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Given a sublinear operator 7 satisfying that
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for every measurable set 4 and every 1 <p <p,, with C independent of 4 and p,
we show that

- <
s | Ul o ) dut)

r>0

This estimate allows us to improve Yano’s extrapolation theorem and also to
obtain that for every f'e L log L(u),

— jl/r Ap (y)dy
lim =2 < f 1.

r—oo 1

Other types of extrapolation results are also given.  © 2000 Academic Press

1. INTRODUCTION

In 1951, Yano (see [ Y, Z]), using the ideas of Titchmarsh [ T], proved
that for every sublinear operator satisfying

([ o) <5 (] v )
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where /" and ./ are two finite measure spaces, T: L log L(u) — L'(v) is
bounded.

The purpose of this work is to show, using a different argument, that
under a weaker condition on the operator 7, namely

1/p C
(J |T){A(x)|pdv(x)> <711u(A)1/1’
w

for every measurable set 4 —.# and every 1 <p <p,, with C independent
of A and p,

fl/rATf KJ

(1+1 '
sgr; 1 +log® +log * [ f(x)|) du(x),

where A7, is the distribution function of Tf with respect to v, and x and v
are two o-finite measures. This estimate allows us to improve Yano’s
theorem. Also, under the above condition on 7, we obtain that, for every
J€Llog L(n),

— |5 A () dy
lim ————<C|f|;.

r— oo 1 g

In the setting of weak extrapolation results we have to mention the work
of Sjolin [Sj], who was able to obtain endpoint estimates for a sublinear
operator T satisfying the restricted weak-type estimate

C
Sup yl‘%XA(y)l/Pgillu(A)l/P’ (l)

y=0 -

with ¢ and v finite measures. Some years later, Soria [ So] improved the
above extrapolation result by showing that if 7 satisfies that sup,.,
Vi, (1)< Cl(p—1) u(A)Y?, for every measurable set 4, every 1 <p <p,,
and v an arbitrary o-finite measure, then T applies the space B} boundedly
into L' * with ¢(7) =#(1 +1log™ 1/1) (see Section 4 for the definition of B%).

In this paper, we shall prove an extrapolation estimate for an operator
T satisfying (1) in a general measure space.

Also, in the 1990s, the extrapolation theory was extended to the setting
of compatible couples of Banach spaces in the work of Jawerth and
Milman (see [JM1, JM2]). See also the work of Sobukawa [S].

Constants such as C will denote universal constants (independent of f
and p and, whenever it makes sense, independent also of r) and may
change from one occurrence to the next. As usual, the symbol f~g will
indicate the existence of a universal positive constant C such that (1/C) f'<
g < Cf, while the symbol /< g means that /< Cg. We shall write |gll, to
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denote either g/ 7, or [Igll z7,y)> and Ay(y) =v({xe A" |g(x)| > y}) is the
distribution function of g with respect to the measure v (see [BS]).
Throughout this paper (4", v) and (.#, u) are two o-finite measure spaces.

Finally, let us mention that the theory developed in this paper can be
easily extended to the case of a sublinear operator T satisfying

17711, < Hf\lp,

(
for every 1 <p <p,, where ¢ is essentially an increasing function such that
@(p) tends to zero as p tends to 1. In particular, we can take ¢(p)=
(p—1)* with o> 0.

The author thanks F. Soria for his useful comments and remarks.

2. SOME PREVIOUS RESULTS AND A GENERAL PRINCIPLE

For simplicity, throughout this paper we shall assume that T is sublinear
operator in the sense that |T(Af)| = || |Tf| and

(25

As usual, if T is sublinear in the classical sense, we can adapt out proofs
by first considering bounded functions and then extending the result by
some density argument.

Z | Tf(x ae. x.

ProrosiTiON 2.1.  If a function f satisfies that, for every 1 <p < p,,

1
1711l 27y <pj 11 22y

then, for every r>e'/(Po=1,

§o (T = Ur) . dv(x) V0 Ary(p) dy
logr o logr

<K[ Al dux), ()

where K=sup,-(e/p)(p—1)' "7 If in addition feL'n(|J,~, L"), we
have that

ey d
fim wd] /00 du(x). (3)
M

r— o0 lOg}"
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Proof. For every r>0 and 1 <p <p,,

iy dy= [y < [t () dy

1/r

I 1/ 1 \rt e
<rp—1]; I7fl; < (pl> 112

K

Taking now p =1+ 1/log r with r>e"®0=1 we obtain (2).
The last part follows immediately from applying the dominated convergence
theorem. |i

From now on, we shall assume that the estimates on the operator 7 hold
for 1 <p <2; that is, we shall work with p,=2. The general case follows
with the obvious modifications.

