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Major developments in the neural stem cell (NSC) field in recent years provide new insights into the nature of
the NSC niche. In this perspective, we integrate recent anatomical data on the organization of the two main
neurogenic niches in the adult brain, the ventricular-subventricular zone (V-SVZ) and the subgranular zone
(SGZ), with signaling pathways that control the behavior of NSCs. NSCs in the adult brain stretch into phys-
iologically distinct compartments of their niche. We propose how adult NSCs’ morphology may allow these
cells to integrate multiple signaling pathways arising from unique locations of their niche.
The fascinating process of developmental tissue growth and

morphogenesis is orchestrated by stem cells that contribute to

organ maintenance (tissue homeostasis) and repair in the adult

organism. For many years, the brain, with its extraordinary struc-

ture, connectivity, complexity, and diversity of cell types, was

considered an exception; neural stem cells (NSCs) were thought

to be present only during development when this amazing organ

is put together. This view began to change with the discovery of

adult neurogenesis (for historical perspective, see [Altman, 2011;

Nottebohm, 2011]), followed by the identification of cells that

in vitro (Reynolds and Weiss, 1992) and in vivo (Doetsch et al.,

1999; Seri et al., 2001, 2004) can function as NSCs generating

neurons, glial cells, or both. These discoveries led to a shift in

concepts, not only about the potential of the postnatal brain to

engage in processes only thought possible in development,

but also about the nature of NSCs themselves.

In the adult mammalian brain, NSCs are retained in two

regions, the ventricular-subventricular zone (V-SVZ) and the sub-

granular zone (SGZ). The V-SVZ, in the walls of the lateral ventri-

cles (Figure 1), contains a subpopulation of cells with astroglial

properties (B1 cells) that function as NSCs, giving rise to interme-

diate progenitors (IPCs or transient amplifying progenitors, also

known as C cells), which in rodents predominantly generate

neurons destined for the olfactory bulb (OB) (for review see

[Kriegstein and Alvarez-Buylla, 2009]). In the SGZ at the interface

of the hilus and dentate gyrus (Figure 2), NSCs also correspond

to astroglial cells, which have a radial process that traverses the

granule cell layer. These cells, known by multiple names—radial

astrocytes (Seri et al., 2001, 2004), type-1 progenitors (Filippov

et al., 2003), or radial glia-like cells (Bonaguidi et al., 2011)—

generate new dentate granule neurons via IPC1 and IPC2 (also

known as type 2a and 2b cells, respectively) (for review see [Bo-

naguidi et al., 2012; Zhao et al., 2008]). In both germinal zones,

NSCs and IPCs correspond to the primary and secondary

progenitors, respectively. Many studies analyzing proliferation

do not distinguish between primary or secondary progenitors,

and in these cases we will refer to both collectively as progenitor

cells.

The adult V-SVZ NSCs in the walls of the lateral ventricles

differ significantly in location and structure from those in the adult

hippocampal SGZ. Unlike B1 cells in the V-SVZ, which like many

embryonic neural stem cells lie next to the ventricle and have
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processes that contact the cerebrospinal fluid (CSF), dentate

radial astrocytes are found deeper in the brain parenchyma,

away from the walls of the ventricle and surrounded by neurons

and other glial cells. Yet, B1 cells and radial astrocytes share

some key features. Both express astroglial markers and have

ultrastructural characteristics of astrocytes (Kriegstein and

Alvarez-Buylla, 2009). Most importantly, they both have long

processes that allow them to reach into compartments of the

niche far away from where the cell bodies reside (Figures 1

and 2). Through some of these processes, NSCs make contact

with the vasculature, which in both germinal regions plays key

roles in their regulation. Therefore, NSCs are in contact with

unique compartments of their niche, and this may determine

whether they remain quiescent or are induced to proliferate.

A large number of studies during the last decade provide

important new insights about the nature of adult NSCs and

IPCs and about the microenvironment that surrounds them.

In this perspective, we aim to connect the recent literature pro-

viding insights into the anatomy of the adult neurogenic niches

with the emerging knowledge of factors that control the behavior

of NSCs (Table 1). Organization of adult V-SVZ and SGZ NSCs

into distinct domains may ultimately provide an integrative

perspective on how adult NSCs are regulated (Figures 1 and 2).

Domains of Adult Ventricular-Subventricular Zone B1
Cells
V-SVZ B1 cells are immersed in a remarkably diverse microenvi-

ronment. The highly specialized architecture within this niche

implicates both cell-cell interactions and soluble factors as

important regulators of NSC behavior. B1 cells retain the basic

apical-basal polarity of their predecessors, radial glia. Similar

to radial glia and neuroepithelial cells, most, if not all, B1 cells

contact the ventricle through small, specialized apical processes

that contain a single primary cilium (Mirzadeh et al., 2008; Shen

et al., 2008). They also have long basal processes with special-

ized endings contacting blood vessels (BV). Therefore, adult

B1 cells are also part of a VZ and not only a SVZ, hence the

new descriptor: V-SVZ (Ihrie and Alvarez-Buylla, 2011). A VZ is

retained in many, if not all, adult vertebrates including birds,

reptiles, amphibians, and fish (Alvarez-Buylla et al., 1998; Byrd

and Brunjes, 2001; Chapouton et al., 2007; Garcı́a-Verdugo

et al., 2002; Goldman and Nottebohm, 1983; Polenov and
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Figure 1. Schematic of the Different Domains of B1
Cells within the Adult V-SVZ
The upper left panel shows a frontal cross-section of the
adult mouse brain showing the location of the V-SVZ,
where neurogenesis in walls of the lateral ventricles (V)
continues throughout life.
The lower panel shows cellular composition of the adult
V-SVZ niche and domains of B1 cells. NSCs correspond to
type B1 cells (blue). B1 cells are surrounded by multi-
ciliated ependymal cells (E) forming pinwheel-like struc-
tures on the ventricular surface. B1 cells give rise to IPCs
(or C cells, green), which correspond to transit-amplifying
cells that divide to generate neuroblasts (type A cells, red).
B1 cells retain epithelial properties, with a thin apical
process (containing a primary cilium) that contacts the
lateral ventricle (V) and a long basal process ending on
blood vessels (BV, purple). Therefore, B1 cells can be
subdivided into three domains. Domain I (proximal or
apical, dark blue) contains the primary cilium and is in
direct contact with the CSF; within this domain, B1 cells
can access soluble factors within the CSF and signaling
molecules from neighboring ependymal cells. Domain II
(intermediate, medium blue) is in close proximity to IPCs,
neuroblasts, neuronal terminals, and other supporting
cells; cell-cell interactions between B1 cells and their
progeny could occur within this compartment. Domain III
(distal, light blue) comprises a basal process ending in
a specialized end-foot that contacts blood vessels; blood-
borne factors and endothelial-derived factors may act on
B1 cells in this domain.
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Chetverukhin, 1993). To better understand how signals within

