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A class of matrix optimization problems can be formulated as a lin-

ear variational inequalities with special structures. For solving such

problems, the projection and contraction method (PC method) is

extended to variational inequalities with matrix variables. Then the

main costly computational load in PC method is to make a projec-

tion onto the semi-definite cone. Exploiting the special structures of

the relevant variational inequalities, the Levenberg–Marquardt type

projection and contractionmethod is advantageous. Preliminarynu-

merical tests up to 1000×1000matrices indicate that the suggested

approach is promising.
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1. Introduction

Let Sn be the set of all real symmetric matrices. For C ∈ Sn, we use C � 0 to express that C is a

positive semi-definite matrix while C ≥ 0 expresses that each element of C is non-negative. We will

use the inner product

〈A, B〉 := Trace
(
ATB

)
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defined on the class of real m × nmatrices and which induces the Fröbenis-norm

‖A‖ = (Trace(ATA))1/2 =
⎛
⎝ m∑

i=1

n∑
j=1

A2
ij

⎞
⎠

1/2

.

Using vec(A) to denote the mn dimensional vector obtained by stacking the n columns of A on top of

one another, we have

vec(A)Tvec(B) = Trace
(
ATB

)
.

For any given m × m symmetric positive definite matrix G, we denote

‖A‖G =
√

〈A, GA〉 =
(
Trace

(
ATGA

))1/2
.

The problem considered in this paper is to find the projection of a givenmatrix onto the intersection

of Sn� and SB. The mathematical form of the considered problem is

min

{
1

2
‖X − C‖2 | X ∈ Sn� ∩ SB

}
, (1.1)

where

Sn� =
{
H ∈ Rn×n |HT = H, λminI 	 H 	 λmaxI

}
, (1.2)

and

SB =
{
H ∈ Rn×n |HT = H, HL ≤ H ≤ HU

}
, (1.3)

C, HL and HU are given n × n symmetric matrices, λmin ≤ λmax are given scalars and Sn� ∩ SB is

nonempty. An important special case of Sn� is that λmin = 0 and λmax = +∞ which is denoted by

Sn+ =
{
H ∈ Rn×n |HT = H, H � 0

}
.

In the literature of interior point algorithms, Sn+ is called semi-definite cone and the related problem

belongs to the class of semi-definite programming [10].

Problem (1.1) comes up in several contexts. One is inmaking adjustments to a symmetric matrix so

that it is consistent with prior knowledge or assumptions, and is a valid covariance matrix. The other

application is also a special case of the basic problem (1.1), inwhich each ofHL andHU diagonal element

equals 1. For given matrix C, finding the least square correlation matrix [13] is a problem of form (1.1).

The main property of problem (1.1) is its large size and special structure. Since the projection and

contraction methods are advantageous for large problem with special structure [6], instead of using

interior point algorithms [10], we consider to use some extended projection and contraction (PC)

methods [2,3].

The paper is organized as follows: In Section 2, we convert the problem to a monotone matrix

linear variational inequality (abbreviated as MLVI). In Section 3, we extend the basic projection and

contraction method for matrix variational inequalities and a practical algorithm is suggested. Section

4 illustrates the implementations of the MLVI approach. Preliminary numerical results are reported in

this section. Finally, we give some concluding remarks.

2. The equivalent MLVI formulation

Let � be a nonempty closed convex set of Rm×n, for given v ∈ Rm×n, the projection mapping under

Fröbenis-norm, denoted by P�(v), is the unique solution of the following problem

min
u

{‖u − v‖ | u ∈ �}.
A basic property of the projection mapping on a closed convex set is

〈w − P�(w), v − P�(w)〉 ≤ 0, ∀w ∈ Rm×n, ∀v ∈ �. (2.1)
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In the case that SB = Rn×n, the considered problem is reduced to

min

{
1

2
‖X − A‖2 | X ∈ Sn�

}
. (2.2)