LemMA 2.2. For every 0 <r<s< oo,

L 2% ,(y)dy<_inf zf A7) dy

Saq=1 k “agr

Proof. For every > a, =1, we have that

ka

> — r> dv(x)

<[ (X minlfinl s)r)+ dv(x)

<Y [ min(ful ) —aer) , i)

from which the result follows. ||

DEerFINITION 2.3, We say that a function d is a dyadic function and we
write deD if d=3,.,2% 4, With A, pairwise disjoint measurable sets.
Similarly, we say that d is a dyadic* function and we write de D" if
d=3Y7_o 2" 4, With 4, as before.
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LEMMA 2.4. Let f be a positive function. Then:

(a) f=X7,d; withd;eD and d;< f]2’.

(b) f can be written as [ = B+ S,, where 0 < B<min(l, f) and S;=
Y2 od; with d;e D* and d; < f]2.

Proof. The proof of (a) can be found in [So] (see also [Sj]) and the
proof of (b) is a modification of (a) as follows: Let fo=f, fo = fr(r<1}>

JTo=f){{f>1} and let us write
Jfo=1o— > szEk’O‘F Y ZkXEk,osz- Y szEk’0:f1+d ,
k=0 k=0 k=0

where E; o= {x: 28 < fo(x) <2¥*'}. Then f =f; + d, + f, and it holds that

dy<fo<f, dyeD™", and f; < f/2.
Analogously, we write

f1:f1+f1:f1+<f1— i 2k)(Ek,1>+ i XEkl =fi+ fatd,
k=0 k=0

where E, ;= {x:2F< fi(x) <2k+1}.
Following with this construction, we obtain that f=B+.S,, where
B=3,/;, and one can easily see that the required properties on B and S,

are satisfied. |]

This lemma allows us to formulate some general principles which are very
useful to obtain the boundedness of sublinear operators in (essentially)
quasi-normed lattice spaces.

THEOREM 2.5 (General Principles). Let T be a sublinear operator. Let

={/f;|flg<oo}, where |-||z is a positively homogeneous functional
satisfying the lattice property (|| <|gl = | [l £<gllg), and let (F, || r) be
a quasi-normed space. Then

1T r<C 1 fl&s (4)

for every f € E, if and only if one of the following conditions holds:

(1) Equation (4) holds for every function de D. Equivalently, there
exists a constant C> 0 such that, for every de D with ||d| g=1, ||Td| < C.

(ii) Equation (4) holds for every function de D" and every B such
that |B| , <1.
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(ili) FEquation (4) holds for every function de D+ with ||d| <1 and
there exists a constant C>0 such that |TB| < C, for every B such that
Bl <1 and ||B|g<1.

Proof. We shall only prove (iii) since the proofs of (i) and (ii) follow
the same pattern. The necessary condition is clear. Let us then prove the
sufficient condition. Since E satisfies the lattice property, we only need to
show (4) for positive functions f, and since both |-|z and ||| are
positively homogeneous, it is enough to show that |7f||,< C for every

[fllg=1. By the previous lemma, we write f'=B+3>.2 ,d;, and we have

that ||B| <1 and ||d;|| <1, for every j>0. Let a >0 be such that [|-|% is
subadditive (see [ BL]). Then

IZfIE < ITBlF+ X ITd,-I%$<1+ > Id,-|2>

j=0 j=0

s<1 Ly |2—f‘f;)<c,

Jj=0

and the result follows. ||

3. RESTRICTED STRONG-TYPE EXTRAPOLATION

THEOREM 3.1. Let T be a sublinear operator satisfying

HTfHLP(v)\ HfHL(ﬂ)D (5)

for every fe LP(u) and every 1 <p <2. Then, for every fe Llog L(u),

U A1) dy
rgggll/ﬂggw,s | G+ log* f(0l) dut). (6)

Proof. Let feLlog L(u) and let us write

f= Z = Mreoi<y t Z X2 < o <24 -
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Then, by Lemma 2.2, we have that, for r>e,

[ () dy _ f log r2%+1 [ fipat1y Ay (¥) dy

logr =2, logr log r2%+1

e 5?/)02"“)/1‘}/()’) dy
< 1+k x
ngo( +h) log r2k+!

