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Abstract

Spline quasi-interpolants with optimal approximation orders and small norms are useful in several applications. In
this paper, we construct the so-called near-best discrete and integral quasi-interpolants based onH -splines, i.e.,B-
splines with regular hexagonal supports on the uniform three-directional mesh of the plane. These quasi-interpolants
are obtained so as to be exact on some space of polynomials and to minimize an upper bound of their infinite norms
which depend on a finite number of free parameters. We show that this problem has always a solution, which is not
unique in general. Concrete examples of these types of quasi-interpolants are given in the two last sections.
© 2005 Elsevier B.V. All rights reserved.
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Let � be the uniform triangulation of the plane, whose set of vertices isZ2, and whose edges are parallel
to the three directionse1= (1,0), e2= (0,1) ande3= (1,1). LetPn be the space of bivariate polynomials
of total degree at mostn, and letPk

n(�), k ∈ N, be the space of piecewise polynomial functions of degreen
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and classCk defined on�. In this paper, we consider onlyH -splines, i.e., B-splines with regular hexagonal
supports (whose sides are composed of the same number of edges of�). The family ofH -splines contains
the classical box-splines inP2k

3k+1(�) for k�0, together with new families of B-splines introduced in
[8,11,14].

For a givenH -spline�, S(�) denotes the space of splines{∑ c(�)�(. − �), � ∈ Z2 andc(�) ∈ R}
generated by the family of translatesB(�) = {�(. − �), � ∈ Z2}.

All the familiesB(�) that we use are globally linearly independent, namely,∑
�∈Z2

c(�)�(. − �) = 0 impliesc(�) = 0 for all � ∈ Z2.

We denote byP(�) the space of polynomials of maximal total degree included inS(�). We con-
struct new families of discrete or integral quasi-interpolants fromCk+1(R2) into S(�) which are ex-
act onP(�), and minimize a simple upper bound of their uniform norm. These quasi-interpolants can
be considered as extensions to the bivariate case of those introduced in[2] and [3]. They have the
form Qf = ∑

�∈Z2 ��(f )�(. − �), where��(f ) is a finite combination of valuesf (�) or mean values
〈f,�(.−�)〉=∫ f (x)�(x−�)dx, with � ∈ Z2 lying in some hexagon centered at� ∈ Z2. Such operators
have already been considered by many authors (see[5,4]), but the ones presented here seem to be new
and interesting.

The paper is organized as follows. In Section 2, we recall some results onH -splines and hexagonal
sequences. Then, in Section 3, we introduce discrete and integral quasi-interpolants (QIs) based on some
H -spline� and which are exact onP(�). Starting from these QIs, we study in Section 4 new families
of QIs. They are obtained by solving a minimization problem that admits always a solution. Finally, in
Sections 4 and 5, we give two examples of each type of these operators. In particular, we show that they
are not unique in general.

1. H-splines, symmetrical hexagonal sequences and difference operators

1.1. H-splines

Forp�0, we denote byHp the hexagon in� centered at the origin, with sides of lengthp. Forp = 0,
we defineH0 = {0}.

Let �r , r�0, be aH-spline supported onH1 of classCr and of minimal degreed(r) for whichB(�r )
is a partition of unity. It is proved in[9] that �r is unique withd(r) = 3r + 1 for r even and 3r + 2
for r odd. If we put� = �0 the classical piecewise affine pyramid, then�k = � ∗ · · · ∗ � (k times) is the
box-spline inP2k

3k+1(�). Fork = 0, we define�0
r = �r and fork�1, �kr = �r ∗ �k−1. Note that the power

is the convolution power.
Using classical results on the convolution product of piecewise polynomial functions and the Strang–Fix

theory (see[15]), the following result has been established in[14] (see also[13]).

Theorem 1. (i) The support of�kr is the hexagonHk+1.
(ii) �kr is a positive B-spline of classC

r+2k, of degree3(r +k)+1 for r even and of degree3(r +k)+2
for r odd.
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(iii) For k�1we have

P(�kr ) =
{

P2k+1 when r = 0,
P2k when r�1.

(iv) The familyB(�kr ) is globally linearly independent.

