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Let A be a subvariety of affine space A
n whose irreducible

components are d-dimensional linear or affine subspaces of A
n .

Denote by D(A) ⊂ N
n the set of exponents of standard monomials

of A. We show that the combinatorial object D(A) reflects the
geometry of A in a very direct way. More precisely, we define
a d-plane in N

n as being a set γ + ⊕
j∈ J Ne j , where # J = d and

γ j = 0 for all j ∈ J . We call the d-plane thus defined to be parallel
to

⊕
j∈ J Ne j . We show that the number of d-planes in D(A) equals

the number of components of A. This generalises a classical result,
the finiteness algorithm, which holds in the case d = 0. In addition
to that, we determine the number of all d-planes in D(A) parallel
to

⊕
j∈ J Ne j , for all J . Furthermore, we describe D(A) in terms of

the standard sets of the intersections A ∩ {X1 = λ}, where λ runs
through A

1.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field and k[X] = k[X1, . . . , Xn] be the polynomial ring in n variables. We fix a term
order < on k[X] such that X1 < · · · < Xn . We consider n-dimensional affine space An = Spec k[X]
over k, and (a certain class of) ideals I ⊂ k[X], along with the corresponding varieties V (I) ⊂ An .
Central objects of study will be the sets

C(I) = {
LE( f ); f ∈ I

} ⊂ Nn (1)

consisting of leading exponents of elements of I (with respect to <) and its complement

D(I) = Nn − C(I), (2)
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which is called the set of exponents of standard monomials of I (see [Stu96]), or also Gröbner éscalier
of I (see [AMM06]). We often shift between the use of monomials and the use of their exponents.
Therefore, we call D(I) itself the standard set of I . Clearly, the set C(I) is stable under the canonical
action of the additive monoid Nn on itself. Therefore, the set

Dn = {
δ ⊂ Nn; if α ∈ Nn − δ, then α + β ∈ Nn − δ, for all β ∈ Nn} (3)

consists of all subsets of Nn which occur as sets of standard monomials of ideals I ⊂ k[X]. The set Dn

will be used throughout the text.
All ideals under consideration are radical. Therefore, we have a correspondence between ideals

and their varieties. We will denote the affine variety attached to an ideal I by A = V (I), and con-
versely, the ideal defining an affine variety A by I(A). We use the shorthand notation C(A) = C(I)
and D(A) = D(I). Our goal is to describe a connection between varieties A (geometric objects) and
standard sets D(A) (combinatorial objects). This will certainly not be a bijection, since the combina-
torial objects are much coarser than the geometric objects. However, the combinatorial object D(A)

will reflect much of the geometry of A.
Let us start with a simple and well-known special case.

Proposition 1. Let I ⊂ k[X] be a radical ideal. Then D(I) is a finite set if, and only if, for all field extensions
k′ ⊃ k, the set Vk′ (I) of k′-rational closed points of V (I) is finite. In this case, #D(I) = #Vk(I), where k is the
algebraic closure of k.

Proof. This is due to the Chinese Remainder Theorem and the fact that the standard monomials form
a basis of the k-vector space k[X]/I . See also [CLO97], where this proposition is discussed in the
context of the finiteness algorithm. �

Hence, the combinatorial object D(A) inherits essential information about the geometry of vari-
ety A consisting of finitely many rational points—Proposition 1 yields the equality

#D(I) = #A. (4)

In fact, if we use the lexicographic order on k[X], the shape of the combinatorial object D(A) contains
much more information about the shape of V (I) than only its cardinality, as is stated by Eq. (4).
For a discussion of this issue, see [Led08] and references therein. In the present paper, we want to
generalise Eq. (4) in the following way:

• On the combinatorial side, we replace finite sets in Dn by infinite sets in Dn .
• On the geometric side, we consider a class of nonclosed points of An , namely, linear or affine

d-dimensional affine subspaces of kn .

We think of these points as a particularly simple kind of nonclosed points in affine space An . It is
clear that in the case where the components of A are linear subspaces of kn , the variety A can be
considered as a finite collection of k-rational points in the Grassmannian Grass(d,n). In Section 2, we
will explain that also in the case where the components of A are affine subspaces of kn , A has an
interpretation as a finite collection of k-rational points in a Grassmannian.

In particular, both A and D(A) are infinite sets. Our generalisations of Eq. (4) will therefore involve
other invariants than just the cardinalities of A and D(A); we will prove the following results.

• In Definition 4, we introduce d-planes in Nn , which are subsets of the form γ + ⊕
j∈ J Ne j , where

# J = d and γ j = 0 for all j ∈ J . Theorem 5 states in particular that the number of d-planes in
D(A) equals the number of components of A. This result is a clearly a generalisation of Eq. (4), in
stating equality of sizes of a combinatorial and a geometric object. However, we will refine this
assertion in the following ways.
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• In Theorem 5, we also specify, for each J with # J = d, how many d-planes γ + ⊕
j∈ J Ne j are

contained in D(A). For this, a close analysis of the equations defining the components of A is
necessary. The key notion here is that of minimal free variables, as is introduced in Definition 2.
Note that this result goes beyond what can be said in the case d = 0—more precisely, in that
context, the analogue of our J is the empty set, hence the analogous statement is empty as well.

• In the case where all components of A are parallel to the hyperplane {X1 = 0} (and the term order
has the property stated in Definition 10), we can explicitly compute D(A) in terms of D(Aλ),
λ ∈ A1, where Aλ is the subvariety A ∩{X1 = λ} of A. This will be established in Theorem 12. The
crucial operation here is addition of standard sets (see Definition 11), which has been introduced
already in [Led08]. The statement of Theorem 12 is stronger than that of Theorem 5, in describing
the combinatorics of D(A) in a much finer way.

• If not all components of A are parallel to the hyperplane {X1 = 0}, we use the main Theorem
of [Wib07] for showing the existence of a Zariski open U ⊂ A1 such that D(Aλ) is constant for all
λ ∈ U , of value δ ⊂ Nn−1, say. In Theorem 17 and Corollary 19, we show that Ne1 ⊕ δ is contained
in D(A), and that this is the largest subset of D(A) which is a union of 1-planes γ + Ne1. This
result is stronger than Theorem 5 since it yields information not only on the highest dimensional
subsets of D(A).

2. Minimal free variables

We now describe the geometric objects of our study. Let A be a closed subvariety of An with m
irreducible components, such that each component A′ of A is a d-dimensional affine subspace of kn .
(By an affine subspace, as opposed to a linear subspace of kn , we understand a d-dimensional plane
which does not necessarily pass through the origin of kn .)

We embed the affine space An we started with into An+1 by the map

ι : An → An+1 : (a1, . . . ,an) 	→ (1,a1, . . . ,an). (5)

Each d-dimensional affine subspace A′ of An defines a (d + 1)-dimensional linear subspace of An+1,
namely, the linear space spanned by the elements of ι(A′). Denote by X(d,n) the subset of the Grass-
mannian Grass(d + 1,n + 1) consisting of all linear (d + 1)-spaces in An+1 whose intersection with
the hyperplane {X0 = 1} of An+1 is a d-dimensional affine variety. (X0 is the additional coordinate we
use for embedding An into An+1.) Clearly, X(d,n) is Zariski-open in Grass(d + 1,n + 1). Upon identi-
fying A′ and the span of ι(A′), the space of all d-dimensional affine subspaces of An is identified with
the space X(d,n). Thus, the variety A may be considered as an m-element set of k-rational closed
points in X(d,n).

Let us fix a component A′ of A and study it in terms of linear equations. We think of A′ as being
an affine d-plane in kn , thus, the solution to a linear equation

B X + c = 0, (6)

where B ∈ Mn(k) has rank n − d, c ∈ Mn,1(k), and X is the column with entries X1, . . . , Xn . By the
usual operations on the lines of B and c and a permutation of columns of B , (6) is equivalent to

B̃ X̃ + c̃ = 0, (7)

where

B̃ =
(

En−d ∗
0 0

)
, X̃ =

⎛⎜⎝ Xσ (1)

...

⎞⎟⎠ , c̃ =
(∗

0

)
.