Now, by Proposition 2.1, we get that, for r >e, and k> 1

[Tt A (9) og(r2*!
T ~j ol o2 )

k+1
<[ L£0)] 2971250 ()
2 <ir1<2%

| | f(x)] du(x),
2 <ir1<2%
and similarly for k =0. Therefore,
§55 2a(y) dy
<> (1+k
0 s ~%< !

(2 <1 <29

L/ ()] du(x)

~f (I+log ™[ /(x)|) du(x),

from which the result follows. ||

Remark 3.2. (1) It is important to observe that if

|y dv< [ 1G0I+log * 110D dut) (7)

then
J, A dy= ) [ mp(2)
<] 110+ log ™ (r /) du(x)

<(I+log™r) L{ Lf()[(1 +1og ™ (1f(x)])) du(x),

and therefore (6) and (7) are equivalent.
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(2) A second important remark for our purposes is that we have only
used condition (5) on the functions f;.

Our next result improves Yano’s extrapolation theorem.

TaeEOREM 3.3. If T is a sublinear operator satisfying that for every
measurable set A and every 1 <p <2,

1
1Ty all, <—u(A)"7, (8)
p—1

then T: Llog L(u) — LY(v) + L*(v) is bounded.

Proof. Since L'(v)+ L*(v) and Llog L(x) are normed spaces, we can
apply Theorem 2.5(iii) and hence it is enough to show that ||7d|| .1,y L) S
| 1 10g () foOr every function de D* with [|d| 1 joq () < 1 and that for every B
such that Bl L1og <1 and || B||, <1, ”TBHL w+r2m S C

Now, for the first case, let d=Y7_, 2% 74, With [[d]| 105 L < 1 and let] <0
be such that 277! < ||d| . 10e L <27. We have that de=dy 2k cacst+n, =2 4,
and by Theorem 3.1 and Remark 3.2(2) we obtain that

| #radys ] 1d0oI(1 +log * (dt0)) dit) (9)

M

Now, since d/2’e D", we get

L}. Zral¥) dy<f <1+10g <|d(2);)|>>d,u(x).

Consequently, the function (|7d(x)| —27), € L' and

| Td(x)| = (|Td(x)]| X {|Td(x)| <2/} +2Jj{{|Td(x)| ;21'})

+(ITd(x)| = 2) t racen =2y €L7(v) + L1(v). (10)

Moreover,

. d(x
ITd] L'y 4+ =) 5214‘[ |d(x)] <1 +log™ <| (2])|>> du(x)
M

Sl £ 10g £n)-
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To prove the second part, let B be such that || B| ;... <1 and ||B| . < 1.

By interpolation, we have that 7 is of strong-type (p, p) for every 1 <p <2
and therefore

| aram v < jf Frp) 37y <[ B )

<J 1BUOI dutx) < 1Bl 11og 1 < 1. (11)
and by the same argument used in (10), we obtain the result. ||

COROLLARY 3.4. If T is a sublinear operator satisfying (8), then T
satisfies (6).

Proof.  We can assume that f>0. Then let us write f=B+3 7 ,d; as
in Lemma 2.4. By Lemma 2.2,

[T apar<" v+ X[ () dy.
3 1 j=0 1/2/ k

Now, since B < f we obtain, by (11), that

[“ s ay<| 00 dut)
1 M

Also, to estimate the second term, we observe that, by (9) and the fact
that 2/d, < f,

J a0 =] Py @) dy =27 i)

J

$27 [ )1+ log * (f(x))) dix).

Summing in j >0 and applying Remark 3.2(1) we obtain the result. ||

Let us now show that (3) also holds, for every f'e L log L.

THEOREM 3.5. Let T be a sublinear operator satisfying (8). Then, for
every fe Llog L(u),

— 5 () dy
hrn —_—

r— o0 lg}’

Il and  lim pA(y) SN f -

y—0
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Proof. If >0,

jix/jr }VVT(S/)( ) dy jl/r (y/e) dy . Sﬁ(ar) WTf(J/) dy

log r log r log r

log(er) sﬁ(sr) Le(¥) dy
log r log(er)

and, if we apply (6) to the function ¢f, with € L log L, we obtain that, for
every r = e,

log(er) fﬁ(sr) Ap(y) dy
log r log(er)

= Lﬂ LA()I(1 +1og™ (& | f(x)])) du(x).

