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The signless Laplacian spread of G is defined as SQ(G) = μ1(G) −
μn(G), where μ1(G) and μn(G) are the maximum and minimum

eigenvalues of the signless Laplacian matrix of G, respectively. This

paper presents some upper and lower bounds for SQ(G). More-

over, the unique unicyclic graph with maximum signless Laplacian

spread among the class of connected unicyclic graphs of order n is

determined.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, G = (V , E) is an undirected simple graph with |V | = n and |E| = m. Sometimes, we

refer toG as an (n,m) graph. Let d(u) denote the degree of u. Specially,� = �(G) and δ = δ(G) denote
themaximum andminimumdegree of vertices of G, respectively. If d(u) = 1, thenwe call u a pendant

vertex of G. Suppose the degree of vertex vi equals di for i = 1, 2, . . . , n. Throughout this paper, we

enumerate the degrees in non-increasing order, i.e., d1 � d2 � · · · � dn. As usual, Kn, K1,n−1 denote the

complete graph and star of order n, respectively.
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Let A(G) denote the adjacency matrix of G. Since A(G) is symmetric, the eigenvalues of A(G) can be

arranged as follows:

ρ1(G) � ρ2(G) � · · · � ρn(G).

The adjacency spread of the graph G is defined as (see [10]):

SA(G) = ρ1(G) − ρn(G).

LetD(G)be thediagonalmatrixwhose (i, i)-entry isdi. TheLaplacianmatrixofG isL(G) = D(G) − A(G),
and the signless Laplacian matrix of G is Q(G) = D(G) + A(G). Sometimes, Q(G) is also called the

unoriented Laplacian matrix of G (see, e.g. [7,24]).

It is well known that L(G) is positive semidefinite so that its eigenvalues can be arranged as follows:

λ1(G) � λ2(G) � · · · � λn−1(G) � λn(G) = 0,

where λn−1(G) > 0 if and only if G is connected and is called the algebraic connectivity of the graph

G. Let κ(G) denote the vertex connectivity of G. If G � Kn, by Fiedler’s famous inequality it follows that

λn−1(G) � κ(G). Because λn(G) = 0, the Laplacian spread of the graph G, denoted by SL(G), is defined
as [9]

SL(G) = λ1(G) − λn−1(G).

Theadjacency spreadof agraphhas receivedmuchattention. In [22], Petrović determinedall connected

graphs with adjacency spread at most 4. In [10,17], some lower and upper bounds for the adjacency

spread of a graph were given. After that, the maximum adjacency spreads among all unicyclic graphs

and all bicyclic graphs of given order nwere determined in [8,23], respectively. However, the Laplacian

spread seems lesswell-known because itwas introduced somewhat later [9]. Up to now, there are only

very limited results on the Laplacian spread. Firstly, the maximum and minimum Laplacian spreads

among all trees of given order were identified in [9], and the maximum Laplacian spread among all

unicyclic graphs was determined in [13]. After that, the four trees (resp. the three unicyclic graphs),

which share the second to fifth (resp. the second to fourth) largest Laplacian spread among the trees

(resp. connected unicyclic graphs) of order nwere given in [14].

The matrix Q(G) is symmetric and nonnegative, and, when G is connected, it is irreducible. If M

is the n × m vertex-edge incidence matrix of the (n,m) graph G, then Q(G) = MMt . Thus Q(G) is

positive semidefinite and its eigenvalues can be arranged as:

μ1(G) � μ2(G) � · · · � μn(G) � 0.

Research on signless Laplacian matrices has become popular recently. Some properties of Q(G) were

studied in [1–3], all unicyclic graphs with first to 16th largest signless Laplacian spectral radii (namely,

μ1(G)) in the class of connected unicyclic graphs of order nwere identified in [6,18,25], and all bicyclic

graphs with first to 11th largest signless Laplacian spectral radii in the class of connected bicyclic

graphs of order n were identified in [7,15,26]. Recently, we determined the first to fourth largest

signless Laplacian spectral radii among the class of connected tricyclic graphs of order n in [15].

Motivated by the definition of SA(G) and SL(G), we define the signless Laplacian spread of the graph

G, denoted by SQ(G), as

SQ(G) = μ1(G) − μn(G).