The solution of (2.2) is called the projection of A on Sn� and denoted by PSn�(A). Using the fact that

matrix Fröbenis-norm is invariant by similarity transformation, it is known (see [12], for instance) that

PSn�(A) = Q�̃QT , (2.3)

where

QTAQ = �, � = diag(λ1, . . . , λn) (2.4)

is the symmetric Schur decomposition of A (Q = (q1, . . . , qn) is an orthogonal matrix whose column

vector qi, i = 1, . . . , n is the eigenvector of A, and λi, i = 1, . . . , n is the related eigenvalue),

�̃ = diag(λ̃1, . . . , λ̃n) and λ̃i = min
(
max(λi, λmin), λmax

)
.

For a tolerance tol greater than the unit roundoff, the Symmetric QR Algorithm (Algorithm 8.3.3 in

[7]) computes an approximate symmetric Schur decomposition of QTAQ = � in about 9n3 flops. In

Matlab, the desired Q and � of A (2.4) can be obtained by using

[Q , �] = eig(A). (2.5)

In other words, if SB = Rn×n, the complexity of solving problem (1.1)–(1.3) is about 10n3 flops.

For SB in form (1.3), problem (1.1) can be rewritten as

min
{
1
2
‖X − C‖2 | X ∈ Sn�

}

s.t X ≥ HL

X ≤ HU .

(2.6)

By attaching a Lagrangian multiplier matrix Y and Z ∈ R
n×n+ to the linear constraint X − HL ≥ 0 and

X − HU ≤ 0, respectively, the Lagrangian function of problem (2.6) is

L(X, Y, Z) = 1

2
‖X − C‖2 − 〈Y, X − HL〉 + 〈Z, X − HU〉, (2.7)

which defined on

� = Sn� × Rn×n+ × Rn×n+ .

Let (X∗, Y∗, Z∗) be the KKT point of problem (2.6), we have

(X∗, Y∗, Z∗) ∈ �,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈X − X∗, (X∗ − C) − Y∗ + Z∗〉 ≥ 0,

〈Y − Y∗, X∗ − HL〉 ≥ 0,

〈Z − Z∗, HU − X∗〉 ≥ 0,

∀ (X, Y, Z) ∈ �. (2.8)

The compact form of (2.8) is the following linear variational inequality

LVI(�,M, q) u∗ ∈ �, 〈u − u∗,Mu∗ + q〉 ≥ 0, ∀u ∈ �, (2.9)

where

u =

⎛
⎜⎜⎜⎝

X

Y

Z

⎞
⎟⎟⎟⎠ , M =

⎛
⎜⎜⎜⎝

In −In In

In 0n 0n

−In 0n 0n

⎞
⎟⎟⎟⎠ , q =

⎛
⎜⎜⎜⎝

−C

−HL

HU

⎞
⎟⎟⎟⎠ . (2.10)

We call (2.9) and (2.10)Matrix linear variational inequality for problem (1.1), in short, MLVI.
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3. Projection and contraction method for MLVI

The projection and contraction method can be extended from linear variational inequalities [2,3]

to matrix linear variational inequalities straightforwardly. Let � be a convex closed subset of Rm×n,

the mathematical form of matrix linear variational inequality (abbreviated as MLVI) is: Find u∗, such
that

MLVI(�,M, q) u∗ ∈ �, 〈u − u∗,Mu∗ + q〉 ≥ 0, ∀u ∈ �, (3.1)

where M ∈ Rm×m and q ∈ Rm×n are given matrices. If n = 1, the matrix linear variational inequality

(3.1) is reduced to the classical one. Amatrix linear variational inequality ismonotone if and only if the

matrix (M + MT ) is positive semi-definite (M is not necessary symmetric). It is clear that the matrix

M in (2.10) is positive semi-definite.

