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Given a sublinear operator T satisfying that

&T/A&Lp
(&)�

C
p&1

&/A &Lp
(+) ,

for every measurable set A and every 1<p�p0 , with C independent of A and p,
we show that

sup
r>0

��
1�r *&

Tf ( y) dy

1+log+ r
�|

M

| f (x)| (1+log+ | f (x)| ) d+(x).

This estimate allows us to improve Yano's extrapolation theorem and also to
obtain that for every f # L log L(+),

lim
r � �

��
1�r *&

Tf ( y) dy

log r
�& f &1 .

Other types of extrapolation results are also given. � 2000 Academic Press

1. INTRODUCTION

In 1951, Yano (see [Y, Z]), using the ideas of Titchmarsh [T], proved
that for every sublinear operator satisfying

\|N

|Tf (x)| p d&(x)+
1�p

�
C

p&1 \|M

| f (x)| p d+(x)+
1�p

,
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where N and M are two finite measure spaces, T: L log L(+) � L1(&) is
bounded.

The purpose of this work is to show, using a different argument, that
under a weaker condition on the operator T, namely

\|N

|T/A(x)| p d&(x)+
1�p

�
C

p&1
+(A)1�p

for every measurable set A/M and every 1<p�p0 , with C independent
of A and p,

sup
r>0

��
1�r *&

Tf ( y) dy

1+log + r
�K |

M

| f (x)| (1+log+ | f (x)| ) d+(x),

where *&
Tf is the distribution function of Tf with respect to &, and + and &

are two _-finite measures. This estimate allows us to improve Yano's
theorem. Also, under the above condition on T, we obtain that, for every
f # L log L(+),

lim
r � �

��
1�r *&

Tf ( y) dy

log r
�C & f &1 .

In the setting of weak extrapolation results we have to mention the work
of Sjo� lin [Sj], who was able to obtain endpoint estimates for a sublinear
operator T satisfying the restricted weak-type estimate

sup
y�0

y*&
T/A

( y)1�p�
C

p&1
+(A)1�p, (1)

with + and & finite measures. Some years later, Soria [So] improved the
above extrapolation result by showing that if T satisfies that supy>0

y*&
T/A

( y)�C�( p&1) +(A)1�p, for every measurable set A, every 1<p�p0 ,
and & an arbitrary _-finite measure, then T applies the space B*. boundedly
into L1, � with .(t)=t(1+log+ 1�t) (see Section 4 for the definition of B*.).

In this paper, we shall prove an extrapolation estimate for an operator
T satisfying (1) in a general measure space.

Also, in the 1990s, the extrapolation theory was extended to the setting
of compatible couples of Banach spaces in the work of Jawerth and
Milman (see [JM1, JM2]). See also the work of Sobukawa [S].

Constants such as C will denote universal constants (independent of f
and p and, whenever it makes sense, independent also of r) and may
change from one occurrence to the next. As usual, the symbol frg will
indicate the existence of a universal positive constant C such that (1�C) f�
g�Cf, while the symbol f�g means that f�Cg. We shall write &g&p to
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denote either &g&Lp(+) or &g&Lp(&) , and *&
g( y)=&([x # N; | g(x)|> y]) is the

distribution function of g with respect to the measure & (see [BS]).
Throughout this paper (N, &) and (M, +) are two _-finite measure spaces.

Finally, let us mention that the theory developed in this paper can be
easily extended to the case of a sublinear operator T satisfying

&Tf &p�
1

.( p)
& f &p ,

for every 1<p�p0 , where . is essentially an increasing function such that
.( p) tends to zero as p tends to 1. In particular, we can take .( p)=
( p&1): with :>0.

The author thanks F. Soria for his useful comments and remarks.

2. SOME PREVIOUS RESULTS AND A GENERAL PRINCIPLE

For simplicity, throughout this paper we shall assume that T is sublinear
operator in the sense that |T(*f )|=|*| |Tf | and

}T \ :
�

j=0

f j+ (x)}� :
�

j=0

|Tfj (x)|, a.e. x.