Xσ (n)
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(En−d denotes the (n − d) × (n − d)-unit matrix.) The variables X̃n−d+1, . . . , X̃n are sometimes called
free variables of A′ , since they can take arbitrary values, whereas the values of X̃1, . . . , X̃d are uniquely
determined by the choice of values of the free variables. However, the set of free variables of an
affine plane is not a well-defined quantity. If, e.g., a hyperplane is defined by the equation B1 X1 +
· · · + Bn Xn + c = 0, and B1 · · · Bn �= 0, then each (n − 1)-element subset of {X1, . . . , Xn} is a set of free
variables.

Definition 2. Let A′ be a d-dimensional affine subspace of An and J ⊂ {1, . . . ,n} such that # J = d.
Then the elements of the set {X j; j ∈ J } are called minimal free variables if {X j; j ∈ J } is a set of free
variables of A′ and for all j ∈ J , there exists no i ∈ {1, . . . ,n}− J , i < j, such that for J ′ = ( J −{ j})∪{i},
the set {X j; j ∈ J ′} is a set of free variables of A′ .

By definition, a set of minimal free variables is unique. The name, minimal, reflects the fact that
we have X1 < · · · < Xn . Before explaining the significance of minimal free variables to our situation,
let us give this notion another characterisation, in terms of a recursion, and let us find parameters
which uniquely determine A′ .

Let ξ be any solution of (6). The set of solutions of (6) is in bijection with the set of solutions of

BY = 0, (8)

via X = Y + ξ . Define Y1 = 1, and consider the equation

B

⎛⎜⎜⎜⎝
1

Y2
...

Yn

⎞⎟⎟⎟⎠ = 0, (9)

which is in fact an inhomogeneous system in the variables Y2, . . . , Yn .

• If (9) has a solution, then X1 is one of the minimal free variables. Proceed by induction over n: In
the next step, define Y1 = 0, and consider the affine (d − 1)-plane A′ ∩ {X1 = ξ1} in An−1 defined
by (8).

• If (9) has no solution, then X1 is not one of the minimal free variables. In this case, A′ ⊂
{X1 = ξ1} = An−1. The plane A′ is characterised by (8), where Y1 = 0. Proceed by induction over n.

Proposition 3. Let {X j; j ∈ J } be minimal free variables of A′ . Then there exists a unique system of equations
defining A′ ,

Xi +
∑

j∈ J , j<i

bi, j X j + ci = 0, (10)

for all i ∈ {1, . . . ,n} − J .

Proof. Consider system (7), which defines A′ . We choose a permutation σ in such a way that
(Xσ(1), . . . , Xσ(n−d)) = (Xi)i /∈ J . The equations in (7) are

Xi +
∑
j∈ J

bi, j X j + ci = 0, for all i /∈ J .

We claim that this is in fact (10), i.e., bi, j = 0 for all pairs (i, j) such that i /∈ J , j ∈ J and i < j. Indeed,
if there exist such i, j with bi, j �= 0, we can interchange those columns of B̃ which correspond to the
variables Xi and X j . We get
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(
B ′ ∗
0 0

)
X̃ ′ + c̃ = 0, (11)

where

B ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∗
. . .

...

1 ∗
bi, j

∗ 1
...

. . .

∗ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and X̃ ′ arises from X̃ by interchanging Xi and X j . Upon transforming the rows of (11), we arrive at a
system (

En−d ∗
0 0

)
X̃ ′ + c̃′ = 0.

This means that for J ′ = ( J − { j}) ∪ {i}, also {X j; j ∈ J ′} are free variables, a contradiction to mini-
mality. Uniqueness is clear. �

Given A′ , with minimal free variables {X j; j ∈ J }, we can think of A′ as having “coordinates”
(ξ1, . . . , ξn), where ξ j = X j if j ∈ J , and ξi = −∑

j∈ J , j<i bi, j X j − ci if i /∈ J .
Recall that X(d,n) is the open subvariety of Grass(d + 1,n + 1) whose closed points all linear

(d + 1)-spaces in An+1 whose intersection with the hyperplane {X0 = 1} of An+1 is a d-dimensional
affine variety. For a set J ⊂ {1, . . . ,n} with # J = d, we write Ĵ = {0} ∪ J . Denote a closed point
of X(d,n) by Â′ . Note that the definition of the space X(d,n) implies that X0 is a free variable of

each point Â′ of X(d,n). Since the indices do not get any smaller than 0, X0 is even a minimal free
variable in each Â′ .

Now we define X( J ,n) to be the subvariety of X(d,n) consisting of all Â′ in X(d,n) with minimal
free variables {X j; j ∈ Ĵ }. By Proposition 3, each element of X( J ,n) can be uniquely written as the
solution of a system

BY + c = 0.

Here (Yi)i=1,...,n−d = (X j) j /∈ J and (Yi)i=n−d+1,...,n = (X j) j∈ J . Further, B = (En−d b), where the rows
of b are indexed by {1, . . . ,n} − J , and the columns of b are indexed by J . Denote by r( J ) the sum of
all #{ j ∈ J ; j < i}, where i runs through {1, . . . ,n} − J . Since for all i /∈ J , we have bi, j = 0 whenever
j � i, and c is arbitrary, the set X( J ,n) is isomorphic to Ar( J )+n−d .

In fact, X( J ,n) is a locally closed stratum in X(d,n). For seeing this, we adopt some notation
of [GH78]. We understand the Grassmannian Grass(d + 1,n + 1) to be simply the set of (d + 1)-
dimensional subspaces Â′ of An+1. We represent an element of Grass(d + 1,n + 1) by a (d + 1) ×
(n + 1)-matrix

M = (Mi, j)i=0,...,d; j=0,...,n

of rank d + 1. The plane under consideration is the span of the rows of M . In this representation,
M and M ′ define the same plane if, and only if, M = gM ′ for some g ∈ GLd+1. Thus we have written
our Grassmannian as a quotient

Grass(d + 1,n + 1) = GLd+1 \{M ∈ Md+1,n+1; rk M = d + 1}.
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Now for each I ⊂ {0, . . . ,n} with #I = d + 1, denote by U I the set of all M ∈ Grass(d + 1,n + 1) such
that the submatrix

MI = (Mi, j)i=0,...,d; j∈I

is invertible. Note that this constraint is independent of the matrix representing our plane. It is clear
from the definitions that U I consists of those (d+1)-planes in Â′ for which Xi , i ∈ I , are free variables.
Therefore, X( J ,n) is the locally closed stratum

X( J ,n) = U Ĵ −
⋃

I

U I ,

in Grass(d + 1,n + 1), where the union goes over all I = (̂ J − { j}) ∪ {i}, where j runs through Ĵ and
i takes all values in {0, . . . ,n}− Ĵ such that i < j. In particular, X( J ,n) is also locally closed in X(d,n).

3. The highest dimensional subset of D(A)

Let A be an affine variety as in the previous section. In this section, we give a first description of
the set of standard monomials D(A). For doing so, we have to find an invariant attached to an infinite
δ ∈ Dn , which will play an analogous role as the number of elements of a finite δ ∈ Dn .

Definition 4. Let δ ∈ Dn . A d-plane in δ is a subset of δ of the form γ +⊕
i∈ J Nei , where J ⊂ {1, . . . ,n}

contains d elements, ei is the ith standard basis vector of Nn , and γ j = 0 for all j ∈ J . We say that this
d-plane is parallel to

⊕
i∈ J Nei . Further, given δ ∈ Dn , there exists a maximal d such that δ contains a

d-plane; define E(δ) to be the union of all d-planes contained in δ.

Thus, E(δ) has the same d-dimensional parts as δ and forgets all parts of lower dimension. In the
case where δ = D(I) or δ = D(A), we write E(δ) = E(I) and E(δ) = E(A), resp.

Theorem 5. Let A ⊂ An be an affine variety whose irreducible components are affine d-planes in An. For all
J ⊂ {1, . . . ,n} such that # J = d, let m J be the number of irreducible components of A having minimal free
variables {X j; j ∈ J }. Then for all such J , the number of d-planes in D(A) parallel to

⊕
i∈ J Nei equals m J .