From Property (iii), we deduce immediately that the approximation order of a smooth function in the
spaceS(�kr ) is 2k + 2 for r = 0 and 2k + 1 for r�1. In the literature, there exist different methods to
construct spline operators giving this order of approximation. For instance, in[4] and[5] are described
quasi-interpolants usingAppell sequences, Neumann series or Fourier transform. In[10] and[12], discrete
and integral quasi-interpolants are defined from the values of anH -spline on a three direction mesh by
exploiting the relation between hexagonal sequences and central difference operators. It seems that this
later method is best adapted for the study proposed here. So, in the following subsections we recall some
properties of hexagonal sequences and of the associated algebra of difference operators. For more details
see e.g.[10].

1.2. Hexagonal sequences

LetHp be the vector space of real sequences{c(�), � ∈ Z2} having their support inHp, i.e., satisfying
c(�) = 0 for all � /∈H ∗

p = Hp ∩ Z2, and which are invariant by the group of symmetries and rotations of
the hexagonHp. It is easy to prove the following result.

Theorem 2.

dimHp =
{
(q + 1)2 whenp = 2q,
(q + 1)(q + 2) whenp = 2q + 1.

Then, with any sequencec ∈ Hp, we associate a list̃c = [c�1, . . . , c�n], wheren = dimHp. The
correspondence between the list and the actual sequence is described inFig. 1for p = 2, n = 4.

Letd1 ∈ H1 andd2 ∈ H2 be two hexagonal sequences associated respectively with the listsd̃1=[−6,1]
andd̃2 = [−6,0,1,0]. We denote byI ∈ H0, the sequence associated with the list reduced to[1]. For
p�0, letTp be the subset of(m, n) ∈ N2 such that 0�m+2n�p andBp ={dm1 dn2, (m, n) ∈ Tp}, where
the products are convolution products, i.e., the elementsdm1 , dn1 anddm1 dn2 of the spacesHm, Hn and

c20 c21 c20

c21 c10 c10 c21

c20 c10 c00 c10 c20

c21 c10 c10 c21

c20 c21 c20

~c = [c00, c10, c20, c21]

Fig. 1. A sequencec and its corresponding̃c.
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Hm+2n respectively are given by:

dm1 =
{
dm1 (j) such thatd1

1(j) = d1(j) for j ∈ H ∗
1 , and

dm1 (j) =
∑
i∈H ∗

1

d1(i)d
m−1
1 (j − i) for j ∈ H ∗

m

}
,

dn2 =
{
dn2(j) such thatd1

2(j) = d2(j) for j ∈ H ∗
2 ,and

dn2(j) =
∑
i∈H ∗

2

d2(i)d
n−1
2 (j − i) for j ∈ H ∗

2n

}
,

and

dm1 dn2 =
{
dm,n(j) such thatdm,n(j) =

∑
i∈H ∗

m

dm1 (i)d
n
2(j − i) for j ∈ H ∗

2n

}
.

Then, it is easy to check that dimHp = cardBp and, by induction onp, one can prove thatBp is a basis
for the spaceHp.

1.3. The algebra of difference operators

To the above hexagonal sequencesd1 andd2 of the spacesH1 andH2 respectively, we associate the
following difference operators�1 and�2 defined, fork = 1 or 2, by

(�kf )(x) = f (x + ke1) + f (x + ke2) + f (x + ke3) − 6f (x) + f (x − ke1)

+ f (x − ke2) + f (x − ke3),

which stand for the discrete schemes of the Laplacian operator� = �2

�x2 + �2

�sy2 .
Then, the relation between hexagonal sequences and these difference operators is given by the following

identity:

(�kf )(�) = (dk ∗ f )(�),

wheref denotes here the sequence{f (�), � ∈ Z2}.
Moreover, if we denote byŁp, p�0, the space with basis{�m

1 �n
2, (m, n) ∈ Tp}, then it is clear that

the two spacesŁp andŁp are isomorphic. On the other hand, it is simple to see that each elementD

of Łp, p�0, has an hexagonal support. Then, its inverseD−1 in the convolution algebral1(Z2) has a
non-bounded support. However, we show in the following result thatD−1 is finite when restricted to
some spaces of polynomials.

