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Abstract

Spline quasi-interpolants with optimal approximation orders and small norms are useful in several applications. In
this paper, we construct the so-called near-best discrete and integral quasi-interpolants Basgdioes, i.e.B-
splines with regular hexagonal supports on the uniform three-directional mesh of the plane. These quasi-interpolants
are obtained so as to be exact on some space of polynomials and to minimize an upper bound of their infinite norms
which depend on a finite number of free parameters. We show that this problem has always a solution, which is not
unique in general. Concrete examples of these types of quasi-interpolants are given in the two last sections.
© 2005 Elsevier B.V. All rights reserved.
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Letz be the uniform triangulation of the plane, whose set of vertic#$,iand whose edges are parallel
to the three directions, = (1, 0), e2=(0, 1) ande3z = (1, 1). Let P,, be the space of bivariate polynomials
of total degree at most, and letP% (), k € N, be the space of piecewise polynomial functions of degree
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and clas<* defined or. In this paper, we consider only-splines, i.e., B-splines with regular hexagonal
supports (whose sides are composed of the same number of edyelhaffamily of H-splines contains
the classical box-splines i[ﬁ%ﬁﬂr) for k>0, together with new families of B-splines introduced in
[8,11,14]

For a givenH-spline ¢, #(¢) denotes the space of splinEs, c(x)¢(. — a), o € 72 andc(x) € R}
generated by the family of translat&g§e) = {¢p(. — ), o € 72}.

All the families () that we use are globally linearly independent, namely,

> c@e(.—a)=0 impliesc(x) =0 forallx e z°.

aez?

We denote byP(¢) the space of polynomials of maximal total degree included’ifp). We con-
struct new families of discrete or integral quasi-interpolants fi@fl(R?) into % (¢) which are ex-

act onP(¢), and minimize a simple upper bound of their uniform norm. These quasi-interpolants can
be considered as extensions to the bivariate case of those introdug2ldand [3]. They have the
form Qf =3, 2 (e — o), wherel,(f) is a finite combination of valueg(f) or mean values
(fio(.=B)=[ f(x)p(x—pdx,with g € 7? lying in some hexagon centeredrat 72. Such operators
have already been considered by many authors[fsdp, but the ones presented here seem to be new
and interesting.

The paper is organized as follows. In Section 2, we recall some resultssplines and hexagonal
sequences. Then, in Section 3, we introduce discrete and integral quasi-interpolants (QIs) based on some
H-spline p and which are exact oR(¢). Starting from these Qls, we study in Section 4 new families
of Qls. They are obtained by solving a minimization problem that admits always a solution. Finally, in
Sections 4 and 5, we give two examples of each type of these operators. In particular, we show that they
are not unique in general.

1. H-splines, symmetrical hexagonal sequences and difference operators
1.1. H-splines

For p >0, we denote by, the hexagon in centered at the origin, with sides of lengthFor p =0,
we defineHp = {0}.

Letrn,, r >0, be aH-spline supported ofl1 of classC” and of minimal degreé(r) for which #(x,)
is a partition of unity. It is proved if9] thatr, is unique withd(r) = 3r 4+ 1 for r even and B8 + 2
for  odd. If we putr = ng the classical piecewise affine pyramid, thén= 7 x - - - % = (k times) is the
box-spline inP%iJrl(r). Fork = 0, we definer® = n, and fork >1, ¥ = , % 7*~1. Note that the power
is the convolution power.

Using classical results on the convolution product of piecewise polynomial functions and the Strang—Fix
theory (sed15]), the following result has been establishedlid] (see alsg13]).

Theorem 1. (i) The support of* is the hexagorH,., 1.
(i) =¥ is a positive B-spline of clags’+%, of degree3(r + k) + 1 for r even and of degre®(r + k) + 2
for r odd
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(iii) For k>1we have

Por+1 when r =0,
P(rk) =
() { Py when r>1.

(iv) The family# (=) is globally linearly independent.

From Property (iii), we deduce immediately that the approximation order of a smooth function in the
spacesﬂ(n’;) is2k +2forr=0and Z + 1 forr>1. In the literature, there exist different methods to
construct spline operators giving this order of approximation. For instan¢4)], and[5] are described
quasi-interpolants using Appell sequences, Neumann series or Fourier transfd®halmd[12], discrete
and integral quasi-interpolants are defined from the values &f-@pline on a three direction mesh by
exploiting the relation between hexagonal sequences and central difference operators. It seems that this
later method is best adapted for the study proposed here. So, in the following subsections we recall some
properties of hexagonal sequences and of the associated algebra of difference operators. For more detalil
see e.g[10].