Assume that the solution set of MLVI(�,M, q), denoted by �∗, is nonempty. Similarly as in the

classical LVIs [1], the MLVI(�,M, q) is equivalent to the following matrix projection equation

u = P�[u − (Mu + q)]. (3.2)

In other words, to solve MLVI(�,M, q) is equivalent to finding a zero point of the continuous residue

function

e(u) := u − P�[u − (Mu + q)]. (3.3)

Hence,

e(u) = 0 ⇔ u ∈ �∗.

In the literature for classical variational inequalities,‖e(u)‖ is called error bound of LVI. It quantitatively

measures how much u fails to be in �∗.
Let u∗ ∈ �∗ be a solution. For any u ∈ Rm×n, because P�[u − (Mu + q)] ∈ �, it follows from (3.1)

that

〈P�[u − (Mu + q)] − u∗, Mu∗ + q〉 ≥ 0, ∀ u ∈ Rm×n.

By setting w = u − (Mu + q) and v = u∗ in (2.1), we have

〈P�[u − (Mu + q)] − u∗, [u − (Mu + q)] − P�[u − (Mu + q)]〉 ≥ 0, ∀ u ∈ Rm×n.

Adding the above two inequalities and using the notation of e(u), we obtain

〈(u − u∗) − e(u), e(u) − M(u − u∗)〉 ≥ 0, ∀ u ∈ Rm×n. (3.4)

For positive semi-definite (not necessary symmetric) matrix M, the following theorem follows from

(3.4) directly.

Theorem 3.1 (Theorem 1 in [2]). For any u∗ ∈ �∗, we have

〈u − u∗, d(u)〉 ≥ ‖e(u)‖2, ∀ u ∈ Rm×n, (3.5)

where

d(u) =
(
I + MT

)
e(u). (3.6)

For u ∈ �\�∗, it follows from (3.5) that −G−1(I + MT )e(u) is a descent direction of the unknown

function 1
2
‖u − u∗‖2

G , where G is a symmetric positive matrix. Based on Theorem 3.1, we state our

approach for MLVI as the following framework.
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The Framework of Projection and Contraction Method for MLVI

Given u0 ∈ � and γ ∈ (0, 2).
While not converged do

1. computer e
(
uk

)
= uk − P�[uk − (Muk + q)]; whereM and q are defined in (2.10).

2. update

uk+1 = uk − γα
(
uk

)
G−1d

(
uk

)
, (3.7)

where

α
(
uk

)
= ‖e

(
uk

)
‖2

‖G−1d
(
uk

) ‖2
G

(3.8)

and d(u) is defined as in (3.6).

Until stopping criterion is satisfied.

Theorem 3.2. The method (3.7) and (3.8) produces a sequence {uk}, which satisfies

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − γ (2 − γ )α
(
uk

)
‖e

(
uk

)
‖2. (3.9)

Proof. The proof is elementary and similar as Theorem 2 in [2] and omitted.

It follows from (3.6) and (3.8) that

α(u) ≥ 1/‖(I + M)G−1
(
I + MT

)
‖,

where

‖(I + M)G−1
(
I + MT

)
‖ = λmax

(
(I + M)G−1(I + MT )

)
.

Therefore, from the contraction inequality (3.9) we obtain

‖uk+1 − u∗‖2
G ≤ ‖uk − u∗‖2

G − γ (2 − γ )

‖(I + M)G−1(I + MT )‖‖e
(
uk

)
‖2. (3.10)

Since the above inequality is true for all u∗ ∈ �∗, we have

dist2G

(
uk+1, �∗)

≤ dist2G

(
uk, �∗)

− γ (2 − γ )

‖(I + M)G−1
(
I + MT

) ‖‖e
(
uk

)
‖2, (3.11)

where

distG(u, �∗) = min{‖u − u∗‖G | u∗ ∈ �∗}.
Such method is called projection and contraction method, because it makes projection in each iteration

and the generated sequence satisfies (3.11), i.e., it is Fejér monotone with respect to the solution set.