As usual, if T is sublinear in the classical sense, we can adapt out proofs
by first considering bounded functions and then extending the result by
some density argument.

Proposition 2.1. If a function f satisfies that, for every 1<p�p0 ,

&Tf &Lp(&)�
1

p&1
& f &Lp(+) ,

then, for every r�e1�( p0&1),

�N ( |Tf (x)|&1�r)+ d&(x)
log r

=
��

1�r *&
Tf ( y) dy

log r

�K |
M

| f (x)|1+1�log r d+(x), (2)

where K=supp�1(e�p)( p&1)1& p. If in addition f # L1 & (.p>1 L p), we
have that

lim
r � �

��
1�r *&

Tf ( y) dy

log r
�K |

M

| f (x)| d+(x). (3)
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Proof. For every r>0 and 1<p�p0 ,

|
�

1�r
*&

Tf ( y) dy=|
�

1�r
y p&1*&

Tf ( y)
1

y p&1 dy�r p&1 |
�

1�r
y p&1*&

Tf ( y) dy

�r p&1 1
p

&Tf & p
p �

1
p \

1
p&1+

p&1 r p&1

p&1
& f & p

p

�
K
e

r p&1

p&1
& f & p

p .

Taking now p=1+1�log r with r�e1�( p0&1), we obtain (2).
The last part follows immediately from applying the dominated convergence

theorem. K

From now on, we shall assume that the estimates on the operator T hold
for 1<p�2; that is, we shall work with p0=2. The general case follows
with the obvious modifications.

Lemma 2.2. For every 0�r�s��,

|
s

r
*&

�k fk
( y) dy� inf

� ak=1
:
k
|

s

akr
*&

fk
( y) dy.

Proof. For every � ak=1, we have that

|
s

r
*&

��
k=0

fk
( y) dy=|

N \min \} :
�

k=0

fk(x)} , s+&r++

d&(x)

�|
N \ :

�

k=0

min( | fk(x)|, s)&r++

d&(x)

� :
�

k=0
|

N

(min(| fk(x)|, s)&ak r)+ d&(x)

= :
�

k=0
|

s

ak r
*&

fk
( y) dy,

from which the result follows. K

Definition 2.3. We say that a function d is a dyadic function and we
write d # D if d=�k # Z 2k/Ak

with Ak pairwise disjoint measurable sets.
Similarly, we say that d is a dyadic+ function and we write d # D+ if
d=��

k=0 2k/Ak
with Ak as before.
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Lemma 2.4. Let f be a positive function. Then:

(a) f =��
j=0 dj with dj # D and dj� f�2 j.

(b) f can be written as f =B+Sd , where 0�B�min(1, f ) and Sd=
��

j=0 dj with d j # D+ and d j� f�2 j.

Proof. The proof of (a) can be found in [So] (see also [Sj]) and the
proof of (b) is a modification of (a) as follows: Let f0= f, f0 = f/[ f�1] ,
f0 = f/[ f�1] and let us write

f0 =f0 & :
�

k=0

2k/Ek, 0
+ :

�

k=0

2k/Ek, 0
= f1+ :

�

k=0

2k/Ek, 0
= f1+d0 ,

where Ek, 0=[x: 2k� f0(x)<2k+1]. Then f =f0 +d0+ f1 and it holds that
d0�f0 � f, d0 # D+, and f1� f�2.

Analogously, we write

f1=f1 +f1 =f1 +\f1 & :
�

k=0

2k/Ek, 1++ :
�

k=0

2k/Ek, 1
=f1 + f2+d1 ,

where Ek, 1=[x : 2k� f1(x)<2k+1].
Following with this construction, we obtain that f =B+Sd , where

B=�j fj , and one can easily see that the required properties on B and Sd

are satisfied. K

This lemma allows us to formulate some general principles which are very
useful to obtain the boundedness of sublinear operators in (essentially)
quasi-normed lattice spaces.