Let us reduce the assertion of the theorem to a few special cases, the investigation of which will
enable us to prove Theorem 5.

Lemma 6. For all J ⊂ {1, . . . ,n} such that # J = d, let A J be the subvariety of A consisting of all irreducible
components of A whose minimal free variables are {X j; j ∈ J }. Assume that the assertion of Theorem 5 holds
for all A J . Then it also holds for A.

Proof. We show that E(A) = ⋃
J E(A J ), where the union goes over all J with # J = d. One inclusion

is immediate: Since I(A) ⊂ I(A J ) for all J , it follows that C(A) ⊂ C(A J ) for all J , hence C(A) ⊂⋂
J C(A J ). Taking complements, we get

D(A) ⊃
⋃

J

D(A J ), (12)

hence, in particular, also E(A) ⊃ ⋃
J E(A J ).

As for the other inclusion, we have to show that Nn − E(A) ⊃ Nn − ⋃
J E(A J ). Take an arbitrary α

on the right-hand side. We have to show that α lies also in the left-hand side, which means that for
all J containing d elements, there exists δ J ∈ ⊕

j∈ J Ne j such that α + δ J ∈ Nn − D(A) = C(A).
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We have α ∈ Nn −⋃
J E(A J ) = ⋂

J (N
n − E(A J )). We fix one J and consider the inclusion α ∈ Nn −

E(A J ). By hypothesis, the assertion of Theorem 5 holds for A J , hence E(A J ) consists solely of d-planes
parallel to

⊕
j∈ J Ne j . Therefore, there exists a β J ∈ ⊕

j∈ J Ne j such that α+β J ∈ Nn − D(A J ) = C(A J ).
In particular, there exists an f J ∈ I(A J ) such that LE( f J ) = α + β J .

Next, consider an arbitrary J ′ �= J with # J ′ = d. Since the assertion of Theorem 5 also holds
for A J ′ , all d-planes in D(A J ′ ) are parallel to

⊕
j∈ J ′ Ne j . In particular, the plane

⊕
j∈ J Ne j is not

contained in D(A J ′ ). Therefore, there exists a γ J ′ ∈ ⊕
j∈ J Ne j which also lies in C(A J ′ ). Hence, there

exists an f J ′ ∈ I(A J ′ ) whose leading exponent equals γ J ′ . Consider

f = f J

∏
J ′ �= J

f J ′ ∈ I(A),

then for the leading exponents of f , we have

LE( f ) = LE( f J ) +
∑
J ′ �= J

LE( f J ′) = α + β J +
∑
J ′ �= J

γ J ′ = α + δ J ∈ C(A),

where δ J ∈ ⊕
j∈ J Ne j , as desired. �

At this point, a comment on inclusion (12) is in order. It is fundamental to note that only this
inclusion holds, and in general not the converse inclusion. In other words, the inclusion (12) will,
for general A J , always be strict. This phenomenon is illustrated by Examples 9, 13, and 20 below, as
readers may check without too much difficulty.

The lemma provides a first reduction in the proof of Theorem 5. For reducing the statement fur-
ther, we consider the particular case in which all components A′ of A are in fact linear spaces. More
precisely, we draw our attention to the following two statements.

• A(d,n): The assertion of Theorem 5 holds if all irreducible components of A are affine d-planes.
• L(d,n): The assertion of Theorem 5 holds if all irreducible components of A are linear d-planes.

Proposition 7. For all d and n, we have A(d,n) if, and only if, for all d and n, we have L(d,n).

Proof. Only the “if” direction needs a proof. Let A be a variety as in assertion A(d,n). By Lemma 6,
we may assume that the minimal free variables of each component of A are {X j; j ∈ J }, for a fixed J .
Denote by Î the homogenisation of the ideal I = I(A) ⊂ k[X] in the polynomial ring k[X0, X], and
denote by Â ⊂ An+1 = Spec k[X0, X] the corresponding variety. Clearly, each irreducible component
of Â is the linear (d + 1)-space spanned by ι(A′), where A′ is an irreducible component of A, and ι is
the map (5). One easily checks that the minimal free variables of the irreducible components of Â are
{X j; j ∈ Ĵ }, where Ĵ = J ∪ {0}.

We define a term order ≺ on k[X0, X] by Xα0
0 Xα ≺ Xβ0

0 Xβ if either α < β , or α = β and α0 < β0.
Then clearly X0 ≺ · · · ≺ Xn , hence, the term order ≺ on k[X0, X] has an analogous formal prop-
erty as the term order < on k[X] we have been working with throughout. We may apply assertion
L(d+1,n+1) to the variety Â, computing D( Â) w.r.t. ≺. Thus, the set D( Â) ⊂ Nn+1 contains as many
(d + 1)-planes as A has irreducible components, say m, and each of these (d + 1)-planes is parallel to⊕

j∈ Ĵ Ne j .

Let α(
) + ⊕
j∈ Ĵ Ne j , for 
 = 1, . . . ,m, be the (d + 1)-planes in D( Â). We show that the d-planes

in D(A) are p(α(
)) + ⊕
j∈ J Ne j , for 
 = 1, . . . ,m, where p is the projection

p : Nn+1 → Nn : (α0, . . . ,αn) 	→ (α1, . . . ,αn).

(Therefrom, the assertion of the proposition is immediate.)
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On the one hand, each p(α(
)) + ⊕
j∈ J Ne j is contained in D(A). Otherwise, there exists a β in

some p(α(
))+⊕
j∈ J Ne j and a g ∈ I(A) with LE(g) = β . By definition of ≺, the homogenisation of g ,

call it f , has LE( f ) ∈ α(
) + ⊕
j∈ Ĵ Ne j ⊂ C( Â), a contradiction.

On the other hand, D(A) contains no d-planes other than p(α(
)) + ⊕
j∈ J Ne j , for 
 = 1, . . . ,m.

Indeed, assume that β + ⊕
j∈ J ′ Ne j is contained in D(A), for some J ′ with # J ′ = d and some β ∈ Nn .

In particular, for all γ ∈ β + ⊕
j∈ J ′ Ne j , there exists no g ∈ I(A) with leading exponent γ . We claim

that

(0, β) +
⊕
j∈ Ĵ ′

Ne j ⊂ D( Â), (13)

where Ĵ ′ = J ′ ∪ {0}. Otherwise, there exists a (γ0, γ ) ∈ (0, β) + ⊕
j∈ Ĵ ′ Ne j and an f ∈ I( Â) with

LE( f ) = (γ0, γ ). Since the ideal I( Â) is homogeneous, all homogeneous components of f lie in I( Â).
Upon replacing f by its homogeneous component which contains the term LT( f ), we may assume
that f is itself homogeneous. Then clearly g = f (1, X) ∈ I(A), and by definition of ≺, we have
LE(g) = γ , a contradiction. Inclusion (13) is proved, and shows that there exists an 
 such that

(0, β) +
⊕
j∈ Ĵ ′

Ne j = α(
) +
⊕
j∈ Ĵ

Ne j,

hence also

β +
⊕
j∈ J ′

Ne j = p
(
α(
)

) +
⊕
j∈ J

Ne j . �

Proposition 8. For all d and n, the statement L(d,n) is true.

Proof. Let A be a variety as in assertion L(d,n). As above, we may assume that the minimal free
variables of each component of A are {X j; j ∈ J }, for a fixed J . Take any J ′ ⊂ {1, . . . ,n} with # J ′ = d
and J ′ �= J . Then there exists an 
 ∈ J ′ − J , and, by Proposition 3, for each irreducible component A(i)

of A, an equation

X
 +
∑

j∈ J , j<


b(i)

, j X j = 0

defining A(i) . Consider the product

f =
m∏

i=1

(
X
 +

∑
j∈ J , j<


b(i)

, j X j

)
,

where m is the number of irreducible components of A, then clearly f ∈ I(A) and LE( f ) = me
 ∈⊕
j∈ J ′ Ne j . Therefore, all d-planes in D(A) are parallel to

⊕
j∈ J Ne j . By well-known properties of the

Hilbert function, the set D(A) contains precisely m d-planes, see [CLO05]. �
Propositions 7 and 8 prove Theorem 5.
Now that we have derived A(d,n) from L(d,n), and have proved the latter by a very classical

token (the Hilbert function), a reader might ask why A(d,n) is remarkable at all. However, in Sec-
tion 5, we will study the standard monomials of varieties as in L(d,n) by methods for which the use
of varieties as in A(d − 1,n − 1) is essential.
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Fig. 1. The variety A of Example 9.