1.2. Hexagonal sequences

Let.# , be the vector space of real sequenegs), o« € 7%} having their supportirf,,, i.e., satisfying
c)=0foralla¢ Hy = H, N 72, and which are invariant by the group of symmetries and rotations of
the hexagorf,. It is easy to prove the following result.

Theorem 2.
. _|@+1D? whenp = 2g,
dim Ay = { G+1(@+2 whenp=2g+1
Then, with any sequenae € #,, we associate a list = [cy, ..., ¢y, ], Wheren = dim.#,. The

correspondence between the list and the actual sequence is descHigdlifor p =2,n = 4.

Letd; € #1andds € #» betwo hexagonal sequences associated respectively with thig4igts 6, 1]
andd, = [—6, 0, 1, 0]. We denote by € #p, the sequence associated with the list reducdd]taFor
p >0, letT, be the subset afn, n) € N? such that & m + 2n < p and%,, = {d]'d}, (m, n) € T,}, where
the products are convolution products, i.e., the eleméfist] andd’]'d; of the spaces#,,, #, and

C20 €21 C20
C21 Ci10 C10 C21
€20 €10 €0 €0 S0 € =[cpo C10 C20 C21l
C21 Cio Ci10 C21

C20 C21 C20

Fig. 1. A sequence and its corresponding
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A mi2n rESpEctively are given by:
m_ {d’f(j) such thawk(j) = d1(j) for j € Hf, and

PG =Y dad i - i for j e H,

ieH{
5= { 5(j) such thatd3(j) = da(j) for j € H}, and
50) = Y oy A — i) for j e H, ),
ieHJ
and
man __ | ym,ng mn gy _ MmN . . *
d 2_{d (j) such tha”™"(j) = Y df ()da(j — i) for j eHZn}.
icH*

Then, itis easy to check that dinf , = card%,, and, by induction orp, one can prove thaz, is a basis
for the spacer’ .

1.3. The algebra of difference operators

To the above hexagonal sequengesandd; of the spaces#'1 and.#’» respectively, we associate the
following difference operatord, and 4, defined, fork = 1 or 2, by

(A f)(x) = f(x +ker) + f(x +ke2) + f(x +ke3) —6f(x) + f(x — keq)
+ f(x —ke2) + f(x —ke3),

2 2
which stand for the discrete schemes of the Laplacian openaiosi—z + %Z

Then, the relation between hexagonal sequences and these difference operators is given by the following
identity:

(Ax f)(2) = (di * f)(2),

where f denotes here the sequeriggo), « € 72}.
Moreover, if we denote b¥.,, p >0, the space with basisty' 45, (m, n) € T,}, then it is clear that
the two space&,, andL, are isomorphic. On the other hand, it is simple to see that each elgnent

of £,, p=>0, has an hexagonal support. Then, its invedse in the convolution algebré (72) has a

non-bounded support. However, we show in the following result ivat is finite when restricted to
some spaces of polynomials.

Lemma 3. Letk € N*andD =}, ,yc7, #(m, n) A7 43 € L,. Then the invers®~* of D restricted to
the spacePz+1 is an element ok, and it is given by

D= Z B(r, s) A7 45,

r+s<k
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wheref(r, s) are solutions of the following linear system

|1 for (u,v)=(0,0),
Z a(m,n)B(r, s) = {0 for (u, v) # (0, 0).

r+m<u, s+n<v

Proof. Itderives from the fact that]’ 45 p =0 for all p € P, _1 such thain +n=r>1, and the degree
2r — lis maximal. O

2. Quasi-interpolants based on H-splines

As indicated in the introduction, our aim is to study new families of discrete and integral quasi-
interpolants based on somgsplineg. They are obtained by solving minimization problems under some
linear constraints. In order to give the explicit formulae of these linear constraints, it is necessary to
express all the monomials &) as linear combinations of integer translategofo do this, we need
some results concerning differential quasi-interpolants[@ge

