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Correction for Missed Events Based on a Realistic Model of a Detector

Silke Draber and Roland Schultze
Institut flr Angewandte Physik der Universitit Kiel, D-24098 Kiel, Germany

ABSTRACT Quantitative patch-clamp analysis based on dwell-time histograms has to deal with the problem of missed events.
The correction of the evaluated time constants has to take into account the characteristics of the detector used for the recon-
struction of the time series. In previous approaches a simple model of the detector has been used, which is based on the
assumption that all events shorter than the temporal resolution £, were missed, irrespective of the preceding events. Rather
than the standard assumption of a fixed dead time, we introduce a more realistic model of a detector by a continuous-time version
of the Hinkley detector. The combined state of the channe! and the detector obeys a Markov model, which is governed by a
Fokker-Planck-Kolmogorov partial differential equation. The steady-state solution leads to the determination of the apparent time
constants 1, and 7. depending on the true rate constants k. and k., and the temporal resolution £ of the detector. Simulations
with different kinds of detectors, including the Bessel filter with half-amplitude threshold detection, are performed. They show
that our new equation predicts the dependence of 1. and 7, on k.., k.o, and 15 better than the standard equation used until

now.

INTRODUCTION
Limited time resolution

The patch-clamp technique (Sakmann and Neher, 1983) al-
lows the direct observation of channels switching between
open and closed states. Due to noise, however, the detector
used for the analysis of the recorded pipette current has to be
set to a certain temporal resolution ¢.s. The time resolution
t.es is defined as the duration of an isolated noise-free event,
which is just long enough to be detected. In the case of the
Hinkley detector (Page, 1955; Hinkley, 1971; Basseville and
Benveniste, 1986) and the higher order Hinkley detector
(Schultze and Draber, 1993), the time resolution ¢ is the
adjustable parameter for the sensitivity of the detector. In the
case of the Bessel filter with half-amplitude threshold analy-
sis, the time resolution depends on the adjustable 3-dB fre-
quency fiqg by tres = 0.18/f34p. In a previous paper (Schultze
and Draber, 1993), we studied the optimal setting of 7, for
different detectors depending on the properties of the noise
and the signal. Of course, #..; must be chosen to be as short
as possible, but the false alarm rate increases drastically if 7,
is decreased under a threshold which depends on the signal/
noise ratio. Setting the time resolution according to the rule
of thumb

.. = 32/SNR? 6))

ensures that there will be a tolerably low number of false
alarms.

Consequences on the dwell-time histograms and
correction strategy

The omission of short events leads to an overestimation of
the duration of the detected events. As a consequence, the
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time constants 7 obtained from fitting the measured dwell-
time histograms are longer than those that would have been
obtained without dwell-time omission. Therefore, a correc-
tion for missed events has to be performed when calculating
the rate constants k of the channel from the time constants
7 obtained from the exponential fit of the dwell-time histo-
grams. A theory is needed that predicts the time constants
T, given the rate constants k of the channel and the time
resolution ¢ of the detector. Numerical inversion allows
the determination of k from 7 and ¢, as required in practi-
cal cases. The question of invertibility is addressed in the
Discussion.

Different kinds of methods for the analysis of
single-channel data

The channel gating originally produces a current that is a
nearly noiseless switching between different levels. If only
one channel is observed, there are normally only two levels
of current, one for the closed channel and one for the open
channel. The aim of single-channel analysis is to find out the
kinetic scheme underlying this stochastic process of channel
gating. In every patch-clamp setup, however, the current sig-
nal undergoes several changes until it is recorded digitally.
First, the colored noise arising from the pipette capacity
(Hamill et al., 1981) adds to the measured current. Second,
the patch-clamp amplifier itself produces additional noise.
Third, the signal must be low-pass filtered through an an-
tialiasing filter, often of the Bessel type. Finally the analog
signal is sampled and converted to a sequence of digital num-
bers, which is convenient for storing it on a computer hard
disk.

Now the analysis can go different ways. One possibility
is to disregard the temporal information and to look only at
the amplitude histogram, the distribution of the sampled
current values. The shape of this distribution allows some
inference about the underlying gating model. Yellen
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(1984) and Klieber and Gradmann (1993) have used the
theory of B-distributions, which FitzHugh (1983) has de-
veloped for a two-state Markov model and a first-order
filter.

We favor another concept that is more commonly used.
The temporal information of subsequent gating events allows
a more sophisticated analysis of the gating mechanism.
Therefore, a detector is applied to reconstruct the original
current record as closely as possible. The standard algorithm
for such a detector is the combination of a Bessel filter and
half-amplitude threshold analysis (Colquhoun and Sigworth,
1983) of the filtered signal. The application of a first-order
low-pass filter instead of a fourth- or eighth-order Bessel
filter gives poor performance (Schultze and Draber, 1993).
Therefore, the first-order low-pass filter with threshold de-
tection should not be used for analysis of data or for theory.

A different family of detectors is based on nonlinear
filters: the Hinkley detector (Page, 1955; Hinkley, 1971;
Basseville and Benveniste, 1986) and the higher order
Hinkley detector (Schultze and Draber, 1993). We have
shown that they give better performance than the standard
Bessel algorithm (Schultze and Draber, 1993).

Analysis without correction for missed events

Colquhoun and Hawkes (1982) showed that an arbitrarily
complex Markov model of gating without dwell-time omis-
sion results in dwell-time histograms that are sums of ex-
ponentials and gave general equations of how time constants
7and amplitude factors of the exponentials depend on the rate
constants k of the underlying Markov model.