Since problem (1.1) has a unique solution, the solution set of LVI(�,M, q) (2.9) and (2.10) is non-

empty. It is clear that the matrix M in (2.10) is positive semi-definite and MLVI(�,M, q) (2.9) and

(2.10) can be solved by PC method (3.7) and (3.8). For such problem, the following algorithms are

practical. �

Algorithm 3.1. Setting G = (I +MT )(I +M) in (3.7) and (3.8), we get a special case of the projection

and contraction algorithm. In this case, α(u) ≡ 1 (see (3.8)). The recursion is simplified to

uk+1 = uk − γ (I + M)−1e
(
uk

)
. (3.12)



2348 M. Tao et al. / Linear Algebra and its Applications 434 (2011) 2343–2352

Since G = (I + MT )(I + M), it follows from (3.10) that the sequence {uk} generated by Algorithm

3.1 satisfies∥∥∥uk+1 − u∗∥∥∥
G

�
∥∥∥uk − u∗∥∥∥2

G
− γ (2 − γ )

∥∥∥e (
uk

)∥∥∥2 . (3.13)

Algorithm 3.1 with γ = 1 was presented in [3] (see Method 4 in [3]). Note that Algorithm 3.1

with γ ∈ (0, 2) is also the exact method in [5] when the general variational inequality reduced to

a linear variational inequality. If M is symmetric and � = Rm×n, Algorithm 3.1 is reduced to the

Levenberg–Marquardt method for unconstrained optimization. Thus, the method is called Projection

and Contraction Method of Levenberg–Marquardt type [3].

Remark 3.1. Let F(u) = Mu + q, another popular formulation for VIs is the multi-valued equation

0 ∈ F(u) + N�(u),

where N�(·) is the normal cone operator to �, i.e.,

N�(u) :=
⎧⎨
⎩

{w | (v − u)Tw ≤ 0, ∀v ∈ �} if u ∈ �,

∅ otherwise.

For solving VI(�, F), there are operator splitting algorithms

uk+1 = (I + F)−1(I − N�)(I + N�)−1(I − F)uk, (3.14)

which was introduced by Peaceman–Rachford [9], and

uk+1 = (I + F)−1[(I + N�)−1(I − F) + F]uk, (3.15)

which was introduced by Douglas–Rachford [8]. Since N� denote the normal cone operator to �, so

(I + N�)−1 is just the orthogonal projection operator onto �, i.e., (I + N�)−1 ≡ P�. Therefore, using

the notation of e(u) (see (3.3)), the Peaceman-Rachford and the Douglas–Rachford recursions can be

rewritten as

uk+1 = (I + F)−1
[
uk + F

(
uk

)
− 2e

(
uk

)]
, (3.16)

and

uk+1 = (I + F)−1
[
uk + F

(
uk

)
− e

(
uk

)]
, (3.17)

respectively. In [11] (p. 240), Varga suggested to combine the Peaceman–Rachford and the Douglas–

Rachford algorithms into a single algorithm depending on a parameter γ , which gives Peaceman–

Rachford for γ = 2 and Douglas–Rachford for γ = 1. Hence, the related recursions can be written as

uk+1 = (I + F)−1
[
uk + F

(
uk

)
− γ e

(
uk

)]
, (3.18)

and it is called the Douglas-Peaceman–Rachford–Varga operator splitting method (in short DPRV

method). Since F(u) = Mu + q, it follows from (3.18) that

(I + M)uk+1 = (I + M)uk − γ e
(
uk

)
. (3.19)

This is just the recursion form of Algorithm 3.1. Therefore, Algorithm 3.1 is a special form of the DPRV

operator splitting method for linear variational inequalities.