Theorem 5 is indeed a higher-dimensional analogue of Proposition 1: The variety A is composed
by m = ∑

J m J affine planes of dimension d, and accordingly, the set of standard monomials D(A) is
composed by m = ∑

J m J planes of dimension d. Additionally, Theorem 5 specifies the directions of
the d-planes in D(A) in terms of the directions of the components of A (by means of the minimal
free variables of the components). Note that Theorem 5 does not claim that D(A) consists solely of d-
planes. In general, D(A) will also contain lower-dimensional planes not contained in any d-plane.
Here is an example for this.

Example 9. Take the graded lexicographic order on Q[X, Y , Z ] such that X < Y < Z . Let A be the
subvariety of A3 over Q with components A(1) and A(2) , given by the Gröbner bases of their ideals,

I(1) = (Y − X, Z − 1),

I(2) = (X, Z − Y ).

Fig. 1 shows a picture of A, along with the hyperplanes {Z = 1} and {X = 0} in which the com-
ponents A(1) , resp. A(2) , lie. The minimal free variable of A(1) is X , and the minimal free variable
of A(2) is Y . The respective standard sets are D(A(1)) = Ne1 and D(A(2)) = Ne2. The ideal of A has
the Gröbner basis

I(A) = (
Y X − X2, Z X − Y X + X2 − X, Z Y − Y 2 + Y X − X, Z 2 − Z Y + Z X − Z + Y − X

)
.

From the Gröbner basis, we deduce that the standard set D(A) contains the axes Ne1 and Ne2, and
also the isolated element (0,0,1), see Fig. 2. In the picture, the solid blocks parallel to e1 and e2
actually go to infinity.

Thus, in our example, the set D(A) is not the same as E(A), but also contains “lower-dimensional
artifacts”, by which we understand the d′-planes in the difference D(A) − E(A), for all d′ < d. Of
course, if A consists of only one component, then D(A) = E(A). Thus, lower-dimensional artifacts
arise from the amalgamation of different irreducible components into A. In the rest of the paper, we
find various sources from which lower-dimensional artifacts arise.

Note that in the proof of Lemma 6, we did not show D(A) = ⋃
J D(A J ), but only the weaker

assertion E(A) = ⋃
J E(A J ). This deficit allows the possibility of lower-dimensional artifacts in the

case where different components of A have different minimal free variables, as in Example 9. How-
ever, also in cases where some irreducible components of A have the same minimal free variables,
D(A) will contain lower-dimensional artifacts. We will discuss such cases in the forthcoming sections.



3836 M. Lederer / Journal of Algebra 321 (2009) 3827–3849
Fig. 2. The standard set of A in Example 9.

They are motivated by the following special cases for the dimension of A, which are particularly easy
to understand.

• If d = 0, then trivially, no lower-dimensional artifacts occur.
• If d = n, we have A = An , and trivially, no lower-dimensional artifacts occur.
• If d = n − 1, then each irreducible component of A is an affine hyperplane, hence given by one

polynomial of degree 1, and A is given by the product of these. Therefore, no lower-dimensional
artifacts occur. More precisely, if for all i = 1, . . . ,n, the variety A has mi irreducible components
with minimal free variables {X j; j ∈ {1, . . . ,n} − {i}}, then

D(A) =
n⋃

i=1

(mi−1⋃

=0

(

ei +

⊕
j∈{1,...,n}−{i}

Ne j

))
. (14)

This suggests to use some induction over n and/or d. More precisely, we will consider the family of
intersections

Aλ = A ∩ {X1 = λ} ⊂ An−1,

where λ runs through all closed points of A1. Here, we identify the hyperplane {X1 = λ} of An with
An−1 = Spec k[X], where X = (X2, . . . , Xn).

Our variety A will have m irreducible components A(1), . . . , A(m) , where the 
th component has
miminal free variables {X j; j ∈ J (
)}. Two cases will be treated separately.

• 1 is not contained in any J (
) . In this case, there is a finite set Y ⊂ A1 such that for all λ ∈ Y ,
the intersection Aλ is a variety consisting of d-dimensional affine planes in An−1, and for all
λ ∈ A1 − Y , the intersection Aλ is empty. This case will be studied in Section 4.

• 1 is contained in all J (
) . In this case, each intersection Aλ is a variety consisting of (d − 1)-
dimensional affine planes in An−1. This case will be studied in Section 5.

Finally, in Section 6, the results of Sections 4 and 5 will be applied to the study of the general
case, i.e. the case where we do not assume any restrictions on the various J (
) . Our arguments will
require the term order < to have a property similar to the property of term order ≺ used above.
Here, and in the rest of the article, p denotes the projection

p : Nn → Nn−1 : (α1, . . . ,αn) 	→ (α2, . . . ,αn).

We use the same notation for the projection

p : An → An−1 : (a1, . . . ,an) 	→ (a2, . . . ,an).
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Definition 10. A term order < on k[X] is called a product order if for all α = (α1, p(α)) and β =
(β1, p(β)) in Nn , we have α < β if either p(α) < p(β) or p(α) = p(β) and α1 < β1.

The only term order on k[X] such that for all i = 1, . . . ,n, its restriction to k[Xi, . . . , Xn] is a prod-
uct order, is the lexicographic order. The term order ≺ we used above is a product order on k[X0, X].
In the forthcoming sections, we will explicitly indicate each instance in which we need the term order
< to be a product order.

4. An interpolation technique

Let A be a variety with m irreducible components, where the 
th component, A(
) , is a d-plane
with minimal free variables {X j; j ∈ J (
)}. We assume that for all 
, we have 1 /∈ J (
) . This means
that all A(
) are parallel to the hyperplane {X1 = 0}. Let

Y = q(A) ⊂ A1, (15)

where q is the projection (α1, . . . ,αn) 	→ α1. Clearly, Y is a finite subset in A1 (i.e., a Zariski-closed
subset of A1), and for all λ ∈ Y , the intersection Aλ consists of d-dimensional affine planes in An−1,
whereas for all λ ∈ A1 − Y , Aλ = ∅. For all λ ∈ Y , let D(Aλ) ∈ Dn−1 be the standard set of Aλ w.r.t.
the restriction of < to k[X]. In this section, we assume that the sets D(Aλ), λ ∈ Y , are given, and
we show how they are “stacked on each other” to give D(A). (This is done in the case where < is
a product order.) In particular, we determine not only E(A), but also all lower-dimensional artifacts
in D(A). The key operation is the following.

Definition 11. Let Dn be the set of all elements of Dn containing no 1-plane parallel to Ne1, thus

Dn = {δ ∈ Dn; Ne1 is not contained in δ}.

We define the addition map

Dn × Dn → Dn (16)

(δ, δ′) 	→ {
β ∈ Nn; p(β) ∈ p(δ) ∪ p

(
δ′), β1 < #p−1(p(β)

) ∩ δ + #p−1(p(β)
) ∩ δ′}.

This operation is commutative and associative (which justifies the name, addition), and the empty
set ∅ ∈ Dn is neutral w.r.t. +. Further, if δ and δ′ are finite sets, then #(δ + δ′) = #δ + #δ′ . For the
proofs of these remarks, and also of the fact that δ + δ′ really lies in Dn , see [Led08, Section 3].

Note that each D(Aλ) ⊂ Nn−1 can be embedded into Dn via the map

Nn−1 ↪→ Nn : (α2, . . . ,αn) 	→ (0,α2, . . . ,αn).

In what follows we identify each D(Aλ) with its image in Dn .