Brief events missed by the detector

Regardless which detector (Bessel, Hinkley, or higher order
Hinkley) is applied, they all miss short events, because short
events are indistinguishable from noise-induced fluctuations.
Because of dwell-time omission, the reconstructed record
contains less events, and the detected events are therefore
longer than the events in the original channel gating.

Despite dwell-time omission the resulting dwell-time his-
tograms can be fitted reasonably well by a shifted exponen-
tial, starting at ... The time constant, however, differs from
the true time constant that would have been fitted without
missed events. Many attempts to correct the results for the
effect of missed events, therefore, resulted in a formula that
describes for the two-state case how the time constants 7, and
7. of the open- and closed-time distribution depend on the
time resolution f,.s of the detector and the rate constants k.
and k, (Colquhoun and Sigworth, 1983; Blatz and Magleby,
1986; Yeo et al., 1988). Such functional dependence 7,(koc,
Kkcos tres) is also developed in this article.

Correction methods based on the assumption of

a fixed dead time

An early result, commonly used until now, goes back to
Colquhoun and Sigworth (1983), who gave their equations
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in terms of mean values M, and M_ for the dwell times in the
open and the closed state:

Ml K 1) @
—r o4y = ! + ! -
=T, tres - koc . exp( -—kcotms) km . exp(—kcotms) kco

Ml s 1) ®
—r 4y = ! + . :
= TC trcs - kco . exp( _koctres) koc . eXp( _koctres) koc

These mean durations are calculated under the condition that
all events shorter than a fixed dead time ¢, were missed, and
all events longer than this dead time were detected. This is
an intuitively appealing model for time interval omission.
Though quite simple, it describes the main aspect of time
interval omission and condenses the complex mathematics of
noise, filtering, sampling, and detection in a single param-
eter. The concept of a fixed dead time provided the basis for
many important papers about dwell-time omission.

Roux and Sauvé (1985) showed that the dwell-time dis-
tributions are not exactly exponential. They gave some equa-
tions for the Laplace transform of the dwell-time distribu-
tions for Markov schemes of any complexity. Blatz and
Magleby (1986) developed a general concept of how to ex-
tend the two-state result of Colquhoun and Sigworth (1983)
to complex Markov models by the introduction of so-called
phantom states, which account for the undetected events. For
the two-state case, Yeo et al. (1988) and Milne et al. (1989)
showed that a maximum likelihood fit with a single (shifted)
exponential confirms exactly the mean dwell times M ac-
cording to Colquhoun and Sigworth (1983). Crouzy and
Sigworth (1990) gave a more general approach for the ex-
tension of the two-state results to the multi-state case. They
made use of Kienker’s (1989) result and first transformed the
gating model into an equivalent uncoupled scheme before
introducing phantom states. Hawkes et al. (1990) and Jalali
and Hawkes (1992) succeeded in giving analytical expres-
sions for the dwell-time histograms for any type of Markov
model. Although their numerical examples are quite extreme
(more events missed than detected), the comparison of the
dominant time constant (Table 1 in Hawkes et al., 1990)
reveals that the various methods mentioned above have
nearly identical results. This justifies the representation of all
the fixed dead time theories by the fundamental Eq. 4 and the
showing of the benefits of our new result (Egs. 34 and 35)
against that old equation in the Comparison section.

Ball et al. (1993) put the theory of missed events in a very
general mathematical framework. All models with or without
time interval omission are treated as semi-Markov models.
Once the kernel of the semi-Markov model is given, their
theory provides all important statistical properties of the ob-
served dwell times: means, distributions, and correlations.
Besides the mathematical clarity of this approach, it also
allows the use of other than pure Markov models for the
channel. Every semi-Markov model will do, for instance, a
fractal model (Liebovitch, 1993).
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All of the articles mentioned, from Colquhoun and
Sigworth (1983) to Ball et al. (1993), continued to use
the definition of a fixed dead time as a model for time in-
terval omission. For the two-state model they all support
the result of Colquhoun and Sigworth (1983), which we
will call the “old” equation for missed events correction in
the following.

TC(kOC 2 kCO ’ tres) (4)

1 1 1

e P Kl) Ry exB(— Kl Ko,

TeS.

- trcs
The equation for 7, is obtained by simply exchanging the
indices o and c.

In order to avoid confusion arising from the differences in
the nomenclature in papers about missed events we list the
most important quantities in Table 1.

Alternative approaches instead of fixed
dead time

The fixed dead time assumption is not realistic for any de-
tector, especially if both open and closed events are short,
because every detector contains a sort of memory, which is
a test value or a filtered value, depending on previous events.
In a real detector, multiple short events can lead to a detec-
tion. They are not simply ignored.

Although many authors admit that the fixed dead time is
somehow not realistic, there has been little effort to find
alternatives. Roux and Sauvé (1985) have compared their
exponential approximation, based on fixed dead time, with
Rickard’s (1977) solution. His equation is, however, only
valid for a very special and unrealistic case. The channel
obeys to a symmetrical (k.. = k) two-state Markov model,
no noise, first-order low-pass and half-amplitude threshold
analysis. The only thorough investigation of the shortcom-
ings due to the assumption of a fixed dead time has been
carried out by Magleby and Weiss (1990). They clearly show
that simulation of a realistic recording situation with noise,
fourth-order Bessel filter, and threshold detection gives
markedly shorter dwell times than the model of a fixed dead
time. In other words, the fixed dead time exaggerates the
effect of missed events, because it neglects the possibility
that subsequent short events sum up to a detected event.
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This approach is principally possible, but it takes some time
on a computer to simulate the dwell-time histograms for one
set of rate constants. And, for the purpose of fitting, this
time-consuming simulation would have to be repeated sev-
eral times.