Theorem 3.3. Let {uk} be the sequence generated by Algorithm 3.1. Then the sequence of the residue

function {‖e
(
uk

)
‖} is monotonically decreasing. In detail, it satisfies

∥∥∥e (
uk+1

)∥∥∥2 ≤
∥∥∥e (

uk
)∥∥∥2 − 2 − γ

γ

∥∥∥e (
uk

)
− e

(
uk+1

)∥∥∥2 . (3.20)
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Proof. For convenience, instead of uk and uk+1, we write u and ũ in the proof. By a manipulation, we

have

‖e(u)‖2 = ‖e(ũ)‖2 − ‖e(u) − e(ũ)‖2 + 2〈e(u), e(u) − e(ũ)〉. (3.21)

Using (2.1) (setting w = ũ − (Mũ + q) and v = P�[u − (Mu + q)] in (2.1)), we have

〈ũ − (Mũ + q) − P�[ũ − (Mũ + q)], P�[ũ − (Mũ + q)] − P�[u − (Mu + q)]〉 ≥ 0. (3.22)

Exchanging u and ũ in (3.22), we get

〈P�[u − (Mu + q)] − u + (Mu + q), P�[ũ − (Mũ + q)] − P�[u − (Mu + q)]〉 ≥ 0. (3.23)

Adding (3.22) and (3.23) we obtain

{(e(ũ) − e(u)) + M(u − ũ)}T {(e(u) − e(ũ)) + (ũ − u)} ≥ 0,

and consequently using the semi-definiteness of M,

〈(u − ũ) + M(u − ũ), e(u) − e(ũ)〉 ≥ ‖e(u) − e(ũ)‖2. (3.24)

Note that from (3.12) we have

(I + M)(u − ũ) = γ e(u).

Hence, it follows from (3.24) that

〈γ e(u), e(u) − e(ũ)〉 ≥ ‖e(u) − e(ũ)‖2. (3.25)

Substituting (3.25) into (3.21) we get

‖e(u)‖2 ≥ ‖e(ũ)‖2 − ‖e(u) − e(ũ)‖2 + 2

γ
‖e(u) − e(ũ)‖2. (3.26)

The assertion of this theorem follows from (3.26) immediately. �

4. Implementations and numerical experiments

This section illustrates the implementation of the suggested algorithms for the matrix linear vari-

ational inequality approach. We will see that the implementations are easy to be carried out.

The conversion leads the problem to anMLVI Approach. Inmatrix linear variational inequality (2.9)

and (2.10), for given u = (X, Y, Z), we have

Mu + q =

⎛
⎜⎜⎜⎝

X − Y + Z − C

X − HL

HU − X

⎞
⎟⎟⎟⎠ . (4.1)

In each iteration of Algorithm 3.1, we have to calculate e(u) which is given by

e(u) =

⎛
⎜⎜⎜⎝

eX(u)

eY (u)

eZ(u)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

X − PSn� [Y − Z + C]
Y − PRn×n+ [Y − X + HL]
Z − PRn×n+ [Z + X − HU]

⎞
⎟⎟⎟⎠ . (4.2)

Therein the most time consuming operation is to calculate PSn� [Y − Z + C] in eX(u), it is about 10n
3

flops. In comparison with the calculation of e(u), the remanent computational load in each iteration

of Algorithm 3.1 is insignificant.
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Using Algorithm 3.1 to solve the linear variational inequality (2.9) and (2.10) the recursion is

uk+1 = uk − γ (I + M)−1e
(
uk

)
. (4.3)

For matrixM in (2.10),

(I + M)−1 = 1

4

⎛
⎜⎜⎜⎝

In In −In

−In 3In In

In In 3In

⎞
⎟⎟⎟⎠ ,

and thus

(I + M)−1e(u) =

⎛
⎜⎜⎜⎝

0.25eX(u) + 0.25eY (u) − 0.25eZ(u)

−0.25eX(u) + 0.75eY (u) + 0.25eZ(u)

0.25eX(u) + 0.25eY (u) + 0.75eZ(u)

⎞
⎟⎟⎟⎠ . (4.4)

After getting e(u), the implementation of (4.3) is almost cost-free.

To construct the test examples of problems (1.1), we need only to give matrix C, the sets SB and Sn�.