Theorem 12. Let A be a variety as introduced at the beginning of the present section, and define Y by (15). If
< is a product order on k[X], the standard set of D(A) is given by

D(A) =
∑
λ∈Y

D(Aλ),

where the sum is defined by (16).
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Proof. Take an arbitrary α = (α2, . . . ,αn) ∈ Nn−1 and define

Y ′ = {
λ ∈ Y ; α ∈ D(Aλ)

}
, Y ′′ = Y − Y ′.

For all λ ∈ Y ′′ , let χλ ∈ k[X1] be the unique polynomial such that

• χλ(μ) = δλ,μ for all μ ∈ Y ′′ and
• degχλ = #Y ′′ − 1.

Thus, χλ is the unique interpolation polynomial taking the value 1 in λ and the value 0 in all other
elements of Y ′′ .

By definition of Y ′′ , for all λ ∈ Y ′′ , we have α ∈ C(Aλ), hence there exists a monic polynomial
fλ ∈ I(Aλ) with leading exponent α. We write this polynomial as

fλ = Xα +
∑

β∈Nn−1, β<α

cλ,β Xβ

and define

f = Xα +
∑
λ∈Y ′′

∑
β∈Nn−1, β<α

χλcλ,β Xβ and

g = f
∏
λ∈Y ′

(X1 − λ).

(Note that in the definition of f , we might as well have taken Xα also into the sum over λ ∈ Y ′′ ,
since

∑
λ∈Y ′′ χλ = 1.) Then g ∈ I(A), since, on the one hand, g(λ, X) = 0 if λ ∈ Y ′ , and, on the other

hand, g(λ, X) is a k-multiple of fλ if λ ∈ Y ′′ . Further, we have

LE(g) = (
#Y ′,α

)
, (17)

as follows from the hypothesis that the term order < is a product order.
For our given α, the definition of Y ′ , resp. Y ′′ , implies that

for all λ ∈ Y ′, #p−1(p(α)
) ∩ D(Aλ) = 1 and

for all λ ∈ Y ′′, #p−1(p(α)
) ∩ D(Aλ) = 0.

Therefore, the minimal α1 ∈ N such that (α1,α) ∈ Nn − ∑
λ∈Y D(Aλ) is α1 = #Y ′ . By (17), there ex-

ists a g ∈ I(A) whose leading exponent is (α1,α). Upon multiplying g with an arbitrary element
of k[X1], we obtain, for all β ∈ Nn −∑

λ∈Y D(Aλ) such that p(β) = α, an element of I(A) with leading
exponent β . Since the α ∈ Nn−1 we started with was arbitrary, this shows that D(A) ⊂ ∑

λ∈Y D(Aλ).
For the converse inclusion, i.e., C(A) ⊂ Nn − ∑

λ∈Y D(Aλ), take an arbitrary element β ∈ C(A). By
definition of C(A), there exists a g ∈ I(A) whose leading exponent is β . We write g in the following
form:

g = φ(X1)X p(β) + h,

for some φ(X1) ∈ k[X1], where h ∈ k[X] collects all terms of g in which the powers of X are strictly
smaller than X p(β) . For all λ ∈ Y , the polynomial gλ = g(λ, X) lies in I(Aλ). This polynomial takes the
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shape

gλ = φ(λ)X p(β) + h(λ, X),

hence the leading exponent of gλ is either p(β) (which is the case if φ(λ) �= 0) or one of the expo-
nents of X occurring in h (which is the case if φ(λ) = 0). This follows from the hypothesis that the
term order < is a product order.

Now we define Y ′ to be the set of all λ ∈ Y such that p(β) ∈ D(Aλ). For all λ ∈ Y ′ , we must have
φ(λ) = 0, since otherwise the leading exponent of gλ , which polynomial lies in I(Aλ), would be an
element of D(Aλ). Consider the polynomial

g′ = φ(X1)X p(β).

For all λ ∈ Y ′ , we have g′(λ, X) = 0, hence (X1 − λ) | g′ . Therefore we get a factorisation

g′ = f
∏
λ∈Y ′

(X1 − λ)

for some f ∈ k[X]. It follows that β , the leading exponent of g′ , takes the shape

β = LE
(

g′) = LE( f ) + #Y ′e1.

Since, on the other hand,

#Y ′ =
∑
λ∈Y

#p−1(p(β)
) ∩ D(Aλ),

we have shown that β1 �
∑

λ∈Y #p−1(p(β)) ∩ D(Aλ), hence β /∈ ∑
λ∈Y D(Aλ), as claimed. �

Let us look at an example which illustrates the way in which the various D(Aλ) are stacked on
each other.

Example 13. Take the lexicographic order on Q[X, Y , Z ], with X < Y < Z . The variety A has three
components A(1) , A(2) and A(3) , given by the Gröbner bases of their ideals,

I
(

A(1)
) = (X − 1, Z − 3),

I
(

A(2)
) = (X − 2, Z − Y + 1),

I
(

A(3)
) = (X − 3, Y − 4).

Fig. 3 shows the components of A, lying in the hyperplanes {X = 1}, {X = 2}, {X = 3}, resp. The
minimal free variable of A(1) and A(2) is Y , and the minimal free variable of A(3) is Z . The ideal I(A)

is given by its Gröbner basis,

I(A) = (
X3 − 6X2 + 11X − 6, Y X2 − 3Y X + 2Y − 4X2 + 12X − 8,

Z X − 3Z + Y X − Y − 7X + 13,

2Z Y − 4Z X2 + 12Z X − 8Z − Y 2 X2 + Y 2 X + 7Y X2 − 13Y X
)
.
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Fig. 3. The variety A in Example 13.

Fig. 4. The standard set of A in Example 13.

From the Gröbner basis, we get D(A), as depicted in Fig. 4. Note that

Ne2 + Ne2 + Ne3 = Ne2 ∪ (
(1,0,0) + Ne2

) ∪ (Ne3) ∪ {
(2,0,0)

}
,

hence {(2,0,0)} is the extra cube on the axis Ne1.

Of course one can also prove iterative versions of Theorem 12, in which one goes further down
in the dimension than just from n to n − 1. However, we do not formulate such versions, since an
interested reader can derive them directly from Theorem 12.

5. Linear families of planes in affine space

Let A be a variety with m irreducible components, where the 
th component A(
) is a d-plane
with minimal free variables {X j; j ∈ J (
)}. We assume that for all 
, we have 1 ∈ J (
) . It is easy to
see that even if all components of A pass through the origin of An , the irreducible components of the
variety Aλ will be affine, and not linear, (d − 1)-planes in An−1. This is the motivation, announced in
the previous section, for taking assertion A(d − 1,n − 1) just as seriously as assertion L(d − 1,n − 1).

For all λ ∈ Y , let δλ = D(Aλ) ∈ Dn−1 be the standard set of Aλ w.r.t. the restriction of < to k[X].
For varying λ, the invariant δλ will in general take different values. Yet generically, the invariant δλ is
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constant. This will be proved in Proposition 14 below. Therefrom, we will derive Theorem 17, which
states in particular that Ne1 ⊕ δ is a subset of D(A). For proving Proposition 14, we have to describe
the family (Aλ)λ∈A1 as a morphism of schemes.

Let B = k[X1] be the coordinate ring of A1. The ideal

I = I(A) = {
f ∈ k[X]; f (a) = 0, ∀a ∈ A

}
defining A as a subvariety of An can also be understood as an ideal

I = {
f ∈ B[X]; f (a) = 0, ∀a ∈ A

}
(18)

in the ring B[X] = B[X2, . . . , Xn]. Therefore, the canonical map B → B[X]/I yields a morphism of
affine schemes

φ : A = Spec
(

B[X]/I
) → Spec(B) = A1.

The underlying space of the fibre of φ in the point λ ∈ A1 is precisely the intersection Aλ defined
above. In this sense, the affine morphism φ is nothing but the family of affine varieties (Aλ)λ∈A1 .