Lemma 3. Letk ∈ N∗ andD =∑
(m,n)∈Tp �(m, n)�m

1 �n
2 ∈ Łp. Then the inverseD−1 of D restricted to

the spaceP2k+1 is an element ofŁ2p and it is given by

D−1 =
∑

r+s�k

�(r, s)�r
1�

s
2,
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where�(r, s) are solutions of the following linear system:∑
r+m�u, s+n�v

�(m, n)�(r, s) =
{

1 for (u, v) = (0,0),
0 for (u, v) �= (0,0).

Proof. It derives from the fact that�m
1 �n

2p= 0 for allp ∈ P2r−1 such thatm+n= r�1, and the degree
2r − 1 is maximal. �

2. Quasi-interpolants based on H-splines

As indicated in the introduction, our aim is to study new families of discrete and integral quasi-
interpolants based on someH -spline�. They are obtained by solving minimization problems under some
linear constraints. In order to give the explicit formulae of these linear constraints, it is necessary to
express all the monomials ofP(�) as linear combinations of integer translates of�. To do this, we need
some results concerning differential quasi-interpolants (see[6]).

2.1. Differential quasi-interpolants (DQIs)

Let � be a H-spline of supportHk+1, k�0, and let�̂ be its Fourier transform. Aŝ�(0) = 1, we have
in some neighbourhood of the origin

1

�̂(y)
=
∑
�∈N2

a�y
�.

Let d be the integer such thatPd = P(�) andm�(x) = x� the monomials ofP(�). We denote by d the
following differential operator

df =
∑

|�|�d

(−i)|�|a�D
�f, wherei is the complex such thati2 = −1,

and bySf =∑
i∈Z2 f (i)�(. − i) denotes the classical Schoenberg operator. Then it is well known , see

e.g.,[8,12], thatS is an automorphism onP(�) and satisfies

Sm� =
∑
���

�!
�! (−iD)��̂(0)D�m�, and S−1m� = g� for all � ∈ ��,

where�� = {� ∈ N2, m� ∈ P(�)} andg� is a recursive family of polynomials defined by

g0 = m0,

g� = m� −
∑
j∈Z2

�(j)
∑

���,� �=�

(−j)�−��!
(� − �)! g�. (1)

Moreover, we have the following result.

Lemma 4. The operatord coincides onP(�) with S−1. Therefored is also an automorphism onP(�).
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Proof. Consider the power series expansion�̂(y)=∑
�∈N2

1
�!D

��̂(0)y�. Hence,�̂�̂−1 = 1 implies that

∑
�+�=	

a�

�! D
��̂(0) = 
0	 =

{
1 when	 = 0,
0 when	 �= 0.

On the other hand, for all� ∈ �� we have

m� =
∑
	��

(−iD)	m�
0	 =
∑
	��

(−iD)	m�

∑
�+�=	

a�

�! D
��̂(0)

=
∑

�,���

(−iD)�+�m�
a�

�! D
��̂(0) =

∑
���


∑

�∈��

a�(−iD)�(D�m�)


 (−iD)��̂(0)

�!

=
∑
���

d(D�m�)
(−iD)��̂(0)

�! = d


∑

���

D�m�
(−iD)��̂(0)

�!




= dSm�.

Then, we deduce that d= S−1 and consequently d is an automorphism onP(�). �

Now, using the operator d, we define the following differential quasi-interpolant:

df = Sdf =
∑
j∈Z2


∑

|�|�d

(−i)|�|a�D
�f (j)


�(. − j).

Thus, it is clear that d is exact onPd .
According to Section 2, the spacePd coincides withP2k+1 when� is a box-spline inP2k

3k+1(�). In
this case, the Fourier transform̂� is well known and the computation of the coefficientsa� can be done
directly. Therefore, as

dm� = m�, for all � ∈ P2k+1,

we easily deduce the needed expressions ofm�.
For aH -spline� which is not a box-spline, we have not in general the explicit formula of its Fourier

transform. However, as shown in the following result, the associated coefficientsa� are determined only in
terms of the values�(j), j ∈ supp(�)∩ Z2, which can be computed by standard convolution algorithms
(see e.g.,[8]).

Lemma 5. For any� ∈ ��, we have

a� = i|�|g�(0).