The following result will be useful in the sequel

Proposition1.1 [3]. If G is connected, thenμn(G) = 0 if and only if G is bipartite.Moreover, if G is bipartite,

then Q(G) and L(G) share the same eigenvalues.

By Proposition 1.1, it immediately follows that

Proposition 1.2. If G is a bipartite graph, then λ1(G) = μ1(G) = SQ(G).

A graph G is called k-regular if d1 = · · · = dn = k. If G is k-regular, it is easy to see that μ1(G) =
ρ1(G) + k and μn(G) = ρn(G) + k. Thus, we have
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Proposition 1.3. If G is regular, then SA(G) = SQ(G).

In thispaper,weobtain someupperand lowerbounds forSQ(G), anddetermine theuniqueunicyclic

graph with maximum signless Laplacian spread among the class of connected unicyclic graphs of

order n.

2. Main results

We recall the notation of majorization (see [20]). Suppose (x) = (x1, x2, . . . , xn) and (y) = (y1, y2,
. . . , yn) are two non-increasing sequences of real numbers, we say (x) is majorized by (y), denoted by

(x) � (y), if and only if
∑n

i=1 xi = ∑n
i=1 yi, and

∑j
i=1 xi �

∑j
i=1 yi for all j = 1, 2, . . . , n.

Proposition 2.1. Let G be a graph with signless Laplacian spectrum (μ) = (μ1,μ2, . . . ,μn) and degree

sequence (d) = (d1, d2, . . . , dn). Then, (d) � (μ).

Proof. It is well known that (see, e.g., [19, p. 218]) the spectrum of a positive semidefinite Hermitian

matrix majorizes its main diagonal (when both are rearranged in non-increasing order). �
Remark 1. Let (̂d) = (d1 + 1, d2, . . . , dn−1, dn − 1) and (λ) = (λ1, λ2, . . . , λn). Grone (see [11])

proved that ifG has at least one edge, then (̂d) � (λ). Unfortunately, it is not correct that (̂d) � (μ). For
example, if G is a connected non-bipartite graph with at least one pendant vertex, then

d1 + 1 + d2 + · · · + dn−1 = 2m > μ1 + μ2 + · · · + μn−1 because μn > 0 by Proposition 1.1.

Corollary 2.1. If δ is the minimum degree of vertices of graph G, then μn � δ.

Proof. On the contrary, assume δ < μn. By Proposition 2.1 it follows that (d) � (μ), then d1 +
d2 + · · · + dn−1 � μ1 + μ2 + · · · + μn−1. This implies that 2m = d1 + d2 + · · · + dn < μ1 + μ2+ · · · + μn = 2m, a contradiction. �

Letm(v) = ∑
u∈N(v) d(u)/d(v). The next result gives upper and lower bounds for μ1(G).

Proposition 2.2. Let G be a connected graph on n (n� 2) vertices. Then,

min{d(v) + m(v) : v ∈ V(G)} � μ1(G) �max{d(v) + m(v) : v ∈ V(G)},
where equality holds in either of these inequalities if and only if G is regular or semi-regular bipartite.

Proof. The upper bound is given in [5]. The lower bound can be proved in a similar way. For details,

one can refer to [5]. �
Remark 2. If G is a connected bipartite graph, by Proposition 1.2 we can conclude that the bounds for

μ1(G) in Proposition 2.2 are also bounds for SQ(G). Thus, Proposition 2.2 also gives bounds for SQ(G)
when G is a connected bipartite graph.

Lemma 2.1 [20,21]. If G is a graph with at least one edge, then μ1 � λ1 � � + 1. If G is connected, the

first equality holds if and only if G is bipartite, the second equality holds if and only if � = n − 1.

The next result gives bounds for SQ(G) when G is a connected graph.

Theorem 2.1. If G is a connected graph with maximum degree � and minimum degree δ(δ > 0), then

� + 1 − δ < SQ(G) �max{d(v) + m(v) : v ∈ V(G)},
where the upper bound holds if and only if G is regular bipartite or semi-regular bipartite.