Theorem 2.5 (General Principles). Let T be a sublinear operator. Let
E=[ f ; & f &E<�], where & }&E is a positively homogeneous functional
satisfying the lattice property ( | f |�| g| O & f &E�&g&E), and let (F, & }&F) be
a quasi-normed space. Then

&Tf &F�C & f &E , (4)

for every f # E, if and only if one of the following conditions holds:

(i) Equation (4) holds for every function d # D. Equivalently, there
exists a constant C>0 such that, for every d # D with &d&E=1, &Td&F�C.

(ii) Equation (4) holds for every function d # D+ and every B such
that &B&��1.
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(iii) Equation (4) holds for every function d # D+ with &d&E�1 and
there exists a constant C>0 such that &TB&F�C, for every B such that
&B&��1 and &B&E�1.

Proof. We shall only prove (iii) since the proofs of (i) and (ii) follow
the same pattern. The necessary condition is clear. Let us then prove the
sufficient condition. Since E satisfies the lattice property, we only need to
show (4) for positive functions f, and since both & }&E and & }&F are
positively homogeneous, it is enough to show that &Tf &F�C for every
& f &E=1. By the previous lemma, we write f =B+��

j=0 dj , and we have
that &B&E�1 and &d j&E�1, for every j�0. Let :>0 be such that & }&:

F is
subadditive (see [BL]). Then

&Tf &:
F �&TB&:

F+ :
�

j=0

&Td j&:
F �\1+ :

�

j=0

&dj &:
E+

�\1+ :
�

j=0

&2& jf &:
E+�C,

and the result follows. K

3. RESTRICTED STRONG-TYPE EXTRAPOLATION

Theorem 3.1. Let T be a sublinear operator satisfying

&Tf &Lp(&)�
1

p&1
& f &Lp(+) , (5)

for every f # L p(+) and every 1<p�2. Then, for every f # L log L(+),

sup
r>0

��
1�r *&

Tf ( y) dy

1+log+ r
�|

M

| f (x)| (1+log+ | f (x)| ) d+(x). (6)

Proof. Let f # L log L(+) and let us write

f = :
�

k=0

fk= f/[ | f (x)|�1]+ :
�

k=1

f/[2k&1�| f (x)| <2k] .
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Then, by Lemma 2.2, we have that, for r�e,

��
1�r *&

Tf ( y) dy

log r
� :

�

k=0

log r2k+1

log r

��
1�(r2k+1) *&

Tfk
( y) dy

log r2k+1

� :
�

k=0

(1+k)
��

1�(r2k+1) *&
Tfk

( y) dy

log r2k+1

Now, by Proposition 2.1, we get that, for r�e, and k�1,

��
1�(r2k+1) *&

Tfk
( y) dy

log r2k+1 �|
M

| fk(x)|1+1�log(r2k+1) d+(x)

�|
[2k&1�| f (x)|<2k]

| f (x)| 2k�log(r2k+1 ) d+(x)

�|
[2k&1�| f (x)|<2k]

| f (x)| d+(x),

and similarly for k=0. Therefore,

sup
r�e

��
1�r *&

Tf ( y) dy

log r
�:

k

(1+k) |
[2k&1�| f (x)|<2k]

| f (x)| d+(x)

r|
M

| f (x)|(1+log+ | f (x)| ) d+(x),

from which the result follows. K

Remark 3.2. (1) It is important to observe that if

|
�

1
*Tf ( y) dy�|

M

| f (x)|(1+log+ | f (x)| ) d+(x), (7)

then

|
�

1�r
*Tf ( y) dy=(1�r) |

�

1
*T(rf )(z) dy

�|
M

| f (x)|(1+log+(r | f (x)| )) d+(x)

�(1+log+ r) |
M

| f (x)|(1+log+( | f (x)| )) d+(x),

and therefore (6) and (7) are equivalent.
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(2) A second important remark for our purposes is that we have only
used condition (5) on the functions fk .

Our next result improves Yano's extrapolation theorem.

Theorem 3.3. If T is a sublinear operator satisfying that for every
measurable set A and every 1<p�2,

&T/A &p�
1

p&1
+(A)1�p, (8)

then T : L log L(+) � L1(&)+L�(&) is bounded.