Proof. It derives from the fact thatg� = S−1m� = dm�, for all � ∈ ��. �
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2.2. Discrete quasi-interpolants (dQIs)

Let�={�(�), � ∈ H ∗
k =Hk ∩Z2} be the hexagonal sequence ofhk associated with theH -spline�, and

D ∈ Łk its corresponding difference operator. As the above Schoenberg operatorS is an automorphism
on P(�), there exists for eachp ∈ P(�) a uniqueq ∈ P(�) such thatp = Sq. Then, according to the
definition ofS, we obtain

Sp =
∑
i∈Z2

Sq(i)�(. − i) =
∑
i∈Z2


∑

�∈Z2

q(�)�(i − �)


�(. − i)

=
∑
i∈Z2


∑

�∈H ∗
k

�(�)q(i + �)


�(. − i) =

∑
i∈Z2

Dq(i)�(. − i).

On the other hand, using the fact that∑
i∈Z2

�rq(i)�(. − i) =
∑
i∈Z2

q(i)�r�(. − i), r = 1 or 2,

we deduce that

Sq =
∑
i∈Z2

Dq(i)�(. − i) =
∑
i∈Z2

q(i)D�(. − i) = DSq = Dp.

Hence,S coincides withD on P(�).
Now, if we setD−1 the inverse ofD on P(�), then the discrete quasi-interpolant defined by

Qf = SD−1f =
∑
i∈Z2

D−1f (i)�(. − i) =
∑
i∈Z2

f (i)(D−1�)(. − i) = D−1Sf

is exact onP(�).
According to Lemma 2.1, the operatorD−1 is finite onP(�), and it can be written in the form

D−1f =
∑
�∈H ∗

k

c�f (. + �).

Therefore, the above expression ofQf becomes

Qf =
∑
i∈Z2


∑

�∈H ∗
k

c�f (i + �)


�(. − i),

which is equivalent to

Qf =
∑
i∈Z2

f (i)L(. − i),

whereL denotes the fundamental function defined by

L =
∑
�∈H ∗

k

c��(. − �).
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It is simple to verify that

‖Q‖∞�
(c) =
∑
�∈H ∗

k

|c�|.

2.3. Integral quasi-interpolants (iQIs)

It was shown in[8] and[14], that eachH -spline� considered in this paper satisfies
∫

�(x)dx = 1.
Then, we can introduce the following integral form of the Schoenberg operator:

S̃f =
∑
i∈Z2

〈f (. + i),�〉�(. − i),

where〈f,�〉 = ∫
f (x)�(x)dx.

AsS, the operator̃S is also an automorphism onP(�) and coincides with a difference operator. Indeed,
according to Section 3.2, for anyp ∈ P(�) there exists a uniqueq ∈ P(�) such thatS̃q = p. Then,

S̃p =
∑
i∈Z2

〈Sq(. + i),�〉�(. − i) =
∑
i∈Z2


∑

�∈Z2

v�q(� + i)


�(. − i),

wherev� = ∫
�(x)�(x − �)dx. It is simple to see thatv� = 0 for all � /∈H ∗

k . Then, if we putD̃q(x) =∑
�∈H ∗

k
v�q(x + �), we verify easily that

S̃p =
∑
i∈Z2

D̃q(i)�(. − i) =
∑
i∈Z2

q(i)D̃�(. − i) = D̃Sq = D̃p.

Consequently,̃S coincides onP(�) with D̃, andD̃−1 has a finite expression onP(�).
We now consider the following integral quasi-interpolant based onD̃−1:

Tf = S̃D̃−1f =
∑
i∈Z2

〈D̃−1f (. + i),�〉�(. − i)

=
∑
i∈Z2


∑

�∈H ∗
k

d�〈f (. + i + �),�〉

�(. − i).

We remark that for allp ∈ P(�), we haveTp = S̃D̃−1p = D̃D̃−1p = p. Thus, the iQIT is exact on
P(�).

Once again, as we obtained above for the dQIQ,

‖T ‖∞�
(d) =
∑
�∈H ∗

k

|d�|.

The study of these iQIs, illustrated by examples, is given in[8,10,14].
Let us denote byQ one of the above dQIQ or iQI T . It is well known that the infinite norm ofQ

appears in the approximation error off by Qf . More specifically, we have

‖f − Qf ‖∞�(1 + ‖Q‖∞)dist(f, S(�)).
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Then, it is interesting to construct a quasi-interpolantQ with a small norm. In general, it is difficult to
minimize the true norm. To remedy partially this problem, Sablonnière has proposed in[12], a method
for defining discrete quasi-interpolant with minimal infinite norm. It consisted to constructing bases of
the algebras of hexagonal sequences in order to get small norms for the corresponding discrete quasi-
interpolants. In the next section, we present another method which seems more interesting.