Proof. Lemma 2.1 and Corollary 2.1 imply the strict lower bound. The upper bound follows from

Proposition 2.2. By Propositions 1.1 and 2.2, the upper bound holds if and only if G is regular bipartite

or semi-regular bipartite. �
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Remark 3. By Proposition 2.2 and Corollary 2.1, we have SQ(G) �min{d(v) + m(v) : v ∈ V(G)} − δ.
Let κ ′(G) denote the edge connectivity of G. It is well known that κ(G) � κ ′(G) � δ(G). If G � Kn, by

Fiedler’s inequality, then λn−1(G) � δ(G). Thus, by Lemma 2.1 it follows that

Remark 4. If G is a connected graph and G � Kn, then SL(G) � � + 1 − δ.
A semi-edge walk (see [3]) of length k in an undirected graph G is an alternating sequence v1, e1, v2,

e2, …, vk , ek , vk+1 of vertices v1, v2, …, vk+1 and edges e1, e2, …, ek such that for any i = 1, 2, . . . , k the

vertices vi and vi+1 are end-vertices (not necessarily distinct) of the edge ei.

Lemma 2.2 [3]. The (i, j)-entry of the matrix Q(G)k is equal to the number of semi-edge walks of length k

starting at vertex i and terminating at vertex j.

The distance d(u, v) between vertices u and v of a connected graph G is equal to the length of

(number of edges in) a shortest path that connects u and v. The diameter of G, denoted by γ (G), is
γ (G) = max{d(u, v) : u, v ∈ V(G)}.
Proposition 2.3. LetG bea connectedgraphwithdiameterγ (G). If Q(G)has exactly k distinct eigenvalues,
then γ (G) + 1� k.

Proof. The proof of this result is similar with the corresponding theorem for the adjacency matrix.

Assume the contrary holds, i.e., γ (G) � k. Then, there exist two vertices of G, say vi, vj , such that

d(vi, vj) = k. Suppose the minimum polynomial of Q(G) ismQ(G)(x). Since Q(G) has exactly k distinct

eigenvalues, thenmQ(G)(x) = xk + a1x
k−1 + · · ·.

By Lemma 2.2, the (i, j)-entry of Q(G)k is positive. But the (i, j)-entry of Q(G)l is 0 for 1� l < k.

This implies that mQ(G)(Q(G)) /= On (On is the null matrix with all entries being 0), a contradiction.

Thus, γ (G) + 1� k. �

LetM1 = ∑n
i=1 d

2
i . In [16], we have showed that

Lemma 2.3 [16]. If G is a connected (n,m) graph, then μ1(G) � M1

m
, where the equality holds if and only

if G is a regular graph or a bipartite semi-regular graph.

Theorem 2.2. If G is a connected (n,m) graph and n� 2, then

SQ(G) �
M1

m
−
√√√√2m3 + m2M1 − M2

1

(n − 1)m2
,

where equality holds if and only if G ∼= Kn.

Proof. Because tr(Q2) = ∑n
i=1 μ2

i , it follows that

(n − 1)μ2
n + μ2

1 �
n∑

i=1

μ2
i =

n∑
i=1

di +
n∑

i=1

d2i = 2m + M1. (1)

Thus, 0� μn �
√

2m+M1−μ2
1

n−1
, from which we can conclude that

SQ(G) � μ1 −
√√√√2m + M1 − μ2

1

n − 1
. (2)

Let f (x) = x −
√

2m+M1−x2

n−1
. It is easy to see that f (x) is an increasing function when x > 0. By Lemma

2.3 and inequality (2), we have
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SQ(G) � μ1 −
√√√√2m + M1 − μ2

1

n − 1
�

M1

m
−
√√√√2m3 + m2M1 − M2

1

(n − 1)m2
.

If equality holds, then equality must be taken in inequality (1). This implies that μ2 = · · · = μn. By

Proposition 2.3, the diameter of G is 1. Thus, G ∼= Kn.

Conversely, if G ∼= Kn, then μ1 = 2n − 2, and μ2 = · · · = μn = n − 2. It is easy to check that

equality holds in Theorem 2.2. �

Given an n by nmatrixMn×n and an ordered partition (X1, . . . , Xm) of the ordered set {1, 2, . . . , n},
Mn×n can be presented as a partitioned matrix:

Mn×n =
⎛⎝M1,1 · · · M1,m· · · · · ·
Mm,1 · · · Mm,m

⎞⎠ ,

whereMi,j has Xi as the set of its row numbers and Xj as the set of its column numbers. We always use

QM hereafter to denote the quotient matrix of the partitioned matrix Mn×n, which is defined to be the

m bymmatrix whose entries are the average row sums of the blocksMij; that is, the (i, j)-entry of QM

is obtained by dividing the sum of all row sums of Mi,j by |Xi|, where 1� i, j �m.