2.1. Differential quasi-interpolants (DQIs)
Let ¢ be a H-spline of suppo; 1, k>0, and letp be its Fourier transform. A8(0) = 1, we have
in some neighbourhood of the origin
1
— = Z azy”.
xeN?

o)

Let d be the integer such th&; = P(¢) andm,(x) = x* the monomials of*(¢). We denote by d the
following differential operator

df = > (=)"la,D*f,  wherei is the complex such that = —1,

ol <d

and bySf =3, ,2 f(i)e(. — i) denotes the classical Schoenberg operator. Then it is well known , see
e.g.,[8,12], thatS is an automorphism oR(¢) and satisfies

|
Smy=Y = (~iDYp©@Dm,, and §7'm,=g, forallzer,,
p<a A
wherer, = {o € N2, m, € P(¢p)} andg, is a recursive family of polynomials defined by

80 = mo,

— By
8oy =My — E o(j) E Cn)” o gp- (1)
) (a— P!
jez? B< o, fa

Moreover, we have the following result.

Lemma 4. The operatod coincides orP(¢) with S~1. Therefored is also an automorphism di(¢).
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Proof. Consider the power series expansigy) = > 5.2 /71,D5¢(O)yﬁ Hence ¢! = 1 implies that

Ay g~ < |1 wheny=0,
J%; /gzD(’D(O)_(SOV_{O wheny # 0.

On the other hand, for all e I, we have

My = Z (—iD)Vma(So;x = Z(_iD)Vmoc Z 9' DQA(O)

y<a < p+0=y
. : —iD)?%(0
= Y D m D@ =Y [ 3 ap=in) 0'm,) e 3,¢()
B.0<x 0<a \perl, '
Y D ¢ |D) 90 _ o[ pim, —|D) $(0)
0<u 0<u
=dSm,.

Then, we deduce thatd S~1 and consequently d is an automorphisniagp). O
Now, using the operator d, we define the following differential quasi-interpolant:
df=sdf=Y"| > 0)"a,D*f() | o( = ).
jez? \ldl<d

Thus, it is clear that d is exact d@¥y,.
According to Section 2, the spaé® coincides withP2;.1 when g is a box-spline |rﬂ3>3k+1(r). In

this case, the Fourier transforgnis well known and the computation of the coefficieniscan be done
directly. Therefore, as

dmy, =m,, forall «e Poyy1,

we easily deduce the needed expressions,of

For aH-splinee which is not a box-spline, we have not in general the explicit formula of its Fourier
transform. However, as shown in the following result, the associated coeffigigares determined only in
terms of the values (), j € supfe) N 72, which can be computed by standard convolution algorithms
(see e.q.[8]).

Lemma 5. For any« € I',, we have
a; =i"g,(0).

Proof. It derives from the fact thag, = S~1m, = dm,, foralla € I',. O
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2.2. Discrete quasi-interpolants (dQIs)

Letdo={p(x),x € H=H;N 72} be the hexagonal sequencépfassociated with th& -splineg, and
D € L, its corresponding difference operator. As the above Schoenberg opg&iiatan automorphism
on P(¢), there exists for eacph € P(¢) a uniqueg € P(¢) such thatp = Sq. Then, according to the
definition of §, we obtain

Sp=Y_ Sqp(.—i)=)_ (Z q(2)p(i —a)) (. — i)

iez? iez? \uez?
= Z (Z p()q (i +oc)) p(.—1i)= Z Dqg(i)o(. —i).
iez? \veH} iez?

On the other hand, using the fact that
D Aol == q)dre(.—i). r=1orz,
iez? iez?
we deduce that
Sqg=_ Dq(i)e(.—i)= Y q(i)De(.—i)=DSq = Dp.
iez? iez?
Hence,S coincides withD on P (o).
Now, if we setD~! the inverse ofD on P(¢), then the discrete quasi-interpolant defined by
Of =SD7 =" D fi)p(.—i)=) fOD  p)(—i)=D1Sf
iez? iez?
is exact onP (o).
According to Lemma 2, the operatoD 1 is finite onP(¢p), and it can be written in the form
DM =" cuf (+0).
aeH}

Therefore, the above expression®@f becomes

of=y_ (Z cof (i +a>) o(.— i),

iez? \veH}
which is equivalent to
Of =Y fGL(—1),
ie7?
whereL denotes the fundamental function defined by

L= Z Ccup (. — ).