3. Near-best dQIs and iQIs based on H-splines

The proposed method consists in choosing a priori a sequencec (resp.d) with a larger support than that
of � and afterwards in minimizing
(c) (resp.
(d)) under the linear constraints consisting of reproducing
all monomials inP(�). More specifically, fors�k, we construct families of discrete or integral quasi-
interpolants:

Qk+1,sf =
∑
i∈Z2


∑

�∈H ∗
s

c�f (i + �)


�(. − i), (2)

Tk+1,sf =
∑
i∈Z2


∑

�∈H ∗
s

d�〈f (. + i + �),�〉

�(. − i) (3)

which satisfy the two following properties:

(i) Qk+1,s andTk+1,s are exact onP(�).
(ii) The coefficientsc� (resp.d�), � ∈ H ∗

s , are those that minimize thel1-norm 
(c) (resp.
(d)) of c
(resp.d) under the linear constraints consisting of reproducing all monomials inP(�).

As a sequencec (resp.d) is fully determined by a list̃c=[c�1, . . . , c�n] (resp.d̃=[d�1, . . . , d�n]), it is clear
that the exactness ofQk+1,s (resp.Tk+1,s) onP(�) implies that there exist ap×n matrixA of rankp<n

and a vectorb1 (resp.b2) in Rp such thatAc̃=b1 (resp.Ad̃=b2). Fori=1,2, setVi ={x̃ ∈ Rn : Ax̃=bi}.
Then the construction ofQk+1,s or Tk+1,s is equivalent to solving the following minimization problem:

Solve Min{‖x‖1, x̃ ∈ Vi}, i = 1,2.

Definition 6. If c (resp.d) is a solution of Problem (1) (resp. Problem (2)), then the associated dQI (resp.
iQI) defined by(2) (resp.(3)) is called a near-best dQI (resp. near-best iQI).

Proposition 7. For i = 1 or 2, the minimization Problem(i) has at least one solution.

Proof. Since the rank ofA isp, the above systemAx̃=bi, i=1 or 2, can be solved and eachx�j , 1�j �n,
is an affine function ofn−p parameters of̃x. Moreover, the sequencex is an element ofHk. On the other
hand, by substituting the affine functionsx�j in the expression of‖x‖1, we obtain an × (n − p) matrix

Ã and a vector̃bi such that‖x‖1 = ‖b̃i − Ãx̃‖1. Thus, solving Problem (i) is equivalent to determine the
best linearl1-approximation ofb̃iusing the elements of̃Ax̃, and the existence of at least one solution is
guaranteed. �
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Before giving examples of such quasi-interpolants, note that the exactness equations ofTk+1,s on
P(�) need the moments��(�) = ∫

m�(x)�(x)dx, � ∈ ��, of �. It was shown in[14] that ��(�) =
(i)|�|D��̂(0), |�| = �1 + �2. Then, when� is a box-spline, we know explicitly its Fourier transform̂�
and therefore the computation of��(�) can be done easily. But, for� which is not a box-spline, we can
determine its corresponding moments by using only the values�(j), j ∈ Hk ∩ Z2. Indeed, if we put
t� =∑

j∈Z2 m�(j)�(j), then we have the following result.

Lemma 8. For any� ∈ �� we have

��(�) =
{
t� when|�| is even,
0 when|�| is odd.

Proof. According to expression(1), we get the following connection betweent� andg�.

g� = m� −
∑

���,� �=�

(−1)|�−�|�!

(� − �)
t�−�g�. (4)

On the other hand, see e.g.[5], the sequence(g�)�∈N2 may be written in the form

g0 = m0,

g� = m� −
∑
j∈Z2

∑
���,� �=�

�!
(� − �)

(−iD)�−��̂(0)g�. (5)

Hence, by comparing(4) and(5), we obtain

t� = (−iD)�−��̂(0) = ��(�).