the V-SVZ may be compartmentalized, we propose that V-SVZ

B1 cells can be subdivided into three domains: proximal (apical,

I), intermediate (II), and distal (basal, III) (Figure 1).

APeriscope in the Ventricle—B1 Cells’ Proximal Domain

The proximal domain of B1 cells is in direct contact with the

ventricle. When viewed en face, from the ventricular side, the

rodent V-SVZ is organized as pinwheels; the small apical

endings of B1 cells in the center are surrounded by a rosette of

ependymal cells with large apical surfaces (Figure 1). Intercellular

junctions are found between B1 cells, at B1-ependymal bound-

aries, and between ependymal cells, and each type has unique

ultrastructural characteristics (Mirzadeh et al., 2008). Expression

of ankyrin3, an adaptor protein known to regulate the attach-

ment of membrane proteins (including N-cadherin) to the cyto-

skeleton, is specifically found in the apical-lateral borders of

ependymal cells, but not in B1 cells. Its expression is controlled

by the ependymal-specific transcription factor FOXJ1. Inactiva-

tion of FoxJ1 in the postnatal brain results in decreased ankyrin3

and reduced neurogenesis (Paez-Gonzalez et al., 2011).

Ependymal cells also help maintain themolecular composition

of the apical compartment by propelling the CSF with their

multiple motile cilia (Sawamoto et al., 2006). B1 cells, with their

small apical surface, are in direct contact with the CSF, which

contains soluble factors that couldmodulate NSCbehavior (Leh-

tinen et al., 2011; Zappaterra et al., 2007). Insulin-like growth

factor 2 (IGF2) in the adult CSF has been shown to regulate

V-SVZ progenitor proliferation (Lehtinen et al., 2011). Bone

morphogenic proteins (BMPs), Wnts, Sonic hedgehog (SHH),

and retinoic acid are also present in the CSF and may modulate

the behavior of B1 cells (Huang et al., 2010; Lehtinen et al., 2011).
Ependymal cells secrete the BMP antagonist noggin, which

promotes V-SVZ progenitor proliferation and neuroblast genera-

tion in vitro and in vivo (Lim et al., 2000; Peretto et al., 2004).

Consistently, ependymal expression of LRP2, a receptor that

sequesters BMP4, is required for progenitor proliferation and

neurogenesis in vivo (Gajera et al., 2010). Yet, there is other

evidence indicating that inhibition of BMPs increases oligoden-

drogenesis at the expense of neurogenesis (Colak et al., 2008)

and might be involved in increased glial differentiation upon

demyelination (Jablonska et al., 2010).

The proximal domain of B1 cells also harbors a primary cilium

that may directly integrate signaling of CSF factors, although

such integration remains to be demonstrated. Disruption

of a gene encoding for a protein required for cilia assembly—

intraflagellar transport 88 (Ift88)— in glutamate aspartate trans-

porter (GLAST)-positive cells results in decreased numbers of

adult bromodeoxyuridine (BrdU)-label retaining cells (Beckervor-

dersandforth et al., 2010). In contrast, another recent study

suggests that depletion of Ift20 in cells expressing glial fibrillary

acidic protein (GFAP) at early postnatal stages had only minor

effects on neurogenesis in the adult V-SVZ (Amador-Arjona

et al., 2011). The primary cilium is essential for transduction of

Shh signaling during neural tube development (Wong and Reiter,

2008). It is therefore possible that this organelle may be required

for the transduction of Shh signaling observed in specific subre-

gions of the V-SVZ (Ihrie et al., 2011).

Necking with the Neighbors—B1 Cells’ Intermediate

Domain

Sustained neurogenesis throughout life requires a tight balance

between NSC proliferation and the number of differentiated

progeny produced. It has been hypothesized that feedback
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 699



Figure 2. Schematic of the Different Domains of
SGZ Radial Astrocytes
The upper panel shows a frontal cross-section of the adult
mouse brain showing the hippocampal formation (left).
The insert shows a higher magnification indicating the
location of the dentate gyrus (right).
The lower panel shows cellular composition of the adult
dentate gyrusanddomainsofSGZ radial astrocytes.Radial
astrocytes (RA, also known as type 1 cells, blue) give rise to
IPCs (green), which progressively (via IPC1 and IPC2 [type
2a and type 2b cells]) differentiate into immature granule
cells (IGCs [type 3 cells], red). Mature granule cells (GCs,
brown) send an axon parallel to the SGZ into the hilus,
whereas their dendrites branch into the molecular layer
(ML). Radial astrocytes are polarized cells with their cell
body in the SGZ, a long main shaft that traverses through
the granule cell layer (GCL) and then branches diffusely in
the inner molecular layer (IML). Here we subdivide radial
astrocytes into three domains. Domain I (proximal, dark
blue) faces the hilus, harbors a primary cilium, and contacts
with blood vessels (BV, purple) and, through lateral
processes, neighboring radial astrocytes. Factors derived
from blood, endothelial cells, and neighboring radial
astrocytes act on NSCs within this domain. Domain II
(intermediate, medium blue) contains the cell body and the
main shaft. This part of the cell interacts closely with IPCs
andGCs; this domain allow specific cell-cell interactions of
NSCs with their progeny and detection of local neural
activity andsignaling fromGCs.Domain III (distal, light blue)
contacts other glial cells, axons, and synaptic terminals in
the IML; NSCs may detect levels of neural activity from
Mossy cells and other neurons within this compartment.
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mechanisms must exist to inform NSCs of the number of new