• The matrix C. The diagonal elements of matrix C are generated from a uniform distribution in the

interval (0, 2). The off-diagonal elements of matrix C are generated from a uniform distribution in

the interval (−1, 1).
• The set SB. Each diagonal element of both matrix HL and HU is equal 1. All of the off-diagonal

elements of matrix HL and HU are equal −0.1 and 0.1, respectively.
• The set Sn�. In the first set of test examples, Sn� = Sn+. In the second set of test examples

Sn� = {X ∈ Rn×n | 0 	 X 	 λ̄I}.
where λ̄ < λmax and λmax is the maximal eigenvalue of X∗ which is the solution of the related

problem in the first set.

The problem can be converted to MLVI(�,M, q) (2.9)–(2.10). We use the starting point u0 =
(X0, Y0, Z0) = (In, 0n, 0n) and the relaxation factor γ = 1.9. The problem is tested for n =
100, 200, . . . , 1000.

Since the optimal solution of MLVI(�,M, q) is satisfied with e(u∗) = 0, we stop the iteration as

soon as

max(abs(e
(
uk

)
))

max(abs(e(u0)))
≤ ε.

For ε = 10−4, Tables 4.1 and 4.2 report the iteration numbers and the CPU times for the first set of

test examples and the second set of test examples, respectively. In Table 4.1, the last column gives the

max eigenvalues of the last iteration, denoted as Xstop, when the stop criterion is met. The scalar λ̄ in

the second set of test examples are given in the last column of Table 4.2.

For a reasonable accuracy, the algorithms obtain the solutions in a moderate iteration number.

Since the complexity of each iteration is O(n3) (about 10n3), the CPU time is proportional to the

Table 4.1

Test results with λmax = +∞.

n No. It CPU Sec. λmax(X
stop)

100 89 1.9 2.9261

200 99 9.4 3.8855

500 143 154.4 5.7623

800 165 704.0 7.2872

1000 186 1536.5 8.1573
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Table 4.2

Test results with bounded λ̄.

n No. It CPU Sec. λ̄

100 159 2.5 2.0

200 147 13.5 3.0

500 210 229.1 4.0

800 216 930.9 5.0

1000 234 1956.6 6.0

Table 4.3

Iteration number for different stop accuracies ε S = Sn+ .

Matrixn×n Using MLVI Approach and Algorithm 3.1

n ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 λmax(X
stop)

100 15 46 89 157 2.9261

200 12 38 99 171 3.8855

500 21 69 143 233 5.7623

800 23 78 165 269 7.2872

1000 26 87 186 290 8.1573

Table 4.4

Iteration number for different stop accuracies ε S = Sn� .

Matrixn×n Using MLVI Approach and Algorithm 3.1 X ∈ Sn�

n ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 λ̄
100 43 94 159 226 2.0

200 42 89 147 224 3.0

500 55 125 210 296 4.0

800 59 133 216 310 5.0

1000 57 138 234 332 6.0

product of the iteration number by n3. For solving the test examples with 1000 × 1000 matrices

(500,500 variables), usingMLVI Approach and Algorithm 3.1we need about 20–30minwith a desktop

computer. In addition, it seems that all suggested algorithms are linear convergent. Tables 4.3 and 4.4

give the iteration numbers for different ε by using MLVI Approach and Algorithm 3.1.

5. Conclusions remarks

This papermainly studies the application of the Levenberg–Marquardt type projection and contrac-

tion method for solving a class of matrix optimization problems. Preliminary numerical results clarify

that our algorithm performs robustly and is easy to handle large scale problems with low complexity.

The per-iteration computation of this algorithm is dominated bymaking projection of a real symmetric

matrix onto the semi-definite cone. It should bementioned that the efficiency of this approachmay be

improved by some scaling technique, for example, by changing the objective 1
2
‖X −C‖2 to τ

2
‖X −C‖2

with some suitable τ > 0. In addition, our approach can also be extended to solve (1.1) with different

weighted Fröbenis-norms without any effort.
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