Using the symmetries of�, we easily verify thatt� = (−1)|�|t�, i.e., t� = 0 for all � such that|�| is odd.
Then, the announced result yields.�

4. Examples of near-best dQIs

4.1. Near-best dQI based on the quartic box-spline�2
0

The differential quasi-interpolant based on theC2 quartic box-spline�2
0 (k = 1) is given by

Df =
∑
j∈Z2

(
f (i) − 1

6
(D(2,0)f (i) + D(1,1)f (i) + D(0,2)f (i))

)
�2

0(. − i).

As D is exact onP3, we get the following expressions:

m0,0 =
∑
j∈Z2

�2
0(. − i), m1,0 =

∑
j∈Z2

i1�
2
0(. − i),
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m2,0 =
∑
j∈Z2

(
i21 − 1

3

)
�2

0(. − i), m1,1 =
∑
j∈Z2

(
i1i2 − 1

6

)
�2

0(. − i),

m3,0 =
∑
j∈Z2

(i31 − i1)�
2
0(. − i), m2,1 =

∑
j∈Z2

(
i21i2 − 1

3
i1 − 1

3
i2

)
�2

0(. − i),

and by symmetry we deduce the expressions ofm0,1,m0,2,m1,2 andm0,3.
Now, by using the properties of the hexagonal sequences(c�)�∈H ∗

s
, it is simple to verify that the

quasi-interpolant

Q2,sf =
∑
i∈Z2


∑

�∈H ∗
s

c�f (i + �)


 �2

0(. − i), s�1,

is exact onP3 if and only if the coefficientsc� satisfy the following equations:

∑
�∈H ∗

s

c� = 1 and
∑
�∈H ∗

s

�2
1c� = −1

3
.

Remark 9. For s = 1, the dimension ofH1 coincides with the number of the exactness conditions of
Q2,1 on P3. Therefore,Q2,1 is unique and it is given by

Q2,1f =
∑
i∈Z2

(
3

2
f (i) − 1

12

3∑
l=1

f (i ± el)

)
�2

0(. − i).

Thus, in order to have parameters in the minimization problem, it is necessary to takes >1.

Proposition 10. Let c∗
0,0 = 1 + 1

2(2t)2
andc∗

2t,0 = − 1
12(2t)2

. Then

(c∗
0,0,0, . . . ,0︸ ︷︷ ︸

t2+t−1

, c∗
2t,0,0, . . . ,0︸ ︷︷ ︸

t

)T ∈ R(t+1)2

is a solution of Problem(1) for k = 1 ands = 2t, t�1.

Proof. Fork = 1 ands = 2t, t�1, the expression of‖c‖1 is

‖c‖1 = |c0,0| + 6
t∑

j=1

(|c2j,j | + |c2j,0|) + 12
t∑

j=2

j−1∑
l=1

|c2j,l|

+ 6
t−1∑
j=1

|c2j+1,0| + 12
t∑

j=1

j−1∑
l=1

|c2j−1,l|,

and the associated linear constraints in Problem (1) are
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1 = c0,0 + 6
t∑

j=1

c2j,j + c2j,0 + 12
t∑

j=2

j−1∑
l=1

c2j,l + 6
t−1∑
j=1

c2j+1,0 + 12
t∑

j=1

j−1∑
l=1

c2j−1,l

− 1

3
=

t∑
j=1

{4(2j)2c2j,0 + (2(2j)2 + 4j2)c2j,j } +
t∑

j=2

j−1∑
l=1

4{(2j)2 + l2 + (2j − l)2}c2j,l

+
t∑

j=2

j−1∑
l=1

4{(2j − 1)2 + l2 + (2j − 1 − l)2}c2j−1,l . (6)

If we put

‖c‖1 = �(c0,0, c1,0, c2,0, c2,1, c3,0, c3,1, . . . , c2t−1,0, c2t−1,1, . . . ,
c2t−1,t−1, c2t,0, c2t,1, . . . , c2t,t−1, c2t,t ),

then, by using Eqs. (6), we can expressc0,0 andc2t,0 in terms of the other coefficients of the hexagonal
sequencec. Therefore, minimizing‖c‖1 under the linear constraints given in (6) becomes equivalent to
minimizing in R(t+1)2−2 the polyhedral convex function� of the following variables

c1,0, c2,0, c2,1, c3,0, c3,1, . . . , c2t−1,0, c2t−1,1, . . . , c2t−1,t−1, c2t,1, . . . , c2t,t−1, c2t,t . (7)

Let ci,j be any variable in (7). Denote bȳ�(ci,j ) the restriction of� obtained by replacing its variables by
zero exceptci,j . We will prove that this univariate function̄�(ci,j ) admits a minimum at 0∈ R. Indeed,
assume for exampleci,j = c1,0. Then, by annulling the other variables in Eqs. (6), we get the expressions
of c0,0 andc2t,0 in terms ofc1,0. More precisely, we obtain

c0,0 = c∗
0,0 − 6

(2t)2
((2t)2 − 1)c1,0,

c2t,0 = c∗
2t,0 − 1

(2t)2
c1,0.