From this estimate and letting first » tend to infinity and then ¢ tend to
zero, we obtain the first inequality. The second follows immediately from
L’Hopital’s rule. |

Remark 3.6. (1) If for a v-measurable function g we define

jl/r g ) dy
= Tim 24777
q(g) ri 0 log r

we have, by Lemma 2.2, that ¢ is a seminorm and thus Theorem 3.5 says
that if S={g; ¢(g) <oo}, T can be extended to a bounded operator from
L'(u) into the completion of S with respect to g.

(i) If we take T= M to be the Hardy-Littlewood maximal operator,
then it is known (see [CS]) that yi,.,(y) is equivalent to a decreasing
function. As a consequence, we have that lim,, _, o yA7-(y) sup, .o yA7(»)
and the second inequality in Theorem 3.5 is nothing but the weak-type
estimate (1, 1) for M.

Finally, let us just mention that we cannot expect to get the weak-type
(1, 1) estimate for T since it is known (see [ K]) that there are operators
T satisfying (1) for which the weak-type (1, 1) estimate does not hold.

4. RESTRICTED WEAK-TYPE EXTRAPOLATION

In this section, we shall assume that our sublinear operator 7 satisfies
the following restricted weak-type condition: there exists a constant C >0
such that, for every measurable set 4 and every | <p <2,

) C
sup AVTXA(y)l/"y<lf1ﬂ(A)l/”. (12)

y>0
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First, we observe that condition (12) is equivalent to having that

sup ( sup y?(p—1)) Ay, (y) Su(A),

y>0 1l<p<2

and hence, taking p=1+1/(1 +log*(1/y)),

sup J AY

D Tog (1) 7, (V) S p(A). (13)

Now, the space L'(v)+ L*(v) is characterized as the set of measurable
functions such that

1 o
Ity 20 =] S35 ds= | min(1, 23(y) dy < o

This last equality leads us to define a weak-type version of this space as
follows: let W(L'+ L*) (weak-(L'+ L™)) be the set of measurable func-
tions such that

2}+l

IS Izt + =) = sup " min(1, A7(y)) dy < co.
JeEZ

Observe that || f|| WL+ L% =) ASUP, - |7 min(1, A7(y)) dy and that this
last expressmn is a quasi-norm. Also, if the measure v is finite, then L'(v) +
L*(v)=L'(v) and the space W(L'+ L®) is the weak-type space L' .

Let us also recall (see [So]) that the space B,. mentioned in the Intro-
duction was defined as the set of measurable functions such that

I1/15,.= ] o ){Hlog (ng'(y))ﬂ dy < o0,
where | f1l,=[5" @(4,(»)) dy
THEOREM 4.1. If T satisfies (12) and ¢(t)=1t(1+log™ 1/t), then
T:B,. > W(L'+L>)
is bounded.

Proof. Since W(L'+ L*) and B, are quasi-normed lattices, we can
apply our first general principle, Theorem 2.5(i). That is, we have to see
that | 7d| ! 4 1) < C for every de D such that HdHB =1.

Hence let d=3Y, .52 24, €D and let us assume that HdHB =1. If we

write Ex= U 72, Ay, we obtaln that d=3, ., 2% 2k, Then, to show that
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there exists a constant C such that || 7d|| yy! 1 1=y < C, it is enough to prove
that sup; ., jzj Ara(y)dy < C. By Lemma 2.2 and (13) we have that

Hi+1
Sup [ g, 2t ()
j=0°2 )
5+ 1ok
< su inf 2kj (/1" ) d
j>13 Zkak_lg ak2j/2k |T)(Ek|)(y 'y

<sup inf Y 2Xu(E,)

j=0 Zpq=1p

f2f+1/2k (1 + 10g+(1/y)) dy

a, 22k y

A simple computation shows that if we take

= 2B +log* (1/u(E,))
“TY 2u(E)(1 +log T (1/u(E)))’

then the above expression is equivalent to ||d|| B = 1. 1
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