Consider two sequences of real numbers: α1 � α2 � · · · � αn, and β1 � β2 � · · · � βm with m < n.

The second sequence is said to interlace the first one whenever αi � βi � αn−m+i for i = 1, 2, . . . ,m.

Lemma 2.4 [12]. Suppose QM is the quotient matrix of a symmetric partitioned matrix M. Then, the

eigenvalues of QM interlace the eigenvalues of M.

Let G = (V , E), if Ø /= V1 ⊆ V(G), by the average degree of V1, say d0, we mean that d0 =∑
v∈V1

d(v)/|V1|.
Theorem 2.3. Let G be a connected (n,m) graph with n� 2. Suppose G contains a nonempty set T of t

independent vertices, the average degree of which is d0. Then,

SQ(G) �
1

n − t

√
(nd0)

2 + 8(m − td0)(2m − nd0).

Proof. The t independent vertices give rise to a partition of Q(G) with quotient matrix B =(
d0 d0
td0
n−t

4m−3td0
n−t

)
. The eigenvalues of B are

β1,β2 = 4m + nd0 − 4td0

2(n − t)
± 1

2(n − t)

√
(nd0)

2 + 8(m − td0)(2m − nd0).

By Lemma 2.4, μ1 � β1 � β2 � μn, which implies the required inequality. �

Remark 5. If G is k-regular, then nd0 = 2m and Theorem 2.3 gives SA(G) = SQ(G) � nk
n−t

, where t and

d0 are denoted as in Theorem 2.3. Solving for t gives Hoffman’s bound on t when G is k-regular:

t �
n|ρn(G)|
k − ρn(G)

.

Thus, Theorem 2.3 may be regarded as a generalization of Hoffman’s bound to irregular graphs.

There are many graphs for which the bound in Theorem 2.3 is attained. For if G is k-regular, the

bound is attained if and only if G has a set T of independent vertices that attains Hoffman’s bound.

Also, if G = G(X , Y) is bipartite and T is either of its two vertex parts, thenm − td0 = 0 and Theorem

2.3 gives μ1(G) = SQ(G) � nm
t(n−t)

. Here, rank(B) = 1 in the proof of Theorem 2.3, and equality holds

in the bound if and only if G is semi-regular.
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v1 v2

Fig. 1. The graph H.

By Theorem 2.3, it immediately follows that

Corollary 2.2. Let p be the number of pendant vertices of G. If G is a connected (n,m) graphwith n > p� 1,

then

SQ(G) �
1

n − p

√
n2 + 8(m − p)(2m − n).

Equality holds, for example, if G ∼= K1,n−1 and p = n − 1.

If d(u) = �, then u is also an independent set of G. By Theorem 2.3, we have

Corollary 2.3. If G is a connected (n,m) graph and n� 2, then

SQ(G) �
1

n − 1

√
(n�)2 + 8(m − �)(2m − n�).

Equality holds, for example, if G ∼= Kn.

By the proof of Theorem 2.3, we have the following remark.

Remark 6. IfG is a connected (n,m) graph and contains t(1� t < n) independent vertices, the average
degree of which is d0, then

μ1 �
4m + nd0 − 4td0

2(n − t)
+ 1

2(n − t)

√
(nd0)2 + 8(m − td0)(2m − nd0).

Also, with the same method as Corollary 2.3, we have

Remark 7. If G is a connected (n,m) graph and n� 2, then

μ1(G) �
4m + n� − 4�

2(n − 1)
+ 1

2(n − 1)

√
(n�)2 + 8(m − �)(2m − n�).

Let G be a connected (n,m) graph. Suppose G contains t(1� t < n) independent vertices, the

average degree of which is d0. Then, the t independent vertices give rise to a partition of L(G) with

quotient matrix B =
(

d0 −d0−td0
n−t

td0
n−t

)
. It can be proved analogously with Theorem 2.3 that

Remark 8. IfG is a connected (n,m) graph and contains t(1� t < n) independent vertices, the average

degree of which is d0, then λ1 � nd0
n−t

. In particular, if G is a connected k-regular graph, then λ1 � nk
n−t

.

Equality holds, for example, if G ∼= Kn.