Thus,�̄(c1,0) takes the following expression

�̄(c1,0) = |c0,0| + 6|c2t,0| + 6|c1,0|
= |c∗

0,0 − 6

(2t)2
((2t)2 − 1)c1,0| + 6|c∗

2t,0 − 1

(2t)2
c1,0| + 6|c1,0|.

It is simple to see that for small values ofc1,0, �̄(c1,0) becomes

�̄(c1,0) = c∗
0,0 − 6

(2t)2
((2t)2 − 1)c1,0 − 6(c∗

2t,0 − 1

(2t)2
c1,0) + 6|c1,0|

= (c∗
0,0 − 6c∗

2t,0) − 6

(2t)2
((2t)2 − 1)c1,0 − 6

(2t)2
c1,0 + 6|c1,0|

= �∗ + 6

(2t)2
(2 − (2t)2)c1,0 + 6|c1,0|.

Therefore, in both casesc1,0>0 andc1,0<0, we easily verify that

�̄(c1,0)>�∗ = �̄(0).

A similar technique can be applied for each of the other variables in (7).
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Consequently, we conclude that the convex function� without constraints attains its global minimum
at 0∈ R(t+1)2−2. In other words, we have

�∗ = �(c∗
0,0,0, . . . ,0︸ ︷︷ ︸

t2+t−1

, c∗
2t,0,0, . . . ,0︸ ︷︷ ︸

t

) = min{‖c‖1, c̃ ∈ V1}. �

Remark 11. A similar result can be obtained whens is odd, i.e.,s = 2t + 1, t�1. In this case we have

‖c‖1 = |c0,0| + 6
t∑

j=1

(|c2j,j | + |c2j,0|) + 12
t∑

j=2

j−1∑
l=1

|c2j,l|

+ 6
t∑

j=0

|c2j+1,0| + 12
t+1∑
j=1

j−1∑
l=1

|c2j−1,l|.

Moreover, if we putc∗
0,0 = 1 + 1

2(2t+1)2
andc∗

2t+1,0 = − 1
12(2t+1)2

, then the vector

c̃∗ = (c∗
0,0,0, . . . ,0, c∗

2t+1,0,0, . . . ,0)T ∈ R(t+1)(t+2)

is a solution of Problem (1) fork = 1 ands = 2t + 1, t�1.

According to Proposition 5.1 and Remark 5.2, the near minimally normed dQIs associated with
Hs, s�2, and exact onP3 are given by

Q2,sf =
∑
i∈Z2

((
1 + 1

2s2

)
f (i) − 1

12s2

3∑
l=1

f (i ± sel)

)
�2

0(. − i). (8)

Proposition 12. For all s�1we have

‖Q2,s‖∞�1 + 1

s2 .

Moreover, the sequence(Q2,s)s�1 converges in the infinite norm to the Schoenberg’s operatorS.

Proof. Let f ∈ C(R2) such that‖f ‖∞�1. Then, from (8) we obtain

|Q2,sf |�
∑
i∈Z2

((
1 + 1

2s2

)
|f (i)| + 1

12s2

3∑
l=1

|f (i ± sel)|
)

�2
0(. − i)

�‖f ‖∞
∑
i∈Z2

((
1 + 1

2s2

)
+ 6

12s2

)
�2

0(. − i)

�1 + 1

s2 .

Hence,‖Q2,s‖∞�1 + 1
s2 .

On the other hand, by using the expression ofS given in Section 3.1, we get

Q2,sf − Sf = 1

2s2

(
f (i) − 1

6

3∑
l=1

f (i ± sel)

)
�2

0(. − i).
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Therefore

|Q2,sf − Sf |� 1

2s2

∑
i∈Z2

(2‖f ‖∞)�2
0(. − i)�

1

s2 .