For proving Proposition 14 below, we have to give a short overview over the main objects
of [Wib07]. This article deals exactly with situations like the one we encounter here, but for more
general rings B and ideals I ⊂ B[X]. More precisely, in [Wib07], the ring B is an arbitrary noetherian
and reduced ring, and I is an arbitrary ideal in the polynomial ring B[X]. For the time being, let us
describe this more general situation; afterwards, we will return to our particular problem. The fibres
of the morphism

φ : Spec
(

B[X]/I
) → Spec(B),

and the Gröbner bases of these fibres, are the objects of study in [Wib07]. The aim of this article is to
decompose the parameter space Spec(B) in such a way that on each part Y of the decomposition, the
Gröbner bases of the fibres φ−1(p), where p runs through Y , come from a finite set of global sections
of a certain quasi-coherent sheaf IY on Y . The fibres of φ can be described in the following way. For
each prime ideal p in B , denote by B → k(p) the canonical map to the residue field. This map induces
a homomorphism σp : B[X] → k(p)[X]. The fibre φ−1(p) is the subvariety of An−1

k(p)
defined by the

ideal (σp(I)) in k(p)[X]. Given any term order on the set of monomials in X , we can compute leading
terms, exponents, Gröbner bases, etc., over B[X], and over all k(p)[X]. In particular, the standard set
D(φ−1(p)) is a well-defined object for each p ∈ Spec(B). We denote this set by δp .

The key technique of [Wib07] is to define the quasi-coherent sheaf IY on each locally closed
part Y of Spec(B). This sheaf is defined as follows. Let a ⊂ B be the ideal defining the closure Y of Y
in Spec(B), and let I be the image of I in (B/a)[X]. The set I is clearly a B/a-module, hence defines a
quasi-coherent sheaf on Spec(B/a) = Y . Now IY is defined to be the restriction of this quasi-coherent
sheaf to Y . A section g of IY over Y is a function which is locally, on an open U in Y , a fraction
g = P/s, where P ∈ I and s ∈ (B/a) − q, for all q ∈ U . In particular, each section g ∈ IY (Y ) can be
reduced modulo p, for all p ∈ Y . We denote the reduction by gp . This is an element of the ideal
(σp(I)) ⊂ k(p)[X].

Now that we have given an overview of the basic objects of [Wib07], we can apply the main result
of this paper to our situation. We return to B = k[X1] and I as in (18). In this situation, the following
proposition follows easily from Theorem 11 of [Wib07].

Proposition 14. There exists an open part U of A1 such that δλ ∈ Dn−1 is constant for all λ ∈ U .
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In this sense, the standard set δ of the proposition is the generic standard set of the family (Aλ)A1 .
This generic δ will be used throughout the rest of the paper. In Theorem 17 below, we will show that
the “cuboid”

Ne1 ⊕ δ = {
α ∈ Nn; α1 ∈ N, p(α) ∈ δ

}
over δ is contained in D(A). For doing so, we will need a lemma, which in turn requires the following
class of polynomials:

Lemma 15. Let I be an ideal in k[X] and β ∈ C(I). Then there exists a unique fβ ∈ I such that

• fβ is monic,
• LE fβ = β , and
• all nonleading exponents of fβ lie in D(A).

Furthermore, the collection of all fβ , where β runs through C(A), is a k-basis of I .

Since this lemma is apparently well known to experts, we skip its proof; however, we could not
find a reference for it in the literature. (A way of proving the lemma is to use induction over the
elements of C(A), in a similar fashion as is used in the proof of Lemma 16 below. If β is the minimal
element of C(A), or more generally, a corner of C(A), as defined in the proof of Lemma 16 below,
the polynomial fβ is the unique element of the reduced Gröbner basis with leading exponent β .)
Note that the polynomials fβ are interesting in their own right, forming “the” canonical basis of the
k-vector space I .

Lemma 16. Let I(
) , 
 = 1, . . . ,m, be ideals in k[X] and I = ⋂m

=1 I(
) . Assume that I(
) is generated by

polynomials

f (
)

b =
∑
β∈Nn

c(
)

b,β
Xβ,

where b runs through some indexing set B(
) . Then the coefficients of all fβ ∈ I are Z-rational functions in the

parameters c(
)

b,β
, for 
 = 1, . . . ,m, b ∈ B(
) , β ∈ Nn.

In particular, let A be a variety in An−1 = Spec k[X] with m components, where the 
th component is an
affine (d − 1)-plane defined by equations

Xi +
∑

j∈ J (
), j<i

b(
)
i, j X j + c(
)

j = 0, (19)

for i ∈ {2, . . . ,n} − J (
) , as in Proposition 3. Then the coefficients of all fβ ∈ I(A) are Z-rational functions in

the parameters b(
)
i, j and c(
)

j .

Proof. The second part of the lemma is an immediate consequence of the first, since I(A) =⋂m

=1 I(A(
)), where I(A(
)) is the ideal generated by the polynomials in (19).
For proving the first part of the lemma, we make the following reduction: It suffices to prove

the statement for all elements of the reduced Gröbner basis of I . Note that the reduced Gröbner
basis of I is the set of all fβ , where β runs through the corners of C(I), which we define to be all
β ∈ C(I) such that for all i, we have β − ei /∈ C(I). Assume that the statement is shown for all fβ
in the reduced Gröbner basis. We prove that the statement is true for all fβ , where β ∈ C(A), by
induction over β ∈ C(I). If β is the minimal element of C(I) w.r.t. our term order, or more generally,
a corner of C(I), then fβ is an element of the reduced Gröbner basis, and the statement is true for
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fβ by assumption. If β is a nonminimal element of C(A), and more specifically, not a corner of C(I),
then there exists an i such that β ′ = β − ei also lies in C(I). Thus in particular β ′ < β , and by our
induction hypothesis, we may assume that the statement is true for the polynomial fβ ′ . We write this
polynomial in the following form:

fβ ′ = Xβ ′ +
∑

γ ′∈D(I), γ ′<β ′
cγ ′ Xγ ′

.

The product Xi fβ ′ lies in I , is monic and has leading exponent β . Furthermore, the statement of the
lemma clearly holds for this product. But it may happen that some terms of Xi fβ ′ with exponents
in C(I) do not vanish. If so, these exponents lie in the set

Γ = {
γ ′ + ei; γ ′ ∈ D(I), γ ′ < β ′}.

For getting rid of the corresponding terms in Xi fβ ′ , we first note that for all γ = γ ′ + ei ∈ Γ , we have
γ < β ′ + ei = β . Therefore, by our induction hypothesis, the statement of the lemma is true for all fγ ,
where γ ∈ Γ . Hence the statement of the lemma also holds for the polynomial

Xi fβ ′ −
∑
γ ∈Γ

cγ −ei fγ . (20)

Furthermore, this polynomial lies in I , is monic, has leading exponent β , and all its nonleading expo-
nents lie in D(I). Hence this polynomial equals fβ . The induction step is done.

Now we have to prove the first statement of the lemma for all elements of the reduced Gröbner
basis of I . First assume we are given an arbitrary set of generators of I , call it G , such that the coef-
ficients of all elements of G are Z-rational functions in the parameters c(
)

b,β
. Recall that the reduced

Gröbner basis of I is computed from G by means of the Buchberger algorithm. In very brief terms,
the Buchberger algorithm is based on two operations, namely, forming S-pairs of elements of G , and
reduction modulo subsets of G . In both operations, G is replaced by a set G ′ , where the coefficients
of all elements of G ′ are Z-rational functions in the coefficients of elements of G . For details on the
Buchberger algorithm, see Chapter 2 of [CLO97].