The new theoretical approach: modeling the
detector

Although the simulation approach of Magleby and Weiss
(1990) gives the correct results, we are interested in finding
an analytical expression that gives the dependence of the time
constants T, and 7. on the rate constants k. and k., and the
time resolution #.,. Such an analytical formula would offer
tremendously shorter computing times compared to the re-
peated simulations of Magleby and Weiss (1990). It may also
lead to a better understanding of the mechanisms of dwell-
time omission.

Our aim in this article is to find an equation that can be
substituted for the widely used old Eq. 4 without any addi-
tional parameters. This new equation (Eq. 34), which we
develop in the Theory section, is not based on the unrealistic
assumption of fixed dead time, but on a realistic model of a
detector. Since there are different kinds of detectors, and,
further, different conditions of noise and sampling fre-
quency, which cannot be described by simply specifying f,,
we chose the following strategy. We derived the new equa-
tion for the Hinkley detector for no noise and in continuous
time. Although this is a special case, it supplies a much better
model for a detector in general than the fixed dead time
approach because now the memory of the detector is ad-
equately contained in the model. This generality is shown in
the Comparison section, where we compare our new equa-
tion with results from simulations under realistic recording
conditions.

THEORY
Model of the channel

We consider a two-state model with one open and one
closed state:

Magleby and Weiss (1990) suggest dropping the theory built 0=C 5)
around the fixed dead time and using simulations instead. Ko
TABLE 1 Nomenclature in some publications dealing with the dwell-time omission problem

This Colquhoun and Blatz and Milne et al. Crouzy and

Article Sigworth (1983) Magleby (1986) (1989) Sigworth (1990)

True rate constants koc /o ko 1/ k1o

keo Vpg k21 1wy ko1
Time resolution tres & & Dead time D Dead time £ Dead time &
Apparent mean dwell time M, “lo Lovsqry Mo

M. °Mg Lobs(2) Ms DM,
Fitted time constants To Tobs(1) Ku

Tobs(2) 128 Tobs
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The two-state model without dwell-time omission results
in single exponentials for the dwell-time histograms. The
time constant of the open-time histogram is 7, = 1/k,. and
for the closed events is 7. = 1/k,. Since the distributions
are exponential, the time constants 7, and 7. are also the
mean open and closed times, M,, and M, respectively. The
two-state model is the simplest possible gating model, but
throughout the history of single-channel analysis, main
concepts and insights were first obtained for the two-state
case and afterwards extended to more complex models. An
approach to extend the application of our new Eq. 34 to
more complex schemes is considered in the Discussion.
Although the problem of missed events originally arises
from sampling and noise, we assumed the noise-free
continuous-time case for the development of the theory.
Fig. 1 A gives an example for a signal z(¢) of pipette current,
which jumps between the two levels pg (closed) and p,
(open). Throughout this paper the following definitions are
used: p, level of pipette current when the channel is closed;
1, level of pipette current when the channel is open; m =
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Hinkley detector

The application of the Hinkley detector to patch-clamp data
is explained in detail in a previous article (Schultze and
Draber, 1993). Briefly, the Hinkley detector builds a cumu-
lative sum g(¢) from the measured time series z(¢) — m:

gO) =gt —=T) + ) —m) - T, (©6)

with the sampling period T. This test value g(¢) is not al-
lowed to obtain negative values. This is the essential non-
linearity of the algorithm. A jump (opening or closure) is
detected when the test value g(¢) exceeds a threshold A.

A = tres : p (7)

The threshold A depends on the time resolution ¢, which in
turn has to be chosen according to the noise magnitude (see
Eq. 1). For this theoretical treatment we do not explicitly
include noise into the differential equations, but we assume
a time resolution #., > 0.

In this article, we use a continuous-time version of the

(1o + p1)/2, mean value between the levels; p = (g — po)/2,  Hinkley detector. The difference equation (Eq. 6) becomes
half-jump magnitude. a differential equation. When the detector is in the state of
A ()
(333
R=0 R=0 R=0
mr @ ® @ Q|®
R=C R=C =ClIR=C
Ho D
t TCS
B /\__g( ) detectxon detection detection
@ f opening f closure f opening
0 @
C D=0,R=0 - C_%
D=0,R=C detection
@ of closure
detection
D=C,R=0 — ®ofopemng
D=C,R=C 4