*
a€Hy
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It is simple to verify that

1Qllco<V(e) = > leal.

aeH
2.3. Integral quasi-interpolants (iQls)

It was shown i8] and[14], that eachH -spline ¢ considered in this paper satisfi¢s(x) dx = 1.
Then, we can introduce the following integral form of the Schoenberg operator:

SF=Y (f+i). ool —i),
iez?

where(f, ¢) = [ f(x)¢(x) dx.
As S, the operatof is also an automorphism @ ¢) and coincides with a difference operator. Indeed,
according to Section 3.2, for anye P(¢) there exists a uniqug € P(¢) such thatSq = p. Then,

Sp="(Sq+ ) ool —i) = (Z vxq(a+i>) o —1),

iez? iez? \oez?

wherev, = [ p(x)o(x — ) dx. It is simple to see that, = 0 for all « ¢ H}'. Then, if we putDg (x) =
2_seny V2q (x + o), we verify easily that

Sp= Z Dq(i)ep(. — i) = Z q(i)Do(.—i)=DSq = Dp.
ieZ ieZ

Consequently§ coincides orP(¢) with D, andD~! has a finite expression @n(¢).
We now consider the following integral quasi-interpolant base®ot:

Tf=8D7'f= Y (D f(.+i), p)o(.—i)

iez?
= Z (Z da(f(.+i+oc),<p>) @(. —1).
iez? \ueH}

We remark that for alp € P(¢), we haveTp = SD~1p = DD~1p = p. Thus, the iQIT is exact on

P(e).
Once again, as we obtained above for the dQI

1T lloo<v(d) =) Idyl.
aeH}

The study of these iQls, illustrated by examples, is givel8jh0,14]
Let us denote byQ one of the above dQ@ or iQI T. It is well known that the infinite norm o
appears in the approximation error pty Q f. More specifically, we have

If = Oflloe <A+ 1 Qlloo) dist(f, S(¢)).
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Then, it is interesting to construct a quasi-interpol@vith a small norm. In general, it is difficult to
minimize the true norm. To remedy partially this problem, Sablonniére has propogk?],ia method

for defining discrete quasi-interpolant with minimal infinite norm. It consisted to constructing bases of
the algebras of hexagonal sequences in order to get small norms for the corresponding discrete quasi-
interpolants. In the next section, we present another method which seems more interesting.

3. Near-best dQls and iQls based on H-splines

The proposed method consists in choosing a priori a sequgnesp.d) with a larger support than that
of ¢ and afterwards in minimizing(c) (resp.v(d)) under the linear constraints consisting of reproducing
all monomials inP(¢). More specifically, fors >k, we construct families of discrete or integral quasi-
interpolants:

OQrirsf= D | Y caflito)|ol—), 2
iez? \oveH{

Tesnsf= Y | D dulfC+i+a,0) | o —i) 3)
iez? \w€H]

which satisfy the two following properties:

(i) QOk+1s andTy41 s are exact o1P(¢).
(if) The coefficientsc, (resp.d,), « € H, are those that minimize thg-normv(c) (resp.v(d)) of ¢
(resp.d) under the linear constraints consisting of reproducing all monomidigagn.

As a sequence(respd) is fully determined by alist=[cy;, . . . , ¢4, ] (respd= [dyy, ..., dy,]), itisclear
that the exactness @1 s (resp.Ti+1.5) ONP(¢p) implies that there exist a x n matrix A of rankp < n
and a vectoby (respby) in R? such thatdé =b1 (resp.Ad =by). Fori=1, 2, setV; ={% € R" : Ax=b;}.
Then the construction a1 s or Tx+1 s IS equivalent to solving the following minimization problem:

Solve Min{||x|[1, ¥ € Vi}, i=1,2.

Definition 6. If ¢ (respd) is a solution of Problem (1) (resp. Problem (2)), then the associated dQI (resp.
iQl) defined by(2) (resp.(3)) is called a near-best dQI (resp. near-best iQl).

