yano, An extrapolation theorem, J. Math. Soc. Japan 3 (1951), 296–305.
- [Z] A. Zygmund, "Trigonometric Series," Vol. I, Cambridge Univ. Press, Cambridge, UK, 1959.