Therefore, it remains to show that there exists a system of generators G of the ideal I , say,
a Gröbner basis of I , such that the coefficients of all elements of G are Z-rational functions in the
parameters c(
)

b,β
. For this, we now discuss in which way we obtain a Gröbner basis of an intersection

I ′ ∩ I ′′ when given generators of I ′ and generators of I ′′; a Gröbner basis of I = ⋂m

=1 I(
) is obtained

by this token and induction over m. We introduce a new variable T over k and extend our term or-
der given on k[X] to k[T , X] by defining that T be larger than any power of X . By Theorem 11 in
Chapter 4 of [CLO97], we have

I ′ ∩ I ′′ = (
T I ′ + (1 − T )I ′′

) ∩ k[X],

where (T I ′ + (1 − T )I ′′) is the ideal generated by all products T f , f ∈ I ′ , and (1 − T )g , g ∈ I ′′ .
Furthermore, by the elimination theorem (see Chapter 3 of [CLO97]), we obtain a Gröbner basis
of (T I ′ + (1 − T )I ′′) ∩ k[X] by first computing a Gröbner basis of (T I ′ + (1 − T )I ′′) ⊂ k[T , X] w.r.t.
our extension of the term order < (which is done by means of the Buchberger algorithm) and
subsequently picking those elements of the Gröbner basis which lie in k[X]. Thus, all we need for
computing our desired G out of the generators f (
)

b is the Buchberger algorithm. Therefore, we can
use the same argument as above once more, and the lemma is proved. �

Note that the statement of the lemma is not true for arbitrary f ∈ I (and not even for arbitrary
monic f ∈ I , say). Indeed, if c is an element of k which is not Z-rational in the various c(
)

b,β
, then cfβ ,



3844 M. Lederer / Journal of Algebra 321 (2009) 3827–3849
for β ∈ C(A) (or fβ + cfβ ′ , for β and β ′ ∈ C(A), where β ′ < β) does not have the property stated in
the lemma.

Theorem 17. Let A be a variety as introduced at the beginning of the present section, and let δ be the generic
standard set of Proposition 14. If < is a product order, the set Ne1 ⊕ δ is a subset of D(A), and is the largest
subset of D(A) which is a union of 1-planes parallel to Ne1 .

Proof. First we construct, for each β ∈ Nn−1 − δ, a polynomial hβ ∈ I(A) whose leading exponent lies
in Ne1 + β . Therefrom will follow that D(A) contains no larger subset containing a 1-plane parallel
to Ne1 than Ne1 ⊕ δ.

The parameters of the irreducible components A(1)
λ , . . . , A(m)

λ of the variety Aλ depend affine-

linearly on λ. More precisely, the equations defining A(
)
λ are

Xi +
∑

j∈ J (
), j<i

b(
)
i, j X j + (

c(
)
i + b(
)

i,1λ
) = 0, for all i ∈ {2, . . . ,n} − J (
).

Therefore, the parameters of A(
)
λ are b(
)

i, j and c(
)
i +b(
)

i,1λ, for all i ∈ {2, . . . ,n}− J (
) and j ∈ J (
) , j < i.

Let U ⊂ A1 be as in Proposition 14. For all λ ∈ U and all β ∈ Nn−1 − δ, denote by fλ,β the unique
element of I(Aλ) introduced in Definition 15. By Lemma 16, the coefficients of fλ,β are Z-rational

in the parameters b(
)
i, j and c(
)

i + b(
)
i,1λ. We replace each λ by X1 and call the result f X1,γ . This is an

element of k(X1)[X2, . . . , Xn], where the denominators of the coefficients are products of the various
c(
)

i + b(
)
i,1 X1. Let us denote by < the term order on k(X1)[X] which is obtained by restricting the

term order < on k[X] to k[X] and subsequently extending this term order trivially to k(X1)[X]. It is
clear that the leading exponent w.r.t. < of f X1,β equals LE( fλ,β) = β .

Next, we clear the denominators of f X1,β and get an element gβ of k[X]. Clearly, gβ vanishes on
A ∩ (U × An−1). Further, the hypothesis that < is a product order implies that the leading exponent
of gβ w.r.t. < arises from the leading exponent of f X1,β w.r.t. < by addition of some element of Ne1.
The product

hβ = gβ

∏
λ∈A1−U

(X1 − λ)

vanishes of all of A, thus hβ ∈ I(A). The leading exponent of hβ arises from that of gβ by adding
#(A1 − U )e1 to it. Therefore, LE(hβ) ∈ Ne1 + β , as required.

It remains to show that Ne1 ⊕δ is contained in D(A). Otherwise, there exists a polynomial g ∈ I(A)

whose leading exponent, call it β , lies in Ne1 ⊕ δ. As in the proof of Theorem 12, we write g as

g = φ(X1)X p(β) + h,

where h ∈ k[X] collects all terms of g in which the powers of X are strictly smaller than X p(β) . For
all λ ∈ U , the leading exponent of the polynomial gλ = g(λ, X) is either p(β) (which is the case if
φ(λ) �= 0) or one of the exponents of X occurring in h (which is the case if φ(λ) = 0). Since the
polynomial φ has only finitely many zeros, there exists a Zariski open U ′ ⊂ U such that for all λ ∈ U ′ ,
the leading exponent of gλ is p(β). Hence for all λ ∈ U ′ , we have found a polynomial gλ ∈ I(Aλ)

whose leading exponent lies in δ. But δ = D(Aλ) for all λ ∈ U , hence gλ = 0 for all λ ∈ U ′ . Therefore,
for all λ ∈ U , (X1 − λ) divides g , hence g = 0, a contradiction. �

Note that this theorem is a substantial refinement of Theorem 5 for at least two reasons. On
the one hand, D(A) inherits all lower-dimensional artifacts from D(Aλ), in the sense that each d′-
dimensional artifact in D(Aλ) leads to a (d′ + 1)-dimensional artifact in D(A). On the other hand,
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Fig. 5. The variety A in Example 18.

Fig. 6. The standard set of A in Example 18.

consider a d′′-dimensional artifact in D(A) which is parallel to
⊕

j∈ J ′′ Ne j , where # J ′′ = d′′ � d and
1 ∈ J ′′ . Then the theorem says that this artifact is in fact inherited from below, in the sense that it
is the cuboid over a (d′′ − 1)-dimensional artifact in D(Aλ). Thus we now have better knowledge of
what is contained in D(A) and what is not.

Let us study an example. As remarked at the end of Section 3, lower-dimensional artifacts do
not occur if either the Aλ are zero-dimensional or consisting of hyperplanes of {X1 = λ}. Therefore,
an example for a variety A which inherits of lower-dimensional artifacts from Aλ lives at least in
ambient space A4. In particular, such an example is not all too vivid in the visual sense. We chose to
present an example which lives in A3 and shows the inheritance of the generic D(Aλ), but not the
inheritance of lower-dimensional artifacts in the generic D(Aλ).

Example 18. Take the lexicographic order on Q[X, Y , Z ] with X < Y < Z . The variety A has two
components A(1) and A(2) , given by the Gröbner bases of their ideals,

I
(

A(1)
) = (Y − X, Z − 1),

I
(

A(2)
) = (Y − 2X, Z − 2).

Fig. 5 shows the components of A, lying in the hyperplanes {Z = 1} and {Z = 2}, resp. The minimal
free variable of both components is X . The open set U is A1 − {0}, and the generic D(Aλ) is δ =
{(0,0), (1,0)}. The ideal I(A) has the Gröbner basis

I(A) = (
Y 2 − 3Y X + 2X2, Z X − Y , Z Y − 3Y + 2X, Z 2 − 3Z + 2

)
,

hence, D(A) consists of the two 1-planes Ne1 and (0,1,0) + Ne1 plus the isolated point (0,0,1), see
Fig. 6.
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6. A subset of the standard set for arbitrary A

In this section, we apply the results of the previous two sections to the study of a variety A whose
irreducible components are arbitrary d-planes, without any restrictions on the respective minimal free
variables.

Corollary 19. Let A be a variety in An whose irreducible components are d-dimensional planes, and let < be
a product order on k[X]. Then there exists a δ ∈ Dn−1 such that the set {λ ∈ A1; D(Aλ) = δ} is dense in A1 .
Let U ⊂ A1 be maximal with this property, and set Y = A1 − U . Then

D(A) ⊃ (Ne1 ⊕ δ) ∪
(∑

λ∈Y

D(Aλ)

)
,

and Ne1 ⊕ δ is the largest subset of D(A) which is a union of 1-planes parallel to Ne1 .

Proof. The existence of δ and the inclusion C(A) ⊂ Nn − Ne1 ⊕ δ follow by the same arguments as in
the last section, in particular, the proof of Theorem 17. We define U and Y as in the corollary and
show the inclusion C(A) ⊂ Nn − ∑

λ∈Y D(Aλ). For this, we take an arbitrary β ∈ C(A). We have to
show that

β1 �
∑
λ∈Y

#p−1(p(β)
) ∩ D(Aλ).