FIGURE 1 Example of the temporal behavior of the channel and the detector. Some important moments of time are marked by numbers (@, @, etc.).
(A) A noise-free time series 2(¢) of pipette current jumping between closed state (R = C, z(f) = po) and open state (R = 0, z(t) = w,). (B) State of the
detector characterized by the test value g(z) and the detected state D (open or closed) according to the time series (A). (C) The four thick horizontal lines
represent the state space for the whole system consisting of channel and detector. The horizontal dimension is the continuous state variable g. The vertical
dimension stands for the four combinations of discrete states (D = O,R = 0; D = O,R=C;D = C, R = O0; D = C, R = C), with R being the state
of the channel and D the state of the detector. The arrows and the numbers indicate the state of the system moving around in its space, according to the
time series shown in A and B. On the uppermost and the lowest state line, the detector has recognized the correct state of the channel (D = R). Therefore,
the system state moves left with constant speed —p until reaching the circles g(f) = 0. On the two lines in the middle the detector has not yet detected the
correct state of the channel and the system state moves right with constant speed p. When g finally reaches the threshold A and a jump is detected, the detector
has again recognized the state of the channel. Jumps from one line to another occur when either the channel changes its state or the detector changes its
state due to jump detection.
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assuming a closed channel and is therefore looking for an
opening, the test value g(¢) of the detector behaves according
to the differential equation

Detector closed: di—(tt) =z(t) —m )
as long as g(t) = 0, but g(¢) is not allowed to become nega-
tive. If g(¢) = 0 and 2(¢) < m, the test value g(t) stays at zero
(nonlinearity). This is normally the case when the channel is
closed (@ in Fig. 1). When the channel opens (®), the test
value starts to rise with a slope of

Detector closed, channel open:

d
By -m=p-m=p  ©

If the open event is longer than ¢, the test value keeps on
growing until it finally reaches the threshold A = p - £,
which is the criterion for jump detection. If, however, the
channel closes before a jump is detected (@ in Fig. 1), the
test value begins to decay with the negative slope

Detector closed, channel closed:

d
BO ) —m=pg—m = —p (10)
dt

If the channel stays closed, the test value g(¢) will reach
g(¢) = 0 again. A missed event like this is displayed at the
left (2 and @) of the time series in Fig. 1. The second open
event (® and ®) in Fig. 1 is longer than the time resolution
t..s, the threshold A is exceeded, and the opening is detected
(®). From now on the detector is assuming an open channel
and is searching for a closure. The test value is calculated in
the same manner but with inverse signs

ds(t) =m — 2(¢) (11)

D n;
etector ope ar

The next events in Fig. 1 A are two short closed events in-
terrupted by an even shorter open event. The test value rises,
fails, and rises again (®, @, and ® in Fig. 1 B). A closure
is detected (@) although both closed events are shorter than
the time resolution. This is an example of the errors arising
in previous approaches from the simple assumption that a
detector ignores all events shorter than ¢,..

System state: channel and detector

The state of the whole system of channel and detector is
described by the continuous test value g(#) and by two
discrete variables, one for the real or true state R(t) = O or
R(t) = C of the channel and one for the state D(¢) = O
or D(t) = C of the detector. The characterization of the four
combinations (R = O, D = Q as detected open;R=0,D = C
as missed open; R = C, D = O as missed closed; and
R = C, D = C as detected closed) goes back to Blatz and
Magleby (1986) and was generalized by Crouzy and Sig-
worth (1990). The new idea of our approach is the additional
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continous variable g(¢) for the description of the system state.
In a graphical presentation (Fig. 1 C) the state of the whole
system can be understood as a point moving in a state space
which consists of four g-lines, one line for each combination
of discrete states.

Probabilities in the state space

For finding the relationship To(koc, Kcos fres)s W€ chose to
calculate the mean dwell time M, = 7, + t. in the state
D = O. This apparent mean open-time is related to the num-
ber of closures detected per time:

time spent in D = O
M=+t =
° "o number of detected closures (12)

In order to determine the number of detections we want
to know the probability of the system to be in the state
(D = O,R = C, g = M) because this is the state directly before
a closure is detected.

This problem can only be solved within a more general
question: What is the probability of finding the system at time
t at any location R, D, g in the state space (Fig. 1 C)? Later
on, we can remove the time dependence by focusing on
stationary probability densities, and we find that it is
sufficient to calculate the probabilities under the condition
that the detector assumes open (D = O). We restrict the
following considerations only to the upper two lines in
Fig.1 C (D = 0O). Under this condition tree locations of the
system state are distinguished:

1. If the channel has been open long enough, i.e., the as-
sumption of the detector is correct, in that case the system
state stays at D = O, R = O, g = 0. This is due to the
nonlinearity of the Hinkley detector which prevents g
from becoming negative. The sytem state is found at the
g = O-circle on the (D = O, R = O)-line in Fig. 1 C with
the probability wg_o(¢) (between ® and ® in Fig. 1 C).

2. If the channel is closed (R = C), i.e., the assumption D
= O of the detector is wrong, the system state is mov-
ing to the right on the (D = O, R = C)-line between
0 < g < A. w(g, t) describes the probability density of
finding the system state at time ¢ at the location g on
the (D = O, R = C)-line (between ® and @ or ® and
in Fig. 1 C).

3. For the channel being open and 0 < g < A, the system state
is moving to the left on the (D = O, R = O)-line. We
define the probability density function wy(g, t) (between
® and ® in Fig. 1 C).

The functions w, and w, are probability densities and not
dwell-time histograms. The sum of all probabilities for
D=0

A A
Wemo(t) + f w.(g, 1) dg + f W, (g, 1) dg
[ 0 (13)

=wp_ () <1

gives the total probability of the detector being in the open
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state (D = O). Of course, the same argument can be ap-
plied to the other two lines (D = C) in Fig. 1.