neurons already generated. The intermediate domain of B1 cells

is in intimate contact with IPCs and neuroblasts, perhaps allow-

ing direct feedback from progeny to NSCs. Canonical Notch

signaling is highly active in V-SVZ NSCs and regulates their

maintenance (Imayoshi et al., 2010). Conditional depletion

of the downstream effector, recombining binding protein

suppressor of hairless (RbpJk), in adult nestin+ cells leads to

a transient increase in IPCs and newborn OB neurons followed

by a drastic reduction in NSC numbers that ultimately results in

reduced neurogenesis. Thus, Notch signaling might maintain

B1 cells by inhibiting the production of IPCs. IPCs express

high levels of ASCL1 (MASH1), which is repressed by HES1,

a downstream effector of Notch signaling. ASCL1 in turn is

known to promote the expression of Notch ligands (Kopan and

Ilagan, 2009), suggesting a possible feedback mechanism via

lateral inhibition between IPCs and NSCs by direct cell-cell

contact. Feedback mechanisms may also occur among NSCs

as shown in zebrafish (Chapouton et al., 2010). In this vertebrate

model, expression of the Notch ligand DeltaA in dividing NSCs,

activates Notch in neighboring NSCs maintaining quiescence.

Although it is unclear how Notch signaling activity is regulated
700 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
in the murine V-SVZ, Notch ligands are ex-

pressed throughout the V-SVZ and Delta1 and

Jagged1 expression has been observed in

IPCs and neuroblasts (Aguirre et al., 2010; Irvin

et al., 2004). This is in agreement with earlier

observations in which ablation of IPCs and neu-

roblasts by the antimitotic drug AraC activates

NSCs that leads to V-SVZ regeneration

(Doetsch et al., 1999). On the other hand, it
has been suggested that increased numbers of IPCs due to

enhanced epidermal growth factor receptor (EGFR) signaling

may suppress Notch signaling in NSCs, although the exact

mechanism remains unclear (Aguirre et al., 2010). During devel-

opment, Notch signaling oscillates during interkinetic nuclear

migration of radial glia (Shimojo et al., 2008). It is unknown

whether Notch signaling oscillates in the adult V-SVZ during

cell-cycle progression. However, it has been shown that mitotic

B1 cells tend to be closer to the ventricular surface (Mirzadeh

et al., 2008). Whether changes in the position of B1 cells’ nuclei

are associated with different phases of the cell cycle remains to

be determined (Shen et al., 2008; Tavazoie et al., 2008).

Neurotransmitters in the V-SVZ also appear to regulate NSC

behavior, and this regulation is likely to occur in the intermediate

domain where newly generated neuroblasts closely interact

with both of their predecessors, B1 cells and IPCs. Neuroblasts

spontaneously release the neurotransmitter gamma-aminobuty-

ric acid (GABA) and induce depolarization of progenitors by

activation of functional GABAA-receptors. This, in turn, inhibits

progenitor cell-cycle progression and neuronal production via

epigenetic mechanisms that involve phosphorylation of H2AX

(Fernando et al., 2011; Liu et al., 2005). The diazepam binding



Table 1. Summary of Factors Involved in the Regulation of Progenitor Cell Behavior and Putative Domains Where They May Act

B1 cell domain Factor Effect on progenitor cells References

I. Proximal (apical) Igf2 Proliferation [ Lehtinen et al. (2011)

Noggin/LRP2 Proliferation [ Lim et al. (2000), Peretto et al. (2004),

Gajera et al. (2010)

Noggin/Chordin Oligodendrogenesis [ Colak et al. (2008), Jablonska et al. (2010)

Primary cilium Proliferation [ Amador-Arjona et al. (2011),

Beckervordersandforth et al. (2010)

Shh Ventral specification Ihrie et al. (2011)

II. Intermediate Notch Maintenance Imayoshi et al. (2010), Aguirre et al. (2010),

Chapouton et al. (2010)

GABA Proliferation Y Liu et al. (2005), Fernando et al. (2011)

DBI Proliferation [ Alfonso et al. (2012)

Dopamine Proliferation [ Höglinger et al. (2004),

O’Keeffe et al. (2009), Kim et al. (2010)

Serotonin Proliferation/Neurogenesis [ Banasr et al. (2004)

III. Distal (basal) SDF1 Recruitment to vasculature Shen et al. (2008)

PEDF Proliferation [ Ramı́rez-Castillejo et al. (2006),

Andreu-Agulló et al. (2009)

BTC Proliferation/Neurogenesis [ Gómez-Gaviro et al. (2012)

Radial astrocyte domain Factor Effect on progenitor cells References

I. Proximal VEGF Proliferation/Neurogenesis [ Licht et al. (2011), Cao et al. (2004)

Primary cilium Proliferation [ Amador-Arjona et al. (2011)

Maintenance Breunig et al. (2008), Han et al. (2008)

II. Intermediate Notch Maintenance Lugert et al. (2010), Ables et al. (2010),

Ehm et al. (2010)

Noggin/FXR2 Proliferation [ Bonaguidi et al. (2008), Guo et al. (2011)

BMPs Quiescence Mira et al. (2010)

Long-term potentiation Proliferation/Neurogenesis [ Bruel-Jungerman et al. (2006)

Seizures Proliferation/Neurogenesis [ Parent et al. (1997), Ma et al. (2009)

III. Distal GABA Proliferation Y Differentiation [ Wang et al. (2005), Tozuka et al. (2005)

Glutamate/NMDAR Differentiation [ Deisseroth et al. (2004)

This table summarizes some of the known factors that affect progenitor behavior, although formany factors it is still unclear whether they act directly on

NSCs, IPCs, or both. We here suggest possible sites of action within the three proposed putative domains of B1 cells (Figure 1) and radial astrocytes

(Figure 2), the NSCs of V-SVZ and SGZ, respectively.

The upper half of the table lists factors that may act on V-SVZ B1 cells. Domain I shows factors released from ependymal cells and present in the CSF.