Proof. Since L1(&)+L�(&) and L log L(+) are normed spaces, we can
apply Theorem 2.5(iii) and hence it is enough to show that &Td&L1(&)+L�(&) �

&d&L log L(+) for every function d # D+ with &d&L log L(+)�1 and that for every B
such that &B&L log L�1 and &B&��1, &TB&L1(&)+L�(&)�C.

Now, for the first case, let d=��
k=0 2k/Ak

with &d&L log L�1 and let j�0
be such that 2 j&1�&d&L log L�2 j. We have that dk=d/[2k�d<2k+1]=2k/Ak

,
and by Theorem 3.1 and Remark 3.2(2) we obtain that

|
�

1
*&

Td ( y) dy�|
M

|d(x)|(1+log+( |d(x)| )) d+(x). (9)

Now, since d�2 j # D+, we get

|
�

2 j
*&

Td ( y) dy�|
M

|d(x)| \1+log+ \ |d(x)|
2 j ++ d+(x).

Consequently, the function ( |Td(x)|&2 j)+ # L1 and

|Td(x)|=( |Td(x)| /[ |Td(x)| <2 j]+2 j/[ |Td(x)| �2 j])

+(|Td(x)|&2 j) /[ |Td(x)| �2 j] # L�(&)+L1(&). (10)

Moreover,

&Td&L1(&)+L�(&) �2 j+|
M

|d(x)| \1+log+ \ |d(x)|
2 j ++ d+(x)

�&d&L log L(+) .
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To prove the second part, let B be such that &B&L log L�1 and &B&��1.
By interpolation, we have that T is of strong-type ( p, p) for every 1<p<2
and therefore

|
�

1
*&

TB( y) dy�|
�

1
*&

TB( y) y p&1 dy�|
M

|B(x)| p d+(x)

�|
M

|B(x)| d+(x)�&B&L log L�1. (11)

and by the same argument used in (10), we obtain the result. K

Corollary 3.4. If T is a sublinear operator satisfying (8), then T
satisfies (6).

Proof. We can assume that f�0. Then let us write f =B+��
j=0 dj as

in Lemma 2.4. By Lemma 2.2,

|
�

3
*&

Tf ( y) dy�|
�

1
*&

TB( y) dy+ :
�

j=0
|

�

1�2 j
*&

Td j
( y) dy.

Now, since B� f we obtain, by (11), that

|
�

1
*&

TB( y) dy�|
M

f (x) d+(x).

Also, to estimate the second term, we observe that, by (9) and the fact
that 2 jdj� f,

|
�

1�2 j
*&

Td j
( y) dy=|

�

1�2 j
*&

T(2 jd j)
(2 jy) dy=2& j |

�

1
*&

T(2 jd j)
( y) dy

�2& j |
M

f (x)(1+log+( f (x))) d+(x).

Summing in j�0 and applying Remark 3.2(1) we obtain the result. K

Let us now show that (3) also holds, for every f # L log L.

Theorem 3.5. Let T be a sublinear operator satisfying (8). Then, for
every f # L log L(+),

lim
r � �

��
1�r *&

Tf ( y) dy

log r
�& f &1 and lim

y � 0

y*&
Tf ( y)�& f &1 .
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Proof. If =>0,

��
1�r *&

T(=f )( y) dy

log r
=

��
1�r *&

Tf ( y�=) dy

log r
==

��
1�(=r) *&

Tf ( y) dy

log r

==
log(=r)
log r

��
1�(=r) *&

Tf ( y) dy

log(=r)
,

and, if we apply (6) to the function =f, with f # L log L, we obtain that, for
every r�e,

log(=r)
log r

��
1�(=r) *&

Tf ( y) dy

log(=r)
�|

M

| f (x)|(1+log+(= | f (x)| )) d+(x).

From this estimate and letting first r tend to infinity and then = tend to
zero, we obtain the first inequality. The second follows immediately from
L'Hôpital's rule. K

Remark 3.6. (i) If for a &-measurable function g we define

q(g)= lim
r � �

��
1�r *&

g( y) dy

log r
,

we have, by Lemma 2.2, that q is a seminorm and thus Theorem 3.5 says
that if S=[g; q(g)<�], T can be extended to a bounded operator from
L1(+) into the completion of S with respect to q.