As shown in thenext example, the bounds inRemarks 7 and8 are sometimes better than the bounds

in Lemma 2.1.

Example 2.1. Let H be the graph as shown in Fig. 1. Clearly, T = {v1, v2} is an independent vertex set,

and d0 = 4. By Remark 8, it follows that λ1(H) � nd0
n−t

= 6 > 5 = � + 1. Actually, λ1(H) = 6. Thus,

the bound in Remark 8 can be attained. If we replace � by 4 in Remark 7, then we haveμ1(G) > 5.78,
which is also better than μ1(G) � � + 1 = 5 in Lemma 2.1.
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Proposition 2.4. Suppose G has two induced subgraphs G1 and G2, where Gi has ni vertices and ei edges

for i = 1, 2, V(G1) ∩ V(G2) = Ø and n1 + n2 = n. Let a1 = ∑
v∈V1

d(v)/n1 and a2 = ∑
v∈V2

d(v)/n2
then

SQ(G) �

√√√√(a1 + a2 + 2e1

n1
+ 2e2

n2

)2

− 16

(
a2e1

n1
+ a1e2

n2

)
.

Proof. Note thatQ(G) has B as its quotientmatrix, where B =
(
a1 + 2e1

n1
a1 − 2e1

n1

a2 − 2e2
n2

a2 + 2e2
n2

)
. Obviously, B has

two eigenvalues

β1,β2 = 1

2

⎛⎜⎝a1 + a2 + 2e1

n1
+ 2e2

n2
±
√√√√(a1 + a2 + 2e1

n1
+ 2e2

n2

)2

− 16

(
a2e1

n1
+ a1e2

n2

)⎞⎟⎠ .

Then Lemma 2.4 implies the result. �

The join of two vertex disjoint graphs G1, G2 is the graph G1 ∨ G2 obtained from their union by

including all edges between the vertices in G1 and the vertices in G2.

Corollary 2.4. Suppose G = G1 ∨ G2, where each Gi is a graph with ni vertices and ei edges for i = 1, 2.
Then,

SQ(G) �

√√√√(n + 4e1

n1
+ 4e2

n2

)2

− 16

(
e1 + e2 + 4e1e2

n1n2

)
.

Equality holds, for example, if G ∼= Kn.

Proof. Note that G = G1 ∨ G2, then a1 − 2e1
n1

= n2 and a2 − 2e2
n2

= n1. By Proposition 2.4, the con-

clusion follows. When G ∼= Kn, it is readily checked that equality holds because SQ(Kn) = n. �

Recall that the Cartesian product G � H = F(V , E) of graphs G = (V1, E1) and H = (V2, E2) has

vertex set V = V1 × V2, where (u1, u2) and (v1, v2) is adjacent in F if and only if u1 = v1, u2v2 ∈ E2 or

u2 = v2, u1v1 ∈ E1. Let A
⊗

B denote the Kronecker product of matrix Am×m and Bn×n (the definition

can be found in [4, p. 250]).

Lemma2.5 [4]. Suppose the eigenvalues of Am×m andBn×n are s1, s2, . . . , sm and l1, l2, . . . , ln, respectively.
Then, the eigenvalues of A

⊗
In + Im

⊗
B are

si + lj , where i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Since Q(G � H) = Q(G)
⊗

I|V(H)| + I|V(G)|
⊗

Q(H), a straightforward application of Lemma 2.5

yields the following result for the eigenvalues of Q(G � H).

Proposition 2.5. The eigenvalues of Q(G � H) are

μi(G) + μj(H), where 1� i � |V(G)|, 1� j � |V(H)|.
By Propositions 1.1 and 2.5, we have

Remark 9. Suppose F = G � H, where G and H are connected, then F is bipartite if and only if both G

and H are bipartite.
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Un Fn

Fig. 2. The unicyclic graphs Un and Fn .

Theorem 2.4. Suppose G and H are two connected graphs, then

SQ(G � H) = SQ(G) + SQ(H).

Proof. As a consequence of Proposition 2.5, we have

μ1(G � H) = μ1(G) + μ1(H),μn(G � H) = μn(G) + μn(H).

Thus, SQ(G � H) = SQ(G) + SQ(H) follows. �

In the following, let Un denote the class of connected unicyclic graphs of order n. Let Un, Fn be the

unicyclic graphs as shown in Fig. 2.