Domain II shows signaling betweenB1 cells and their progeny or neuronal terminals from other parts of the brain. Domain III shows blood-borne factors

and those released from endothelial cells.

The lower half of the table lists factors that may act on SGZ radial astrocytes. Domain I shows vascular-derived factors and signaling acting through the

primary cilium. Domain II shows factors that could facilitate interaction between radial astrocytes and surrounding cells. Domain III shows neuronal

input within the IML.
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inhibitor protein (DBI) is secreted into the extracellular space by

B1 cells and IPCs, but not neuroblasts, and competes with

GABA for binding to its receptor. This leads to decreased inward

Cl� currents resulting in increased proliferation of the progenitor

population (Alfonso et al., 2012).

V-SVZ progenitors also receive inputs from nonneurogenic

regions of the brain. The neurotransmitter dopamine is released

into the V-SVZ from terminals of neuronal projections from the

substantia nigra. Activation of dopamine D2-like receptors on

IPCs increases their proliferation via an EGF-dependent mecha-

nism (Höglinger et al., 2004; O’Keeffe et al., 2009). Dopamine

may also induce IPC proliferation and OB neurogenesis via D3

receptors (Kim et al., 2010). In addition, serotonin release from
raphe nuclei neurons into the V-SVZ has been shown to posi-

tively modulate neurogenesis, although it remains to be deter-

mined whether this effect is direct (Banasr et al., 2004).

Stretching Out to the Vasculature—B1 Cells’ Distal

Domain

An extensive vascular plexus runs parallel to the V-SVZ. A

specialized end-foot in the basal process conforming to the

distal domain of B1 cells (Figure 1) allows these NSCs to interact

closely with endothelial cells (ECs). Indeed, ECs, and possibly

factors derived from the circulation, support proliferation and

self-renewal of V-SVZ progenitors in vitro (Shen et al., 2004).

Clusters of dividing B1 cells and IPCs are associated with BVs

at regions where the blood-brain barrier appears to be leaky
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 701
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(Tavazoie et al., 2008). Blood-derived factors may directly

access B1 cells and IPCs and regulate their proliferation. The

chemokine SDF1 is expressed by endothelial and ependymal

cells forming a gradient within the V-SVZ (Kokovay et al.,

2010). High levels of SDF1 secreted by endothelial cells induce

the recruitment of activated B1 cells and IPCs by chemotaxis

into the vascular plexus. This effect is mediated by the induction

of a6b1-integrin expression in these cell populations. Blockage

of a6-integrins in progenitor cells results in the loss of adhesion

to the vasculature and proliferation defects in vivo. Interestingly,

the transition of IPCs into neuroblasts is accompanied by

a decrease in the expression of b1-integrin, enabling the differ-

entiating progeny to migrate away from their niche.

Pigment epithelium-derived factor (PEDF) is also secreted by

endothelial and ependymal cells in the V-SVZ. PEDF infusion

into the lateral ventricles results in a significant increase in the

number of BrdU-label retaining cells and in the number of

dividing GFAP+ cells (Ramı́rez-Castillejo et al., 2006). PEDF inter-

acts synergistically with the Notch pathway to regulate self-

renewal in vitro by increasing EGFR expression (Andreu-Agulló

et al., 2009). More recently, endothelial-derived betacellulin

(BTC), an EGF-like growth factor, has been shown to stimulate

progenitor proliferation in vitro. BTC infusion in vivo induces

a significant increase in V-SVZ proliferation and neurogenesis

(Gómez-Gaviro et al., 2012). Interestingly, the effects of BTC

are different from those of EGF, which like BTC induces a burst

in progenitor proliferation but results in reduced neurogenesis

and increased oligodendrogenesis (Doetsch et al., 2002; Gonza-

lez-Perez et al., 2009; Kuhn et al., 1997). This could be explained

in part by the observation that BTC can bind and activate

ErbB-4 and EGFR (ErbB-1) receptors present in neuroblasts

and progenitor cells, respectively, whereas EGF mostly acts on

IPCs. Notably, V-SVZ NSCs fail to regenerate IPCs and neuro-

blasts in Btc� null mice following antimitotic treatment with

AraC (Gómez-Gaviro et al., 2012).

Taken together, the striking morphology of B1 cells allows

them to interact with multiple environments. The proximal

domain allows B1 cells with their apical surface, including the

primary cilium, to receive signals from the CSF and from neigh-

boring ependymal cells. The intermediate domain is likely a site

for feedback signaling with IPCs and neuroblasts. B1 cells

further access local (endothelial-derived) but also distant

(blood-derived) secreted factors with their distal domain.

However, some signaling pathways may function in multiple

domains of B1 cells. For example, it is likely that Notch signaling,

in addition to its function in the intermediate domain mediating

interaction of IPCs and NSCs, also plays an important role in

the proximal domain of these primary progenitors (e.g., between

B1 cells and ependymal cells). It will be interesting to determine

whether the response of NSCs is tuned to the domain, to the

signaling pathway, or to both. Real-time imaging of B1 cells

may allow future studies to monitor responses within different

domains of NSCs and provide a more precise context under

which the different domains contribute to specific NSC behavior.

Domains of Adult Subgranular Zone Radial Astrocytes
NSCs in the hippocampal SGZ, unlike those in the V-SVZ, are not

in contact with the ventricular system. Nevertheless, radial astro-

cytes are regularly arrayed in the SGZ and along the dentate
702 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
gyrus and are highly polarized, similar to the apical-basal organi-

zation observed in radial glia and B1 cells (Kempermann et al.,

2003; Seri et al., 2001, 2004). Radial astrocytes also span at least

three putative domains. We define the proximal domain as the

side of radial astrocytes that faces the hilus and includes

contacts with blood vessels, a primary cilium, and lateral

processes that frequently contact other radial astrocytes. The

intermediate domain includes the cell body and the main shaft

through the granule cell layer, where the cells have thin append-

ages intercalated among mature granule neurons. The distal

domain is highly branched and contacts neuronal processes,

synapses, and other glial cells in the inner molecular layer. Radial

astrocytesmay contact blood vessels in multiple compartments,

but interactions with the vasculature have been only studied in

their proximal domain (Figure 2).