Temporal evolution

The probabilities and probability densities have been intro-
duced in order to deal with the stochastic system in a de-
terministic fashion. Although the system is stochastic, the
temporal evolution of the probability distributions is deter-
ministic. We are dealing with a Markov model, and the tem-
poral evolution of the probabilities depends only on the ac-
tual probabilities. Given the probabilities and the probability
densities at a moment of time ¢, the future development
dwg—o/dt, dw/ot, dw,/dt is determined by deterministic dif-
ferential equations.

There are three fluxes that account for changes of the prob-
ability densities wo(g, t) and w.(g, t): 1) movement along
the g-lines with constant speed p or —p; 2) openings of the
channel; and 3) closures of the channel. First, we restrict our
considerations to the deterministic movement of the system
state on the g-lines with constant speed p (Eq. 9) or —p (Eq.
10). On the (D = 0, R = C)-line in Fig. 1 C, the system state
moves right with speed p. Not considering the switching of
the channel, the probability density w.( g, t) moves right, too.
Given a certain value w(g,, t;) at time #; and location g,
the movement of the whole density function shifts it to
g =g t+tp-Arattimer, =t + At

Without effect of gating:

wc(g29 t2) = wc(gh tl) (14)
w.(g, + pAst, + Ar) = w (g, 1)) (15)
After some rearrangement

wc(gl +pAt9 tl + At) - wc(g] +pAt’ tl)
At

_ wJg, + pAL ) — wig,t,)
At

(16)

it is possible to let Az — 0. If the partial derivatives exist,
the right moving probability density w, is described by the
following partial differential equation (PDE)

Without effect of gating:

a"vc(gl’ tl) — awc(gl’ tl)

There are two other effects that influence the temporal
evolution dw./dt. The stochastic openings (@ in Fig. 1) cause
a flux —k.w. from w, to w, and decrease the probability
density w,. The closures (®) produce a flux k,.w,, which
increases w,. The final PDE for the temporal evolution of the
probability density w, therefore is

w,(g, 1) aw.(g,t)
=P

ot ag - kCOwc(g7 t) + kocwo(g’ t) (18)

The PDE for w, is constructed similarly. The only difference
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is that now the state moves left with speed —p instead of p:

Iw(g, 1)
a P

w,(g, 1)
3 + k wig 1) — k, w8 1) 19)

Such a PDE, which describes a state of discrete and continous
nature, is called the Fokker-Planck-Kolmogorov type
(FitzHugh, 1983).

Further on, we need the differential equation for dw,_o/
dt. The decrease due to channel closure (®) is —k,cWy—o.
There are two sources of increase, the flux pw,(0, ¢t) of
the distribution w, into the point g = 0 (nonlinearity of
the Hinkley detector) and the influx due to detection
of openings (®).

dw,_(t
ii;to() = =k, Ww,_o(t) + pw,(0, 1)
(20)
+ influx due to detection of opening

Finally, two continuity equations serve as boundary condi-
tions for the PDEs: the flux pw(A, ¢) over the threshold A
is the efflux due to detection of closures (®).

Efflux due to detection of closure = pw (A, £) (21)

The channel closures from g = 0 (®) supply the flux
pwd(0, r) at the left end of the (R = C, D = O)-line:

w0, t) = k,w,_,(t) (22)

Stationary solution

The stationary solution of the partial differential equations is
found by replacing the temporal derivatives by zero. In the
stationary case the efflux and influx due to jump detection
must be equal.

Influx due to detection of opening
(23)
= efflux due to detection of closure
The differential equations for the stationary solution wy(g),
wc(g)’ Wg=g are:

From Eq. 18:
dw,(8)
0= p d— + kcowc(g) - kcowo(g) (24)
8
From Eq. 19:
dw.(g)
0= =P ~ kael®) + ks (8) 25)

From Egs. 20, 21, 23:
0= —kw,, +pw,(0) + pw.(A) (26)
From Eq. 22:

pw, (0) = kocwg~0 (27)
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For k,. # k., the general solution of Eqs. 24 to 27 with the
free constant a is

wig) = [k exp()‘T (ke koc)) ~ k| @9
wlg) = k—f_—T [k.mexp(h—;-“i (ke = kw)) — ko| @9)
Woo = _‘i o ,f’ [k exp( k., km)> ~ k| @o

In contrast to Eq. 13 we normalize wp—o = 1 because the
following calculations for 7, make use of conditional prob-
abilities, conditioned on D = O. Normalization to

f wig) dg + f wigdg +w,,=1 (1)
0 0

fixes a to
k,—k [ 2k,
a= [— (1~ explth, — Kio)
P w e e
res oc - reskco eXP( res(k - koc)) - 1]

where A is already replaced by p-t.es (Eq. 7).

Mean dwell timein D= O

Since the probabilities are already conditioned on D = O
(Eq. 31), we can now calculate the apparent mean dwell time
M, = 7, + ts (Eq. 12) in the open state as the inverse of
the efflux w.(A) - p = a - p due to jump detection from D =
OtoD = C:

PR S SO
T TN p ap ke - ke
A 1 k k 33
ko = koc( exp(teske, — ko)) (33)
k.,
~ btk — tok, T T explt(k, — k) — 1]

Time constant of the exponential fit

Thus, the final solution for the time constant To(koc, Keos fres)
in the open-time histogram is

1 %,
T = l:_ —k (1 - exp(tres(kco - koc)))

ko — k.| k

0 0oC

34

k
— bk — ok, + k—°° exp(t k., — k) — 1] — by

In order to find the solution for k.. = k., we expand the
exponential function into a Taylor series in Ak = k., —
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and let Ak — 0. The result is

T, =k -2+ 1/k+t,

Fig. 2 A shows our new theoretical result (Egs. 34 and 35)
as contour plot (lines of constant 7,,). Fig. 2 B gives the results
of the old theory (Eq. 4) for comparison. Significant differ-
ences between Fig. 2, A and B, are found if both rate constants
ko and k., are fast, i.e. > 0.5 £ !