In fact, we will show the following assertion, which is even stronger,

β1 �
∑
λ∈A1

#p−1(p(β)
) ∩ D(Aλ). (21)

There exists a g ∈ I(A) with leading exponent β . As in the proofs of Theorems 12 and 17, we
write g as

g = φ(X1)X p(β) + h,

where h ∈ k[X] collects all terms of g in which the powers of X are strictly smaller than X p(β) . In
particular, β1 equals the degree of the univariate polynomial φ. For all λ ∈ A1, the leading exponent
of the polynomial gλ = g(λ, X) is either p(β) (which is the case if φ(λ) �= 0) or one of the exponents
of X occurring in h (which is the case if φ(λ) = 0). We define

Y ′ = {
λ ∈ A1; p(β) ∈ D(Aλ)

}
.

Since for all λ ∈ A1, the polynomial gλ = g(λ, X) lies in I(Aλ), it follows that for all λ ∈ Y ′ , we have
φ(λ) = 0. Since the number of zeros of the univariate polynomial φ is bounded by its degree, which
equals β1, this implies that

β1 � #Y ′. (22)

By definition of Y ′ , for all λ in the complement of Y ′ in A1, we have p−1(p(β)) ∩ D(Aλ) = ∅. There-
fore, from inequality (22), the desired inequality (21) follows.

Finally, the fact that Ne1 ⊕ δ is the largest subset of D(A) which is a union of 1-planes parallel
to Ne1 follows analogously as in the proof of Theorem 17. �
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Fig. 7. The variety A in Example 20.

In fact, inequality (21) not only implies the inclusion C(A) ⊂ Nn − ∑
λ∈Y D(Aλ), which we just

proved, but also the inclusion C(A) ⊂ Nn − Ne1 ⊕ δ. Indeed, assume that β lies in Ne1 ⊕ δ; the open
set U ⊂ A1 contains infinitely many closed points λ, hence by (21) and a token using φ similarly as
before, β1 were to be infinitely large, a contradiction.

Here is a last example, in which the minimal free variables of the respective components of A take
all possible values.

Example 20. We take the lexicographic order with X < Y < Z on Q[X, Y , Z ]. The variety A has five
components, given by the Gröbner bases of the ideals,

I
(

A(1)
) = (Y − X, Z − 1), I

(
A(4)

) = (X − 1, Z − 3),

I
(

A(2)
) = (Y − X, Z − 2), I

(
A(5)

) = (X − 3, Y − 4).

I
(

A(3)
) = (X − 2, Z − Y + 1),

Fig. 7 shows the components of A, along with some obvious hyperplanes in which they lie. The
minimal free variable of A(1) and A(2) is X , the minimal free variable of A(3) and A(4) is Y , and the
minimal free variable of A(5) is Z . The open set U is A1 − {1,2,3} and the generic D(Aλ) is δ =
{(0,0), (0,1)}. The three exceptional D(Aλ) are D(A1) = Ne2 ∪ {(0,1), (0,2)}, D(A2) = Ne2 ∪ {(0,1)},
D(A3) = Ne3 ∪ {(1,0), (1,1)}. (Note that here we are denoting the coordinate axes in N2 by Ne2
and Ne3, since we understand N2 to be the hyperplane {α1 = 0} of the ambient space N3 we are
working in.) The variety A is given by its Gröbner basis,

I(A) = (
Y X3 − 6Y X2 + 11Y X − 6Y − X4 + 6X3 − 11X2 + 6X,

Y 2 X2 − 3Y 2 X + 2Y 2 − Y X3 − Y X2 + 10Y X − 8Y + 4X3 − 12X2 + 8X,

Z Y X − 3Z Y − Z X2 + 3Z X + Y 2 X − Y 2 − Y X2 − 6Y X + 13Y + 7X2 − 13X,

Z Y 2 − Z Y X − 4Z Y + 4Z X − Y 3 X + Y 3 + Y 2 X2 + 7Y 2 X − 11Y 2

− 8Y X2 − 5Y X + 28Y + 16X2 − 28X,

Z 2 X2 − 4Z 2 X + 3Z 2 + Z Y 2 X3 − 4Z Y 2 X2 + 5Z Y 2 X

− 2Z Y 2 − Z Y X4 − Z Y X3 + 18Z Y X2 − 33Z Y X + 17Z Y + 5Z X4

− 23Z X3 + 32Z X2 − 5Z X − 9Z − 2Y 2 X3 + 10Y 2 X2 − 14Y 2 X + 6Y 2

+ 2Y X4 − 42Y X2 + 88Y X − 48Y − 10X4 + 56X3 − 92X2 + 40X + 6,
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Fig. 8. The standard set of A in Example 20.

2Z 2Y − 3Z 2 X + Z 2 − Z Y 2 X2 + Z Y 2 X + Z Y X3 + 4Z Y X2

− 8Z Y X − 3Z Y − 5Z X3 + 8Z X2 + 6Z X − 3Z + 2Y 2 X2 − 4Y 2 X

+ 2Y 2 − 2Y X3 − 6Y X2 + 24Y X − 16Y + 10X3 − 26X2 + 14X + 2,

Z 3 X − 3Z 3 + Z 2Y 2 X2 − 3Z 2Y 2 X + 2Z 2Y 2 − Z 2Y X3

− 2Z 2Y X2 + 16Z 2Y X − 23Z 2Y + 5Z 2 X3 − 18Z 2 X2

+ 20Z 2 X + 15Z 2 − 2Z Y 2 X2 + 14Z Y 2 X − 12Z Y 2 + 2Z Y X3

− 4Z Y X2 − 64Z Y X + 108Z Y − 10Z X3 + 76Z X2 − 106Z X − 24Z

− 12Y 2 X + 12Y 2 + 12Y X2 + 48Y X − 96Y − 60X2 + 96X + 12
)
,

yielding the standard set D(A), depicted in Fig. 8.

7. Final remarks

Interestingly, our arguments depend on < to be a product order. Philosophically, this property
reflects the product decomposition An = A1 ∏

An−1. In all our arguments, we made use of the product
decomposition of affine space, which explains the necessity of using a product order.

Let me make some comments on the literature concerning standard sets of finite sets in Grass-
mannians. The existing approaches stress the computational aspects, in giving algorithms for the
construction of the Gröbner basis of I(A).

The first article is [MB82], in which an algorithm for the construction of a Gröbner basis of I is
constructed, where I defines a finite set of closed k-rational points in An . (This is the case d = 0 in
our terminology.) The idea of Buchberger–Möller algorithm is to successively go through the elements
of A. In this iteration, one uses a control variable δ ∈ Dn , which has the property that in each step,
one has δ ⊂ D(A). The stopping criterion for the Buchberger–Möller algorithm is that #A = δ (hence
δ = D(A)).

After the appearance of the original article, a number of generalisations of the Buchberger–Möller
algorithm have been published (see [MMM93,ABKR00,AKR05], or the survey articles [AMM03,AMM06]
and references therein). The authors consider a k[X]-module M and a homomorphism of k[X]-
modules φ : k[X] → M , and compute the Gröbner basis of kerφ. But in fact, complete algorithms
for computing the Gröbner basis of I (and hence also of the standard set D(I)) are presented only
for the cases where kerφ defines a zero-dimensional scheme lying either in An or in Pn . Hence in
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our terminology, the literature covers the objects of A(0,n) and L(0,n), but also analogous objects
with “fat points”, i.e. points whose local ideals are powers of the associated maximal ideal. Note that
in the case where projective points are considered, the stopping criterion for the Buchberger–Möller
algorithm has to be modified, since #A is not finite any more. The modified stopping criterion uses
the Hilbert function, in a similar way as we used it in Section 3. Also the trick of intersecting with
the hyperplane {X1 = 1} for passing from projective to affine points is being used. See [ABKR00]
and [AKR05] for details on the stopping criterion and the projective-to-affine trick. A version of the
interpolation technique of Section 4 already appear in the author’s paper [Led08].
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