Snooping into the Hilus—Radial Astrocytes’ Proximal

Domain

The SGZ is intimately associated with a rich bed of endothelial

cells. Interestingly, active angiogenesis and vascular remodeling

occurs in parallel with neurogenesis (Palmer et al., 2000). This is

in sharp contrast to the V-SVZ, where endothelial cell division is

rare or undetectable (Shen et al., 2008; Tavazoie et al., 2008).

Increased angiogenesis is associated with expression of the

vascular endothelial growth factor (VEGF), which is also associ-

ated with increased progenitor proliferation and neurogenesis

(Cao et al., 2004; Licht et al., 2011). However, whether VEGF

acts directly on radial astrocytes remains unknown. Notably,

physical exercise, a paradigm that induces proliferation of

SOX2+ radial astrocytes (Suh et al., 2007), increases VEGF

expression (Cao et al., 2004). The vasculature also secretes

IGF1 and brain-derived neurotrophic factor (BDNF), which

promote proliferation and differentiation of progenitor cells,

respectively (Chen et al., 2005; Llorens-Martı́n et al., 2009).

The proximal domain of radial astrocytes also harbors

a primary cilium, which has been shown to be essential for Shh

signaling. Conditional deletion of Ift20 in GFAP+ radial astrocytes

results in a significant decrease in SGZ IPC proliferation and

a concomitant impairment in spatial learning (Amador-Arjona

et al., 2011). Notably, disruption of ciliogenesis during develop-

ment results in decreased dentate gyrus Shh signaling and

almost a complete absence of radial astrocytes during postnatal

life (Breunig et al., 2008; Han et al., 2008). Similar defects in the

establishment of radial astrocytes occur upon mutation of the

Smoothened receptor, which is essential for Shh signaling

(Han et al., 2008). These results indicate that Shh signaling

through the primary cilium is essential for the transition from

embryonic to adult NSCs in the SGZ.

Shoulder to Shoulder with the Progeny—Radial

Astrocytes’ Intermediate Domain

The intermediate domain of SGZ radial astrocytes, which

contains most of the cell body and the main shaft of the radial

astrocyte process, contacts IPCs, populations of mature granule

neurons, and possibly other neuronal cell types. The majority of

IPCs are found next to radial astrocytes’ cell bodies (Kemper-

mann et al., 2003; Seri et al., 2004), in what we here define as

part of the intermediate domain. However, there is some

evidence that suggests that early IPCs (IPC1) are generated by

asymmetric division of the radial astrocytes with a horizontal

mitotic plane parallel to the SGZ (Encinas et al., 2011; Seri
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et al., 2004). Therefore, these initial IPCs may transiently interact

with the proximal domain. However, proliferating IPC1 cells are

observed in the intermediate domain suggesting that after they

are produced, they rapidly translocate to the intermediate

domain next to the radial astrocyte’s cell body. Recent work

using lineage-tracing experiments of Hes5-expressing NSCs

confirms that ASCL1+ IPC1 proliferate, but they apparently only

divide once before converting into IPC2 cells that no longer

express ASCL1 and have turned on the early neuronal marker

doublecortin (DCX) (Lugert et al., 2012). Interestingly, this study

suggests that further amplification of the lineage occurs by

division of the DCX+/TBR2+ IPC2 cells and not by IPC1, as previ-

ously thought.

The high expression of Hes5 (and also RBPJk) in radial astro-

cytes indicates active canonical Notch signaling in these NSCs

(Ehm et al., 2010; Lugert et al., 2010). IPCs in turn are thought

to express the Notch ligand Jagged-1 (Breunig et al., 2007;

Lavado et al., 2010). Maintenance of quiescence among radial

astrocytes might be controlled through a feedback mechanism

by Jagged-1/Notch. Consistently, conditional deletion of RbpJk

in adult GLAST+ SGZ radial astrocytes results in short-term

expansion of the IPC pool and reduction in the number of radial

astrocytes (Ehm et al., 2010). In contrast, conditional ablation

of Notch1 in nestin+ cells results in a strong reduction in the

number of radial astrocytes but without a transient increase in

IPCs (Ables et al., 2010). This difference might be explained by

compensatory effects of other Notch receptors or by noncanon-

ical Notch signaling. Notably, the expression of SOX2, a tran-

scription factor essential for maintenance of radial astrocytes

(Favaro et al., 2009), is regulated by Notch signaling via RBPJk,

which directly targets the Sox2 promoter (Ehm et al., 2010).

SOX2, in turn, inhibits Wnt-mediated activation of the neuronal

fate determinant NeuroD (Kuwabara et al., 2009), and it may

directly target Shh expression (Favaro et al., 2009). Thus, reduc-

tion in Notch signaling and SOX2 expression may be required for

the induction of proneural genes like Ascl1 and NeuroD to stim-

ulate the transition from radial astrocytes to IPCs.

Noggin is expressed in dentate gyrus granule cells, the hilus,

and SGZ radial astrocytes, and its expression is regulated in

a cell-autonomous manner by the RNA-binding protein FXR2

(Bonaguidi et al., 2008; Guo et al., 2011). Physical exercise

reduces BMP4 and increases noggin expression (Gobeske

et al., 2009), and overexpression of noggin increases the number

of dividing GFAP+ radial astrocytes (Bonaguidi et al., 2008). This

suggests that BMPs inhibit NSC proliferation. Another recent

study indicates that BMP controls NSC quiescence in the SGZ

(Mira et al., 2010). Nondividing radial SOX2+ cells show high

levels of activated SMAD1, a specificmediator of BMP signaling,

whereas dividing progenitors do not. Consistent with a role for

BMPs in NSC quiescence, noggin infusion results in an initial

increase in neuronal production and a concomitant reduction

of SOX2+ progenitors and neuronal production at later time

points. Conditional ablation of the receptor BmprIa or of

Smad4 also results in decreased quiescence among NSCs.