Proposition 7. Fori = 1 or 2, the minimization Probler(i) has at least one solution

Proof. Sincetherankafl is p,the above systemix=b;, i=10r2,canbesolvedandeach, 1<j<n,
is an affine function of — p parameters of. Moreover, the sequeneads an element off;. On the other
hand, by substituting the affine functions in the expression ofx||1, we obtain & x (n — p) matrix

A and a vectob; such that|x ||y = [|b; — A%||1. Thus, solving Problem (i) is equivalent to determine the
best linear1-approximation ob; using the elements oix, and the existence of at least one solution is
guaranteed. O
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Before giving examples of such quasi-interpolants, note that the exactness equatipng 0bn
P(¢) need the momentg,(¢) = [ m,(x)p(x)dx, o € Iy, Of ¢. It was shown in14] that u,(¢) =
H"D*$(0), |a| = a1 + 2. Then, wheny is a box-spline, we know explicitly its Fourier transfodn
and therefore the computation @f(¢) can be done easily. But, fer which is not a box-spline, we can
determine its corresponding moments by using only the vapd¢s j € H; N Z2. Indeed, if we put
ty= ZjeZz my(j)e(j), then we have the following result.

Lemma 8. For anyu € I', we have

t, whenl«| is even
0 when|«| is odd

Ha((/’) = {

Proof. According to expressiofil), we get the following connection betwegrandg,,.

(_1)|0<—/3\0<!
8o =My — Z Ta—p lo—p&p- 4)
B< o,
On the other hand, see e[§], the sequenceg.,) .2 May be written in the form

80 = mo,

gu=my— Yy Y —(—lD)“ P5(0)gp. (5)

jez? <o, ﬁ?é“
Hence, by comparing4) and(5), we obtain
t, = (—=ID)* P H(0) = 1, ().

Using the symmetries af, we easily verify that, = (—1)!lz,, i.e.,#, = 0 for all « such thaf«| is odd.
Then, the announced result yieldg]

4. Examples of near-best dQIs

4.1. Near-best dQI based on the quartic box-splige

The differential quasi-interpolant based on tiequartic box—splinez% (k =1) is given by

Df =" (f(i) - é (D@9 £ (i) + DV £ (i) + D(O’Z)f(i))) w5 (. — i).

jez?
As D is exact ornP3, we get the following expressions:

20 _ .2
moo= Y _ mo(.—i), mio= )  i1my(.—1i)

jez? jez?
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1 1
moo=» (if - §> m(.— i), mii= )y (i1i2 - 6) ma(. — i),

jez? jez?
_ 3 ..2 . B 2. 1. 1. 2 .
mso= iy —iyng(. —i), mp1= iz = gi1— 3102 ng(. — 1),
jez? jez?

and by symmetry we deduce the expressiona®f, mo 2, m1 2 andmg 3.
Now, by using the properties of the hexagonal sequetegs.y:, it is simple to verify that the
quasi-interpolant

Qasf=> | D cufitm|my(—i), s>1,

ic7?2 \veH}f
is exact onPz if and only if the coefficients, satisfy the following equations:

Y e=1 and Y o=

acH acH

Remark 9. Fors = 1, the dimension off; coincides with the number of the exactness conditions of
Q2.1 on P3. Therefore, Q> 1 is unique and it is given by

3 1<
Q21f =) (5 f@) =15 > fa+ el)) g (. — ).
=1

iez?

Thus, in order to have parameters in the minimization problem, it is necessary tostake

it « 1 « 1
Proposition 10. Letcg g =1+ 222 andcy, o = 222 Then
2
¢500,...,0,¢50,0,...,007 e RITD
(c0,0 21,0 )
1241-1 t

is a solution of Problenfl) for k =1 ands =2z, > 1.

Proof. Fork =1 ands = 2¢, ¢t > 1, the expression dfc|1 is

t r j-1
lella=lcool +6 Y (le2jjl + le2j0D) +12 Y Y " leajul
j=1 j=21=1
r—1 t j—-1
+6 ) lezjrnol+12) > leaj-1il,
j=1 j=11=1

and the associated linear constraints in Problem (1) are
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r j-1 —1 r j-1
1—600+6Z €2j,j +62]o+122 Z c2j1 +6 Z c2j+1,0+ 12 Z €21,
j=1 j=21=1 j=1 j=11=1
1 t j—1
—Z= Z {42))%c2.0 + 2%+ 4j%caj} + Y Y M@2J)Z+ 1%+ 2] — DP)ezj
j=1 j=2 =1
t
+> Z 42j — D+ 12+ (2 — 1— Dczj-1.- 6)
j=2 1=1
If we put
llcll1 = w(co,0, €1,0, €2,0, €2,1, €3,0, C3,1, - - - » C24—1,0, C21—1,1, - - - »
C2r—1,1—1, C2,0, €2t 1, + - - » C2,1—1, C24.1),