Lemma 2.6 [18]. If n� 8 and G ∈ Un \ {Un}, then μ1(G) � μ1(Fn), where equality holds if and only if

G ∼= Fn.

Theorem 2.5. If n� 8 and G ∈ Un \ {Un}, then SQ(Un) > SQ(G).

Proof. Let Φ(G, x)=det(xI − Q(G)) denote the signless Laplacian characteristic polynomial of G. By a

straightforward computation, we have

Φ(Un, x) = (x − 1)n−3ϕ1(x), (3)

Φ(Fn, x) = (x − 1)n−5ϕ2(x), (4)

whereϕ1(x) = x3 − (n + 3)x2 + 3nx − 4, andϕ2(x) = x5 − (n + 5)x4 + (6n + 3)x3 − (9n − 1)x2

+ (3n + 8)x − 4.ByLemma2.6,weonlyneed toprove that SQ(Un) > μ1(Fn)becauseμ1(G) � μ1(Fn)
and μn(G) � 0.

Since ϕ1(0) = −4 < 0, ϕ1(0.2) = 0.56n − 4.112 > 0, ϕ1(n) = −4 < 0 and ϕ1(n + 1) = n2 −
n − 6 > 0, by equality (3) it follows that 0 < μn(Un) < 0.2 and n < μ1(Un) < n + 1. Thus,

SQ(Un) = μ1(Un) − μn(Un) > n − 0.2.

Since ϕ2(0) = −4 < 0, ϕ2(0.3) > 0.2439n − 1.468 > 0, ϕ2(1) = 4 − n < 0, ϕ2(2) = 2n − 8 > 0,

ϕ2(6) = 2024 − 306n < 0 and ϕ2(n − 0.2) = 0.8n4 − 5.44n3 + 5.272n2 + 7.1184n − 5.59232 >
0, then 6 < μ1(Fn) < n − 0.2by equality (4). Thus,

μ1(Fn) < n − 0.2 < SQ(Un).

This completes the proof of this result. �

3. Concluding remarks

A number of questions have been left unresolved. Here, we present some of them for further study.

Problem A. If G is regular, by Proposition 1.3 SA(G) = SQ(G). By examining the spectra of A(G) and

Q(G) for graphs on five vertices (for instance, see [2, pp. 273–275] and [3]), we see that the inequality

SA(G) � SQ(G) often holds. But for the graphW1 shown in Fig. 3, we have SA(W1) > 5.744 > 5.657 >
SQ(W1). It is natural to consider when the strict inequality SA(G) > SQ(G) is necessary and when it

is sufficient.
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W1

W2

Fig. 3. The graphs W1 and W2.

Problem B. Proposition 1.2 implies that SL(G) � SQ(G) always holds for bipartite graphs G. But for the

graphW2 depicted in Fig. 3, SL(W2) > 4.123 > 4 = SQ(W2). Thus, we could also consider conditions

for the inequality SL(G) > SQ(G) to hold.

Problem C. In Theorem 2.5, we determine the unicyclic graph with maximum signless Laplacian

spread among all connected unicyclic graphs of order n. But the graphs which share the maximum

signless Laplacian spread among all connected graphs of order n are still unknown.

Let K1
n be the graph on n vertices obtained by attaching a pendant vertex to Kn−1. Then, SQ(K1

n ) =√
4n2 − 20n + 33. So, SQ(K1

n ) � 2n − 4 when n� 5. A computer run on connected graphs G of order

n for 3� n� 8 indicates that if n /= 4 then SQ(G) � SQ(K1
n ) and that, when n = 6, 7, 8, equality is

attained only when G = K1
n . Note that if G is disconnected, then it is straightforward to check that

SQ(G) � 2n − 4 and the equality is attained only if G = Kn−1 + K1, the complete graph on n − 1

vertices together with a single isolated vertex. Because of the computer run and because K1
n is ob-

tained from the disconnected maximizer Kn−1 + K1 by adding a single edge, it seems likely that

SQ(G) � SQ(K1
n ) for connected graphs G of order n� 5.
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[1] D.M. Cardoso, D. Cvetković, P. Rowlinson, S.K. Simić, A sharp lower bound for the least eigenvalue of the signless Laplacian
of a non-bipartite graph, Linear Algebra Appl. 429 (2008) 2770–2780.
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