The shaft of radial astrocytes in the intermediate domain is

also intimately associated with mature granule neurons. Direct

contact or exchange of signals with neurons may contribute to

radial astrocyte regulation. It is possible that radial astrocytes

may be able to sense neighboring network activity associated
with the column of granule neurons surrounding their radial shaft,

possibly through neurotransmitter-mediated spillover or extra-

cellular potassium. Neuronal activity—induced for example by

learning and memory, or seizures (Inokuchi, 2011)—may directly

activate proliferation of NSCs in the dentate gyrus. Hippocampal

induction of long-term potentiation (LTP), a widely studied

mechanism associated with memory formation (Lynch, 2004),

results in increased SGZ proliferation and neuronal differentia-

tion (Bruel-Jungerman et al., 2006). General activation of granule

neurons following seizures results in increased SGZ neurogene-

sis, although the precise mechanisms of this effect remain

elusive (reviewed in [Kokaia, 2011]). One study suggests that

Shh signaling rapidly increases following electroconvulsive treat-

ment (ECT) and that it may be required for seizure-induced SGZ

proliferation (Banerjee et al., 2005). Interestingly, after ECT,

granule neurons transiently express high levels of the DNA repair

protein GADD45b, a process that requires NMDA-type gluta-

mate receptors (NMDARs) (Ma et al., 2009). Loss of Gadd45b

expression partially blocks ECT-induced SGZ progenitor prolif-

eration. This study also shows that Gadd45b induces the expres-

sion of genes known to modulate neurogenesis such as Bdnf

and fibroblast growth factor 1 (Fgf1) by DNA-demethylation at

promoter regions. Seizures result in nonphysiological high levels

of neuronal activity. Whether physiological levels of neuronal

firing, possibly in a localized manner, affect individual radial

astrocyte proliferation remains to be determined. Neuronal

activity may also exert effects on neurogenesis through the distal

or proximal domains of radial astrocytes.

Hanging on Wires—Radial Astrocytes’ Distal Domain

In addition to a shaft that contacts granule neurons, radial astro-

cytes have an elaborate and extensive set of thin branches and

lamellae in the inner molecular layer. Little is known about the

exchange of signals that take place here, but it would be

surprising for such an elaborate terminal arbor of the radial

process not to function in the regulation of these NSCs. The inner

molecular layer of the dentate gyrus receives GABAergic and

glutamatergic inputs from hilar interneurons and Mossy cells,

respectively (Förster et al., 2006).

Several studies have investigated the role of neurotransmitters

in the regulation of SGZ neurogenesis. There is evidence that

GABA promotes SGZ progenitor differentiation, but it remains

unknown whether GABAergic inputs have a direct effect on the

proliferation of SGZ progenitor cells, as shown for the V-SVZ.

GABA does not seem to stimulate radial astrocyte responses

directly, but it induces depolarization of IPCs resulting in

increased Ca2+ influx and enhanced NeuroD expression. This,

in turn, inhibits progenitor proliferation and promotes neuronal

differentiation (Tozuka et al., 2005; Wang et al., 2005). Electrical

stimulation of the perforant pathway activates granule cells and

GABAergic interneurons and directly induces inward GABAergic

currents in IPCs. GABAergic terminals, containing vesicular

GABA transporter (VGAT), are closely associated with IPCs (To-

zuka et al., 2005). Recent studies have shown that coreleasewith

SDF1 facilitates GABA transmission from local GABAergic

basket interneurons (Bhattacharyya et al., 2008; Kolodziej

et al., 2008). These findings suggest that SGZ progenitors

receive functional inputs from hippocampal GABAergic interneu-

rons that promote neuronal differentiation, but it remains

unknown whether this is localized uniquely to the distal domain.
Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc. 703
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Glutamate also induces depolarization of IPCs, inhibits

expression of Hes1 and Id2, and increases expression of

NeuroD (Deisseroth et al., 2004). This process is regulated by

voltage-gated Ca2+ channels and is mediated through NMDARs.

However, functional NMDARs are not detectable in SGZ progen-

itor cells in tissue slices (Tozuka et al., 2005). It will be important

to determine whether the response of radial astrocytes to gluta-

mate vary depending on the domains of these cells exposed to

this neurotransmitter.

In summary, the three domains of radial astrocytes span three

anatomical layers: the SGZ, the granule cell layer, and the inner

molecular layer. The proximal domain in the SGZ has a primary

cilium and interacts with the vasculature. Similarly to V-SVZ B1

cells, the intermediate domain of radial astrocytes directly inter-

acts with the progeny. The intermediate and distal domains,

spanning a long appendage and branches in the inner molecular

layer, may expose radial astrocytes to neuronal networks and

their level of activity. The domain organization of NSCs may

help explain how radial astrocytes within the dentate gyrusmight

be able to integrate local activity from granule neurons right next

to the primary shaft of these cells versusmorewidespread inputs

arising from parallel fibers in the inner molecular layer and the hi-

lus. There likely exists a local topographic organization to regu-

late neurogenesis at the level of individual radial astrocytes.

This remains an interesting question for future research.

Self-Renewal of Adult Neural Stem Cells and
Age-Related Changes
The above suggests that domains in NSCs are tuned to specific

compartments within their niche. In order to determine how

NSCs integrate this information, the behavior of these cells in vivo

needs to be understood. However, the patterns of proliferation of

adult NSCs remain unknown or are highly controversial. Self-

renewal is considered a defining property of stem cells and

important for their long-term retention in adults. Thus, a major

question is whether adult NSCs have this classical property of

somatic stem cells. NSCs were initially identified in vitro by their

ability to generate free-floating aggregates (neurospheres) in

response to growth factors (Weiss et al., 1996). So far, most

evidence for self-renewal is based on these in vitro assays. A

major limiting factor to study NSC behavior in vivo is the lack

of markers that exclusively identify these primary progenitors

(Kriegstein and Alvarez-Buylla, 2009). Thus, although BrdU-label

retaining experiments in vivo suggest the presence of cells with

stem cell characteristics (Bonaguidi et al., 2008; Chiasson et al.,

1999; Doetsch et al., 1999), self-renewal has not been directly

demonstrated in vivo in the V-SVZ, and this issue remains

controversial in the SGZ (Bonaguidi et al., 2011; Encinas et al.,

2011; Lugert et al., 2012).