Before we proceed with the comparison between the old
and the new theory, we analyze simulated signals in order to
have a reference for the true dependence of 7, on k., k., and
t..s under normal experimental conditions.

(35)

SIMULATION

The simulation is done in discrete time. In order to avoid
errors caused by discreteness, the sampling period T;,,, has
to be chosen short enough with respect to the life times of
the states of the model and with respect to the time constant
of the antialiasing filter, as discussed below.

The model (Eq. 5) is transformed to discrete time by mul-
tiplying the rate constants with T;,,, which results in tran-
sition probabilities.

Tsimkoc
0O=27
Tsimkeo

(36)

The simulation of this discrete Markov model is performed
step by step. At every sampling step the transition prob-
abilities Tk, from the actual state i to the other states j #
i and the probability 1 — 2; Tiimk;; to stay in state i are
considered. An identically distributed random number be-
tween 0 and 1 then determines if a transition to one of the
states j is performed or if the simulated channel stays in state
i. It is important to choose T, so short that the probability
of leaving the actual state is always very small (<0.1 as a rule
of thumb). In the simulations presented in this article, the
fastest rate constant is 30.000 s™! and T, = 1 us. The
probability 1 ps - 30.000 s! = 0.03 is small enough. The
Monte Carlo simulation of the Markov model results in an
undisturbed discrete time series of current through the chan-
nel. The single-channel current for state O has been chosen

A

R 1
EZ ,"/ 1 g
g |7 2 &
§ , ' l--— §

0 V/ /=

0 1 2 3

koc (in 1/tres)

09,1,2,3, -,
30, 40 in the ko, keo-plane according to (A) the new (Eqgs. 34 and 35) and
(B) the old (Eq. 4) theory. The dashed lines show the three cross-sections,
which are examined in greater detail in Fig. 3.

FIGURE 2 Lines of constant 7, = 0.4, 0.5, ---, 9, 10, 20,
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tobe py — po = 2 * p = 2.8 pA. The time series are 20 s long,
i.e., 20,000,000 simulation steps.

The typical colored noise of a patch-clamp setup is added.
Its power spectrum is flat below 1 kHz and rises proportional
to the frequency above 1 kHz (Colquhoun and Sigworth,
1983; Schultze and Draber, 1993). The noise amplitude after
filtering and sampling is given below. Now the simulation of
the unfiltered pipette current is complete. The following
steps simulate the electronic processing of the measured data
until they are recorded in the computer. For the low-pass
filter for antialiasing we use an eighth-order Bessel filter with
a cutoff frequency (-3dB) of f3qg = 25 kHz. The discrete
version is obtained by the invariant impulse-response method
(Antoniou, 1979). With f;, = 1/Tg, = 1 MHz = 40-f34 for
the simulations in this paper the errors of discretization are
negligible. Generally, the simulation frequency fim = 1/Tim
should be at least 10 times faster than the cutoff frequency
faam.

The next step of the data processing is the sampling with
100 kHz according to our laboratory setup (Schultze and
Draber, 1993; Draber et al., 1993). Now the simulation of the
“experimentally recorded” data is complete. The record con-
tains 2,000,000 sampled values, the standard deviation of
noise is o = 1.51 pA, giving a signal/noise ratio SNR = 1.85.
The subsequent construction of dwell-time histograms is
identical to the procedure applied to real data. According to
Eq. 1 the time resolution ¢, is set to ¢, = 32/SNR? =
32/(1.85)? =~ 10, sampling steps, = 100 us.

For the purpose of this article we did the analysis with the
three different kinds of detectors: Hinkley detector (first-
order), higher order Hinkley detector, and Bessel filter with
half-amplitude threshold analysis. The cutoff frequency of
this Bessel filter is set to f335 = 0.18/¢,.s = 1.8 kHz, so that
all three detectors have the same time resolution ¢, = 100
ps. This “detection Bessel filter” increases the SNR to 18.9
before threshold detection. The three types of detectors and
the settings of .. and f54p are described in detail by Schultze
and Draber (1993).

COMPARISON

In this section we compare the old Eq. 4 and the new Eq. 34
with the results from simulation and subsequent detection.
We have selected three k,c/k., ratios (dashed lines in Fig. 2)
for the presentation of the results: k,./k., = 4, 1, 0.25.
Fig. 3 A shows the results for the fitted time constant 7,
of open events if k,./k., = 4. Open events are then 4 times
shorter than closed events; therefore, predominantly open
events are missed. This has great consequences on 7, but not
on T7,. The time constant 7, in Fig. 3 A, fitted to the open-time
histogram, is less affected by missed events, because missed
closed events are rare. To illustrate these arguments, we give
the dotted line in Fig. 3 which stands for the inverse 1/k,,
the situation without having any missed events. The distance
between the dotted line and the results (J, O, and A) from
simulation and detection is the effect of missed events. The
results from the three different types of detectors, Hinkley
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FIGURE 3 Comparison of 7, given by the new theory (solid line, Eqgs. 34
and 35), the old theory (dashed line, Eq. 4), and the 1/k, relationship (dotted
line) with those obtained from the simulated time series by fitting the open-
time histograms. The simulated time series were analyzed with three dif-
ferent detectors: Hinkley detector (LJ), higher order Hinkley detector (O),
and Bessel filter (A). Since the time series were 2,000,000 samples long,
the accuracy of the fitted time constants was very high. Repeated simulation
and detection confirmed the results with less than 1% error. (A) koc = 4 * koo;
(B) koc = keo; (C) koe = keof4.