(ii) If we take T=M to be the Hardy�Littlewood maximal operator,
then it is known (see [CS]) that y*Mf ( y) is equivalent to a decreasing
function. As a consequence, we have that limy � 0 y*&

Tf ( y)rsupy>0 y*&
Tf ( y)

and the second inequality in Theorem 3.5 is nothing but the weak-type
estimate (1, 1) for M.

Finally, let us just mention that we cannot expect to get the weak-type
(1, 1) estimate for T since it is known (see [K]) that there are operators
T satisfying (1) for which the weak-type (1, 1) estimate does not hold.

4. RESTRICTED WEAK-TYPE EXTRAPOLATION

In this section, we shall assume that our sublinear operator T satisfies
the following restricted weak-type condition: there exists a constant C>0
such that, for every measurable set A and every 1<p�2,

sup
y>0

*&
T/A

( y)1�p y�
C

p&1
+(A)1�p. (12)

164 MARI� A J. CARRO



First, we observe that condition (12) is equivalent to having that

sup
y>0

( sup
1<p�2

y p( p&1)) *&
T/A

( y)�+(A),

and hence, taking p=1+1�(1+log+(1�y)),

sup
y>0

y
1+log+(1�y)

*&
T/A

( y)�+(A). (13)

Now, the space L1(&)+L�(&) is characterized as the set of measurable
functions such that

& f &L1(&)+L�(&)=|
1

0
f &*(s) ds=|

�

0
min(1, *&

f ( y)) dy<�.

This last equality leads us to define a weak-type version of this space as
follows: let W(L1+L�) (weak-(L1+L�)) be the set of measurable func-
tions such that

& f &W(L1+L�)=sup
j # Z

|
2 j+1

2 j
min(1, *&

f ( y)) dy<�.

Observe that & f &W(L1+L�) rsupr>0 �2r
r min(1, *&

f ( y)) dy and that this
last expression is a quasi-norm. Also, if the measure & is finite, then L1(&)+
L�(&)=L1(&) and the space W(L1+L�) is the weak-type space L1, �.

Let us also recall (see [So]) that the space B.* mentioned in the Intro-
duction was defined as the set of measurable functions such that

& f &B.*
=|

�

0
.(*f ( y)) _1+log \ & f &.

y.(*f ( y))+& dy<�,

where & f &.=��
0 .(*f ( y)) dy.

Theorem 4.1. If T satisfies (12) and .(t)=t(1+log+ 1�t), then

T: B.* � W(L1+L�)

is bounded.

Proof. Since W(L1+L�) and B.* are quasi-normed lattices, we can
apply our first general principle, Theorem 2.5(i). That is, we have to see
that &Td&W(L1+L�)�C for every d # D such that &d&B.*

=1.
Hence let d=�k # Z 2k/Ak

# D and let us assume that &d&B.*=1. If we
write Ek= _ �

j=k+1 Ak , we obtain that d=�k # Z 2k/Ek
. Then, to show that
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there exists a constant C such that &Td&W(L1+L�)�C, it is enough to prove
that supj�0 �2 j+1

2 j *&
Td ( y) dy�C. By Lemma 2.2 and (13) we have that

sup
j�0

|
2 j+1

2 j
*&

(�k # Z 2k |T/Ek
| )( y) dy

�sup
j�0

inf
�k ak=1

:
k

2k |
2 j+1�2k

ak 2 j�2k
(*&

|T/Ek
|)( y) dy

�sup
j�0

inf
�k ak=1

:
k

2k+(Ek) |
2 j+1�2k

ak 2 j�2 k

(1+log+(1�y))
y

dy.

A simple computation shows that if we take

ak=
2k+(Ek)(1+log+(1�+(Ek)))

� j 2 j+(Ej)(1+log+(1�+(Ej)))
,

then the above expression is equivalent to &d&B.*
=1. K
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