Encinas and collaborators (Encinas et al., 2011) suggest that

SGZ NSCs do not self-renew but are consumed with age (the

‘‘disposable stem cell’’ hypothesis). In this scenario, activated

radial astrocytes undergo up to three sequential asymmetric

divisions that generate IPCs. The NSCs then terminally differen-

tiate into mature astrocytes. This study also suggests that IPCs

divide multiple times, which is in contrast to earlier estimations

of one to two rounds (Seri et al., 2004). Contrary to the dispos-

able stem cell hypothesis and the depletion of NSCs with time,

two other recent studies indicate that stable populations of radial
704 Cell Stem Cell 10, June 14, 2012 ª2012 Elsevier Inc.
astrocytes are maintained in the SGZ for extended periods of

time. Lugert et al. (2012) finds that a cohort of Hes5 expressing

NSCs, which contributes continually to neurogenesis over this

time, remains in the SGZ for up to 100 days, suggesting some

level of self-renewal. Contrary to the finding in Encinas et al.

(2011), lineage tracing of these Hes5+ NSCs does not reveal an

increase in the generation of mature astrocytes during this

period, and the stoichiometry of labeled NSCs, IPCs, and

neurons produced also suggests limited IPC amplification.

Bonaguidi et al. (2011) have followed the lineage of individual

nestin+ radial astrocytes in the SGZ and observed that a small

number of these NSCs self-renew symmetrically with a larger

population self-renewing asymmetrically. Some SGZ NSCs are

multipotent, generating both astrocytes and neurons, whereas

others are unipotent and generate only neurons or astrocytes,

therefore suggesting that SGZ NSCs are heterogeneous in their

behavior (Bonaguidi et al., 2011). This study also suggests that

SGZ IPCs divide up to five times before differentiating into young

neurons. Interestingly, asymmetrically dividing radial astrocytes

generate a highly proliferative IPC and a radial astrocyte, which,

in contrast to the disposable model, returns to a quiescent state

(Bonaguidi et al., 2011). Thus, the quiescent state of radial astro-

cytes may be reversible, with multiple cycles of activation and

quiescence. Interestingly, upon conditional Pten deletion, radial

astrocytes differentiate into postmitotic astrocytes after a tran-

sient increase in symmetric self-renewing divisions. Irrespective

of whether adult NSCs self-renew or are consumed, it is clear

that neurogenesis in the adult V-SVZ and SGZ decrease with

age (Conover and Shook, 2011; Jessberger and Gage, 2008),

and it will be interesting to see how this controversy resolves

to understand how the behavior of NSCs is regulated and

changes with aging.

Aging is associatedwith a decline in cognitive function, impair-

ments in learning and memory, and higher susceptibility to

neurodegenerative disorders, a process that is paralleled by

the reduction in SGZ neurogenesis (Jessberger and Gage,

2008). Interestingly, this decline may in part be due to changes

in factors present in the circulation (Villeda et al., 2011). In heter-

ochronic parabionts, where the vasculature of young and aged

mice is surgically joined, the aged milieu decreases neurogene-

sis in young adults, whereas the young milieu has some rejuve-

nating effects on the aged SGZ. The chemokine CCL-11 is

increased in the plasma and CSF of elderly humans and has

been suggested as one of the molecules that could decrease

SGZ proliferation. Wnt3, which is secreted from hippocampal

astrocytes and promotes neuronal differentiation by activation

of NeuroD and Dcx expression, decreases with age (Kuwabara

et al., 2009; Okamoto et al., 2011). Recent data further suggest

that the age-related decline in SGZ neurogenesis is due to tran-

sition of radial astrocytes into quiescence rather than a loss of

the stem cell population. In line with this, and contrary to the

depletion of NSCs during aging, physical exercise and seizures,

both known to promote neurogenesis in the young adult

hippocampus, can (partially) reverse age-induced changes

(Kronenberg et al., 2006; Lugert et al., 2010; Okamoto et al.,

2011). Thus, the quiescent state might remain reversible in the

aged SGZ. However, whether activation of quiescent stem cells

in the aged SGZ is only transient and whether it might lead to

subsequent stem cell exhaustion is unknown. On the other
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hand, activation of quiescent cells itself might not be sufficient to

restore neurogenesis (Kronenberg et al., 2006; Rao et al., 2008).

Neurogenesis also declines in an age-dependent manner in

the V-SVZ. It has been suggested that aging leads to impair-

ments of fine odor discrimination in mice due to a decrease in

the number of newly generated interneurons between 2 and

24 months of age (Enwere et al., 2004). This is accompanied

by a diminution in EGFR signaling and proliferation and thinning

of the V-SVZ. Some astrocytes acquire ependymal features like

9 + 2 motile cilia and apical placement of mitochondria and are

incorporated into the ependymal layer (Conover and Shook,

2011; Luo et al., 2006). Interestingly, only the dorsolateral aspect

of the V-SVZ remains neurogenic in aged mice. This might affect

the generation of specific neuronal subtypes in the aged brain,

because V-SVZ NSCs are heterogeneous, generating at least

six different subtypes of OB interneurons depending on

their position along dorsal-ventral and anterior-posterior axes

(Merkle et al., 2007).

Although the number of label-retaining and proliferating cells

in vivo seems to decline during aging, the percentage of prolifer-

ating cells does not (Bouab et al., 2011). Similarly, the number of

V-SVZ neurosphere-forming cells declines with age, but nestin+

cells appear to be equally competent of producing neurospheres

(Ahlenius et al., 2009; Enwere et al., 2004). Cell intrinsic factors

like mTERT, p16, and p21 have been shown to contribute to

the decrease in neurogenesis associated with aging (Conover

and Shook, 2011). Deficiency of p21 increases the numbers of

BrdU-label retaining cells in young adult V-SVZ but leads to

exhaustion of these cells in old mice (Kippin et al., 2005). It is

not clear whether the age-related decline in V-SVZ neurogenesis

is due to terminal differentiation, a limited intrinsic capacity

of NSCs to self-renew and/or molecular and cellular changes

in the microenvironment suppressing proliferation and/or

promoting senescence or quiescence.