(@, higher order Hinkley (O), and Bessel (A), are nearly
identical. In the range k. < f,.s ! the differences between the
old theory (dashed line), the new theory (solid line), and the
numerical results (OJ, O, and A) are negligible. For faster
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gating koc > s !, however, the old theory (dashed line)
predicts a stronger effect than actually caused by missed
events. The new theory (solid line) is still in very good ac-
cordance with the results from all three detectors.

Fig. 3 B compares the theoretical and numerical results for
the symmetrical case k. = k.. Closed events are now missed
as often as open events. The effect of missed events, the
deviations of the numerical results ((J, O, and A) from the
dotted line, are greater than in Fig. 3 A. Also the differences
between the detection algorithms are more obvious. When
gating is very fast (koc = koo = 245 1), the first-order Hin-
kley detector (LJ) gives a longer time constant 7, than the
eighth-order Hinkley detector (O) and the eighth-order Bes-
sel filter (A). The better agreement between the new theo-
retical curve (solid line, Eq. 35) and the simulated experi-
mental results from the Hinkley detector is no surprise since
the derivation of the new theory is based on the first-order
Hinkley detector. Nevertheless, the differences between the
new theory (solid line) and the true results (J, O, and A) are
small and become obvious at very fast gating only. The old
theory (dashed line, Eq. 4) shows serious deviations already
at ko = koo = tes ' Note that both theoretical curves go
through minima, which play an important role for the ques-
tion of invertibility, discussed below. In both cases the de-
viations between theory and simulation appear on the right-
hand side of the respective minimum.

In Fig. 3 C the effect of missed events is very strong. The
situation k.. = 0.25 k., is complementary to Fig. 3 A. Now
the open events are rarely missed and thus 7, is predomi-
nantly affected by the missed closed events. All theoretical
and simulated results show a minimum near 0.25 t,;"!. At
greater k. the apparent lifetime in the open state steeply
increases because of more and more missed closed events.
Interestingly, in Fig. 3 C the Bessel filter (A) produces more
missed events than the other detectors which is in contrast to
the results of Fig. 3 B. This is plausible because in the sym-
metrical case the mean of the Bessel-filtered current signal
is exactly the half-amplitude threshold; therefore, the thresh-
old is often crossed due to a short event which makes the
Bessel filter also very sensitive to disturbances. In Fig. 3 C,
however, the mean value is close to the open level, and short
events are not detected so easily.

In all three cases that are shown in Fig. 3, the new theory
(Eqgs. 34 and 35) is in much better agreement with the ex-
perimental results from the simulations. Especially in Fig. 3
B with equally short open and closed events the new equation
gives much a better prediction of the simulated experimental
results.

DISCUSSION
Modeling a detector

The crucial point in the derivation of a formula for missed-
events correction is to find an adequate model for the de-
tector. To say that all events shorter than ¢, are not detected
is a very simple model. It leads to relatively simple analytic
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equations (see Eq. 4), but it is only adequate if the probability
of two or more subsequent short events is negligible.

In this paper we present a more complex model for the
detector. The continuous-time first-order Hinkley detector
offers the possibility of modeling the “memory” of a detec-
tor, represented here by the test variable g. This feature al-
lows the introduction of the effect of multiple short events.
Thus, the dominant error of the simple model is removed.
The introduction of a memory is the important new feature.
Obviously, the special type of the memory is of less impor-
tance. This explains that Eq. 34 also holds for other detectors,
as shown in Fig. 3.

What is neglected?

It has to be admitted, however, that there are still four minor
sources of difference between the model of the detector used
in the theory and a real detector used for the analysis of real
or simulated patch-clamp data.

1. One normally uses a higher order detector, either the
Bessel filter combined with half-amplitude threshold analy-
sis or the higher order Hinkley detector (Schultze and Draber,
1993). Using the common eighth-order versions of these al-
gorithms for a theoretical treatment leads to an eight-
dimensional state-space instead of the one-dimensional one
in Fig. 1 C. The partial differential equations would become
much more complicated and are no longer expected to be
solved analytically. Fig. 3, however, shows that the higher
order Hinkley detector and the Bessel filter give results very
similar to the Hinkley detector. The new Eq. 34 also fits the
higher order results satisfactorily.

2. The detectors are discrete-time versions because they
have to be applied to sampled data. Any formula taking into
account the discrete nature of the signals will have the draw-
back that the sampling frequency will enter the equation as
an additional parameter. Such an algorithm could not simply
replace the old Eq. 4.

3. The noise is expected to have an influence on the re-
sults. White noise could be introduced into Egs. 18 to 22 by
additional terms of second-order derivatives. The introduc-
tion of the typically colored noise spectrum would, however,
lead to a higher dimension of the state space. We have com-
pared results from simulations with noise and without noise
at the same ¢, setting and found that the differences are small
compared to the errors mentioned before. This is due to the
noise-dependent choice of ¢,.;. The noise is already indirectly
taken into account via #.... The new method remains valid at
any amplitude of noise provided ¢, is chosen long enough
according to Eq. 1.