then, by using Egs. (6), we can expregs andcy; o in terms of the other coefficients of the hexagonal
sequence. Therefore, minimizingd|c||1 under the linear constraints given in (6) becomes equivalent to

minimizing in RY+1°~2 the polyhedral convex functiom of the following variables
€1,05 €2,0, €2,1, €3,05 C3,1s + + +» C2—1,05 C2—1,1» + -+ » C2—1.1—1> €211, + -+ C24,1—1s C21.1- (7)

Letc; ; be any variable in (7). Denote IY(c; ;) the restriction ofo obtained by replacing its variables by
zero except; ;. We will prove that this univariate functian(c; ;) admits a minimum at @ R. Indeed,
assume for examplg ; = c1,0. Then, by annulling the other variables in Egs. (6), we get the expressions
of co,0 andcy; o in terms ofcy o. More precisely, we obtain

6
€0,0 = Cao - W((Zf)z — Dcy0,

1

(2r)
Thus,o(c1,0) takes the following expression

21,0 = C% 0 — ~=—5C10-

(c1,0) = |co,0l + 6lczz ol + 6lc1,0l

=|cg.0 — @ )2((20 — Derol + 6lc3; o — )261 ol + 6lc1ol-
It is simple to see that for small valuesa@fo, @(c1,0) becomes
_ 6 2 1
@(c1,0) = ¢g0 — @7 ((20)* = Der,0 — 6(c3 0 — 22 0) + 6Blcaol
6
= (cp.0 — 6¢3; 0) — ((26)% = D)e10 — —— c1,0 + 6Blevol
’ R >2 (21)?
6
="+ —— (2— (2))c1,0 + 6lc10l.

(2t)
Therefore, in both caseg o > 0 andcy o < 0, we easily verify that

(c1,0) > o™ = »(0).

A similar technique can be applied for each of the other variables in (7).
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Consequently, we conclude that the convex functiomithout constraints attains its global minimum
at 0e R(+D?=2|n other words, we have

o* = w(cao, 0,...,0, cz’o, 0,...,0) =min{|c||1, ¢ € V1. O
—— ——
12+41-1 4

Remark 11. A similar result can be obtained wherns odd, i.e.s =2r + 1,7 >1. In this case we have
r j—-1

lella = lcool +6 Zaczj il le2zo) #1233 lezjl
j=1 j=21=1
t+1 j-1

+ 6 Z leajrrol +12) Y leajal.

j=11=1
i _ __ 1
Moreover, if we pquO =1+ m andcy, 4 o= a0 then the vector
& =(c}00,....0,¢5,10,0,...,07 € RIFDEFD
is a solution of Problem (1) foar=1ands =2t + 1, t>1.

According to Proposition 5.1 and Remark 5.2, the near minimally normed dQIs associated with
H,, s >2, and exact ofi*3 are given by

3
Q2sf =Y, ((1+ 512) f(@) — ﬁlz DA sen) mh(. — ). (8)
iez? =1
Proposition 12. For all s >1 we have
102l <1+ 5.
Moreover the sequenceQz ), » 1 converges in the infinite norm to the Schoentsaperators.
Proof. Let f € C(R?) such that| f ||« <1. Then, from (8) we obtain

025 f1< Y ((1+ ) 1f D+ 5y 12;2 Z £ isem) ng(. — i)

iez?

1 6
<Dflee Y ((1+ . 2) n @) (.~ i)

iez?

<1+ !
x S2.

Hence | Q2 llco <1+ 5.
On the other hand, by using the expressioS given in Section 3.1, we get

Qasf = Sf =53 (f(t) - = Z fa ise/)) (. — i).
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Therefore

1 1
1025 f = 8F1<55 D @I fle)ng(. =)< .

iez?

Then, we conclude thaitQ2 s — S|l < %2 i.e., Q2 converges t whens — +oo. [

Remark 13. Using the Bernstein—Bézier form af, we can easily compute the infinite norm @b
for the first values of. For instance, it = 1, 2, 3, we get
102.1ll00 = 199 ~ 1.34028,
102.2ll00 = 53 ~ 1.22917,
1023l = 789 ~ 1.10185.
On the other hand, it is simple to check thj&> 1|/~ <2, and from Proposition 5.2, we have
102,20l <§ = 1.25 and|| Q2 3ll oo < 3 ~ 1.1111.