Cell-autonomous quiescence might be a mechanism to

prevent tumor formation by minimizing the risk of accumulated

mutations and DNA damage. This requires a tight balance of

expression of proto-oncogenes and tumor suppressors. For

example, the proto-oncogene BMI-1 promotes self-renewal by

repressing the tumor suppressors p21, p16, and p19 (Fasano

et al., 2009; Favaro et al., 2009; Molofsky et al., 2006). In the

aged SVZ, increased levels of p16 suppress stem cell activity

but possibly protect from tumor formation. Indeed, it has been

shown that adult V-SVZ NSCs could serve as cells of origin for

some gliomas (Jacques et al., 2010). Interestingly, p16 is

frequently lost in glioblastoma (Furnari et al., 2007; Wiedemeyer

et al., 2008).

In sum, it remains unclear whether NSCs self-renew in vivo or

are consumed with age and whether extrinsic factors—within

the niche or systemic—decrease NSC proliferation in the aged

brain. These are important questions to understand how different

compartments in the niche affect the behavior of NSCs. Unlike

other tissues where robust regenerative responses can be

mounted even in advanced age, neurogenesis in the V-SVZ and

SGZ decreases with age. Little is known about how the different

compartments of the niche are altered with aging. The integrity

of B1 cell proximal domain is likely affected during aging in the

ventral V-SVZ. Ventral stenosis, with loss of ependymal cells

and fusion of the lateral and medial walls in old mice, has been
associated to decrease neurogenesis in this ventral region (Luo

et al., 2006). How NSC morphology and signaling within NSC

domains is affectedwith age remains an interesting area for future

research.
Conclusions
Adult NSCs (B1 astrocytes in V-SVZ and radial astrocytes in

SGZ) have processes that most likely allow them to sample

specific compartments of their niche. Therefore, these NSCs

can respond to both local factors next to their cell body as well

as signals derived farther away such as those from blood

vessels, the ventricles, or neuronal plexus. Moreover, NSC

domains allow them to receive signals that are not accessible

to other cells within the niche (e.g., CSF-borne factors may not

be available to IPCs or neuroblasts within the V-SVZ niche).

Although it has been shown that NSCs respond to multiple

factors, complete insights into NSC behavior will require a better

understanding of the compartmentalized signaling that occurs

in vivo. How B1 cells and radial astrocytes are induced to prolif-

erate or to remain quiescent likely depends on the subcellular

integration of multiple signaling pathways arising from the

primary cilium, the end-feet around blood vessels, the cell

body, and their main or lateral processes. Thus, NSCs bridge

multiple locations of the niche, allowing them to receive a broad

spectrum of signals, which, combined, may orchestrate their

behavior. Although we have reviewed emerging evidence sug-

gesting how some major signaling pathways may act primarily

through one of the proposed domains, as mentioned above, it

is entirely possible that the same signaling pathway could also

act on other parts of the same cell. The response could differ

depending on the region receiving the signal, highlighting the

relevance of studying NSCswithin their niche. Real-time imaging

of intracellular signaling and simultaneous observation of the

resulting NSC behavior may provide important new insights on

the basic regulation of the primary progenitors, whichmake adult

neurogenesis possible.
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Ehm, O., Göritz, C., Covic, M., Schäffner, I., Schwarz, T.J., Karaca, E.,
Kempkes, B., Kremmer, E., Pfrieger, F.W., Espinosa, L., et al. (2010).
RBPJkappa-dependent signaling is essential for long-term maintenance of
neural stem cells in the adult hippocampus. J. Neurosci. 30, 13794–13807.

Encinas, J.M., Michurina, T.V., Peunova, N., Park, J.H., Tordo, J., Peterson,
D.A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011). Division-coupled
astrocytic differentiation and age-related depletion of neural stem cells in
the adult hippocampus. Cell Stem Cell 8, 566–579.

Enwere, E., Shingo, T., Gregg, C., Fujikawa, H., Ohta, S., andWeiss, S. (2004).
Aging results in reduced epidermal growth factor receptor signaling, dimin-
ished olfactory neurogenesis, and deficits in fine olfactory discrimination. J.
Neurosci. 24, 8354–8365.

Fasano, C.A., Phoenix, T.N., Kokovay, E., Lowry, N., Elkabetz, Y., Dimos, J.T.,
Lemischka, I.R., Studer, L., and Temple, S. (2009). Bmi-1 cooperates with
Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev.
23, 561–574.

Favaro, R., Valotta, M., Ferri, A.L., Latorre, E., Mariani, J., Giachino, C., Lancini,
C., Tosetti, V., Ottolenghi, S., Taylor, V., and Nicolis, S.K. (2009). Hippocampal
development and neural stem cell maintenance require Sox2-dependent
regulation of Shh. Nat. Neurosci. 12, 1248–1256.

Fernando, R.N., Eleuteri, B., Abdelhady, S., Nussenzweig, A., Andäng, M., and
Ernfors, P. (2011). Cell cycle restriction by histone H2AX limits proliferation of
adult neural stem cells. Proc. Natl. Acad. Sci. USA 108, 5837–5842.

Filippov, V., Kronenberg, G., Pivneva, T., Reuter, K., Steiner, B., Wang, L.P.,
Yamaguchi, M., Kettenmann, H., and Kempermann, G. (2003). Subpopulation
of nestin-expressing progenitor cells in the adult murine hippocampus shows
electrophysiological and morphological characteristics of astrocytes. Mol.
Cell. Neurosci. 23, 373–382.

Förster, E., Zhao, S., and Frotscher, M. (2006). Laminating the hippocampus.
Nat. Rev. Neurosci. 7, 259–267.

Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A.,
Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., et al. (2007). Malignant
astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21,
2683–2710.

Gajera, C.R., Emich, H., Lioubinski, O., Christ, A., Beckervordersandforth-
Bonk, R., Yoshikawa, K., Bachmann, S., Christensen, E.I., Götz, M., Kemper-
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