4. The Hinkley detector and the higher order Hinkley de-
tector estimate the jump moment to be the last moment before
jump detection with g = 0. The estimated jump lies before
its detection. Our theoretical derivation deals directly with
the moments of jump detection instead. The behavior of the
detector is modeled correctly, but the estimated event lengths
are a little different. Simulations have shown that the effect
of this difference on the time constants is small.
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The list of neglected details serves to clarify our theoretical
approach. Their consequences on numerical results are very
small as can be seen in Fig. 3.

Invertibility

A very important issue for practical application is the ques-
tion of invertibility because the time constants are known
from the experiment and the rate constants have to be de-
termined. In Fig. 3 B or Eq. 35 with symmetrical rate con-
stants, the problem is reduced to one dimension. Because of
the minimum at k = 1/¢,., the whole function (%, t..) is not
invertible. Given a 1 > 3t,.,, there are always two solutions:
a slow solution on the left branch and a fast solution on the
right branch. From a practical point of view, it is, however,
very unlikely to expect the true solution on the fast branch.
In such a situation the high frequency of gating would lead
to a noisy signal fluctuating around a mean value between the
true levels of the open and closed channel (Heinemann and
Sigworth, 1988). Fast gating looks like a reduction of the
single-channel current (Draber et al., 1991). This effect
would neither allow the identification of the true open level
nor, as a consequence, the construction of dwell-time his-
tograms. In other words, the existence of a dwell-time his-
togram makes it highly probable that the correct solution is
on the slow branch. Fig. 4 shows the regions in which the
“slow solution” allows inversion, now generalized to the
two-dimensional case of asymmetric rate constants. The
wider range of invertibility in the k., k.,-plane as well as in
the 7,, 7.-plane makes the new theory more convenient for
practical use.

Aspects of application

For the analysis of single-channel data, we recommend the
following approximate analysis procedure. After the con-
struction of dwell-time histograms, a sum of exponentials is
fitted to the range above 2t,.,, because deviations from the
exponential shape caused by dwell-time omission only affect
the range between 0 and 2¢,.; (Blatz and Magleby, 1986). The
number of required exponentials is a lower boundary for the
number of open and closed states in the gating scheme. In

A, B . '
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FIGURE 4 Invertibility regions of the new theory (solid line, Egs. 34 and
35) and the old theory (dashed line, Eq. 4). (A) in the k., k.,-plane. (B) in
the 7,, 7-plane. The new theory is invertible within a wider range.
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many practical cases the following prerequisites are fulfilled.
Brief events are only produced via the fastest O — C gateway
in the gating scheme. These two states provide the shortest
time constants in the dwell-time histogram. The exchange
between this flickering pair of states and the other long-living
states in the scheme is slow compared to the time resolution.
The probability of missing a burst, a sojourn in the flickering
pair of states, is negligible, and the probability of missing a
dwell-time in the other long-living states is negligible, too.
If all these prerequisites are fulfilled, it is sufficient to correct
the transitions between the two flickering states, as if they
were a two-state model. Select the shortest open-time con-
stant 7, and the shortest closed-time constant 7. and, by nu-
merical inversion of Eq. 34, determine the rate constants k.
and k., between the states O and C of the flickering gateway.
The remaining slow time constants can then be treated con-
ventionally, without missed-events correction. In a previous
study we used this approach to analyze the effects of coop-
erative mode shifting on the rate constants (Draber et al.,
1993).

The recommendations in this section show how to apply
our new method of missed-events correction to many prac-
tical relevant cases. However, we must admit that the theory
based on the fixed dead time approach is more elaborate, and
solutions are available for any kind of gating model. If the
model studied is very complex and the gating is not too fast
(probability of two subsequent brief events less than 10%),
the fixed dead time approach may be preferable for now.
If, however, the gating is fast (rate constants greater than
0.5 - t,es7Y), the errors of the fixed dead time theory are no
longer tolerable and our new Eq. 34 should be used.

In all cases, whatever methods have been applied, check-
ing the result by a final simulation is useful. A single simu-
lation takes considerably less time than fitting by repeated
simulations (Magleby and Weiss, 1990). Comparing meas-
ured and simulated dwell-time histograms (Draber et al.,
1993) makes sure that nothing essential has been neglected.

Future extensions of the theory

This paper gives principal analytical equations for a realistic
approach to missed-events correction. To make the appli-
cation to complex models with many states more straight-
forward, it seems to be a promising approach to study the
combined Markov model (channel and detector) in the
framework of the semi-Markov theory provided by Ball et al.
(1993). In addition to complex gating schemes, it should be
possible to account for noise (item 2 above) and for the dis-
tinction between jump detection and jump time estimation
(item 4 above).

CONCLUSION

When a general equation for missed events which works
independent of the type of detector and of the kind and
strength of the noise is required, the new Eq. 34 for missed
events is superior to the old one (Eq. 4). It is in much better
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agreement with the simulated results (Fig. 3), and it has a
wider range of invertibility (Fig. 4). Since the number of
parameters is exactly the same we do not expect any prob-
lems when replacing the relationship between 7 and k by our
new one in the software for patch-clamp analysis.

We thank Prof. Dr. U.-P. Hansen, Dipl.-Phys. Christian Ruge, and Mr. Thilo
RieBner for helpful discussions.
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