Therefore, the bounds ¢f02s]l«, s =2, 3, are small in comparison with that pf> 1/|~. Moreover,
these bounds are close to the exact values of the infinite norm of these new dEits. 2nwe give the
graphs of fundamental functions corresponding respectivefyote, 022 and Q2 3.

4.2. Near-best dQI based on the box-splige

The interest in the study of this example is to show that Problem (1) can have an infinite set of solutions.
Indeed, according to Section 2, the box—splfuéés of classC?, degree 7 and suppatks. The differential
quasi-interpolant based oug which is exact orPs is defined by

Df =" Ji(f)my(. — ),
iez?
where
ii(f)=fG) = (DY £y + DIV i) + DO? (i)
+ 35(DUO (i) + 2DV £ (i) +3D?? f(i) + 2DT3 £ (i) + DOY £ (i)).

Then, with the help oD we easily get the expressions of the monomials|«| <4, as linear combinations
of the integer translates @g (see e.g.[7] for more details).
Now, let us consider the dQI

Q3sf=Y | D eaflitm|md—i).

iez? \v€H
Using the properties qfcoc)oceH;*’ we verify thatQ3 ; is exact onPs if and only if

Z cy =1, Z oc%cxz—% and Z oc‘llca:g.

aeHf aeHF aeH
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Fig. 2. Graphs of fundamental functions foe 1, 2, 3, respectively.
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In particular, fors = 2, a sequence € H, can be determined only in terms @fo, c1.0, c2,0, andcz 1.
Hence, the above equations of exactness become

0,0+ 6¢c1.0+ 6¢20+ 6c21 =1,
c1,0+ 420+ 3021 = — 3,
c1,0+ 1620+ 921 = . 9)

Therefore, if we putcp 1 = 7, then the other three coefficients in (9) can be computed in terms of
Moreover, we have the following result.

Proposition 14. For eachy € [— 30, I, Q32f =3 icp2 % (f, y)no( — i), with

Ji(f) = (%ﬂs«) £+ (370 v) Z flte)+ (4150 o ) Z £ =+ 2e1)
+ p(f(£(e1+ €3)) + f(F(e2 + 63)) + f(E(—e1+ e2)))
is a near minimally normed dQI associated wig
Proof. The solution of system (9) is given by
coo=45+3). cro=9+7 C20=79— 3 c21=).
Then,

llcll1 = |co.0l + 6lc1,0l + 6lc2,0] + 6lc2.1]
= |42 + 3y| + 6|2 + 7| + 6 2 — 27| + 61y

It is simple to check that

rr;i[Q lells =% forally e [-45.0].
Y

Consequently, for eache [—%, 0], we obtain a near-best dQI based on the box-spd@ndan Fig. 3 we
give the graph of the fundamental function correspondin@4@ for y = —7/30. O

5. Examples of near-best iQls
5.1. Near-best iQl based on t#é-splineni

According to Section 2, thH-spIinen% is supported o2, and it is of clasg3and degree 8. Moreover,
the spaceS(n%) containsP. It was shown in14] that the associated differential quasi-interpolant is
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Fig. 3. Graph of the fundamental function 9§ » for y = f%).

defined by
Df=§:(fay—i;uﬁwvﬁ)+D“”fuy+D“”f0»)ﬁt—0.
iez?

and it is exact or?2. Then we deduce the following formulae:
mo,0 = Z m(.— i), mio= Z irmg(. — i),

iez? ie7?
25 25
m2,0 = Z (l% - 84) ny(.—i), my1= Z <i1i2 - 168) (. — i),
iEZZ iEZZ

and by symmetry we get the expressiong@f; andm_».
The near-best iQl based @é is given by

Tosf =) | D ddfC+i+o.m) | mi( i)

icz7? \oeH}f
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From Lemma 4.1 we deduce the moment&r}) = [ m,(x)nt(x)dx, |«/<2, ofzi. Their values are the
following:

25
o0 =1, wro =410 =0, 1o = ko2 =211 = §i-
Then, we easily verify thafs  is exact onP; if and only if the coefficientg, satisfy
Z d,=1 and Z %2d,
o€ H a€Hf

In particular, fors = 1, these coefficients are unique and the corresponding iQl is given by

5 3
To1f = Z( fnl—?Zf(ie»nl)n%(.—i).

iez? =1

Now, assume that> 1, then by using a similar technique as in Proposition 5.1, one can show the following
result.

.- * 25 *
Proposition 15. Letcg g =1+ 52% andc, o = 16&2 Then
2
(680’ 0, ...,O,C;t 0 0, --~50)T € R(l+l)
P e — e
241-1 !

is a solution of Problen2) for k =1 ands > 1.
Hence, the near minimally normed iQl basedﬂérand exact orP, takes the following form:
25 O
Tosf = ZZ (( 2&2) (f.71) — Tea ;w. +ep), nb) (. — i)

Itis simple to check thafTs || o0 < 1+-25
norm to the operatas.

14;2 , and therefore the sequen@@ ), - 1 converges in the infinite

5.2. Near-best iQI based on ti#é-spliner3

According to Section 2, thé/-spliner; is of classC®, degree 11 and suppaks. As S(n$) contains
polynomials of total degree 4, one can define quasi-interpolants which are exa@poror instance,
by using only the values oﬁ on Hj, seeFig. 4, we have got the following expression of its associated
differential quasi-interpolant:

Df =Y %(H)m5(—i)

iez?
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Q az a
az a; a a
] a3 1a1 a3 With (a0, ay, a, a3) = 24528 6663 48 289
2 & 8 & 8 PO G2 93 66528 ' 66528 ' 66528 ' 66528
aza; a4 a3
P az A

Fig. 4. The values of3 on Hj.

where

Ai(f) = f()+ ;—2(D(2’°)f(i) + DV £(i) + DO £ (i)
-+g%g%D@Qﬂn+2D@Qﬂo+30@4ﬂw+2Dﬂ®fgy+0@®fmy

Then, the exactness @ on P4 allows us to express the monomials, |«| <4, in terms of the integer
translates ofcf. On the other hand, in order to give an explicit formula of the iQI base@ﬁowe need
to compute the momenp@(nf) = fma(x)ni(x)dx, |a] <4. Once again, these moments are determined
only in terms of the values given Fig. 4. Hence, after computation we get

K,00 = 1,

11.0) = H0.1) = K(1.2) = K2.1) = K3.0) = 0,3) =0,

13

12,0) = H0,2) = 2l(1,1) = >

Ha0) = 0.4 = 222 = 2@ = 2113 = o (10)
We introduce now the following iQl

Tasf=> | Y dlfC+i+w.ad) |23 —i).

iez? \veHy

Using the values given in (10) and the expressions of the monomials| <4, as linear combinations
of the integer translates @ﬁ provided by the quasi-interpolaht, we verify that the iQIT3 s is exact on
P4 if and only if

307

=1, 2 o= n 1 o = :

E Co E ajc, =0 and E UCh = oo
aeHF aeHF aeHF

As in Section 5.1, when = 2, a sequenceé of H> is entirely determined by its elemenigo, d1.0, d2.0,
anddo 1. In this case, the exactness equation®f on P4 are

do,0 + 6d1,0 + 6d2 0+ 6dp1 =1,
di1,0+4dz 0+ 3d21 =0,
d10+ 16dp0 + 9dp 1 = 1900 (11)

Therefore, if we putl21 =7, y € R, then the other three coefficients in (11) can be computed in terms of
y. Moreover, we have the following result.
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Proposition 16. For eachy € [— 42336, Ol, T3of =) jcp2 2i(f, /)no( — 1), with

A 29145 _ 307 so7 1
4=\ 55013 ) SO~ 123377 Z faEe)+ | 159344~ 27
3

X Z f£2e) +7(f(£(er+e3)) + f(E(e2+ e3)) + f(£(—e1+ €2))
=1

is a near minimally normed iQI associatedytﬁx
Proof. The proof is similar to that of Proposition 15.30

Remark 17. According to Proposition 6.2, the near-minimally i@ 2 is not unique. In addition, for

all y € [— 5955 01, we have|| T3 2| < 3332 = 1.087. Then, we remark that this bound is close to 1, and

therefore this quasi-interpolant seems very interesting.
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