Then, we conclude that‖Q2,s − S‖∞� 1
s2 , i.e.,Q2,s converges toS whens −→ +∞. �

Remark 13. Using the Bernstein–Bézier form of�2
0, we can easily compute the infinite norm ofQ2,s

for the first values ofs. For instance, ifs = 1,2,3, we get

‖Q2,1‖∞ = 193
144 � 1.34028,

‖Q2,2‖∞ = 59
48 � 1.22917,

‖Q2,3‖∞ = 119
108 � 1.10185.

On the other hand, it is simple to check that‖Q2,1‖∞�2, and from Proposition 5.2, we have

‖Q2,2‖∞� 5
4 = 1.25 and‖Q2,3‖∞� 10

9 � 1.1111.

Therefore, the bounds of‖Q2,s‖∞, s = 2,3, are small in comparison with that of‖Q2,1‖∞. Moreover,
these bounds are close to the exact values of the infinite norm of these new dQIs. InFig. 2, we give the
graphs of fundamental functions corresponding respectively toQ2,1, Q2,2 andQ2,3.

4.2. Near-best dQI based on the box-spline�3
0

The interest in the study of this example is to show that Problem (1) can have an infinite set of solutions.
Indeed, according to Section 2, the box-spline�3

0 is of classC4, degree 7 and supportH3. The differential
quasi-interpolant based on�3

0 which is exact onP5 is defined by

Df =
∑
i∈Z2

�i(f )�
3
0(. − i),

where

�i(f ) = f (i) − 1
4 (D

(2,0)f (i) + D(1,1)f (i) + D(0,2)f (i))

+ 1
30(D

(4,0)f (i) + 2D(3,1)f (i) + 3D(2,2)f (i) + 2D(1,3)f (i) + D(0,4)f (i)).

Then, with the help ofD we easily get the expressions of the monomialsm�, |�|�4,as linear combinations
of the integer translates of�3

0 (see e.g.,[7] for more details).
Now, let us consider the dQI

Q3,sf =
∑
i∈Z2


∑

�∈H ∗
s

c�f (i + �)


 �3

0(. − i).

Using the properties of(c�)�∈H ∗
s
, we verify thatQ3,s is exact onP5 if and only if∑

�∈H ∗
s

c� = 1,
∑
�∈H ∗

s

�2
1c� = −1

2
and

∑
�∈H ∗

s

�4
1c� = 4

5
.
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Fig. 2. Graphs of fundamental functions fors = 1,2,3, respectively.
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In particular, fors = 2, a sequencec ∈ H2 can be determined only in terms ofc0,0, c1,0, c2,0, andc2,1.
Hence, the above equations of exactness become

c0,0 + 6c1,0 + 6c2,0 + 6c2,1 = 1,
c1,0 + 4c2,0 + 3c2,1 = −1

8,

c1,0 + 16c2,0 + 9c2,1 = 1
5. (9)

Therefore, if we putc2,1 = 	, then the other three coefficients in (9) can be computed in terms of	.
Moreover, we have the following result.

Proposition 14. For each	 ∈ [− 7
30,0], Q3,2f =∑

i∈Z2 �i(f, 	)�3
0(. − i), with

�i(f, 	) =
(

179

80
+ 3	

)
f (i) +

(
7

30
+ 	

) 3∑
l=1

f (i ± el) +
(

13

480
− 1

2
	

) 3∑
l=1

f (i ± 2el)

+ 	(f (±(e1 + e3)) + f (±(e2 + e3)) + f (±(−e1 + e2)))

is a near minimally normed dQI associated with�3
0.

Proof. The solution of system (9) is given by

c0,0 = 179
80 + 3	, c1,0 = 7

30 + 	, c2,0 = 13
480 − 1

2	, c2,1 = 	.

Then,

‖c‖1 = |c0,0| + 6|c1,0| + 6|c2,0| + 6|c2,1|
= |179

80 + 3	| + 6| 7
30 + 	| + 6| 13

480 − 1
2	| + 6|	|.

It is simple to check that

min
	∈R

‖c‖1 = 19
5 for all 	 ∈ [− 7

30,0
]

.

Consequently, for each	 ∈ [− 7
30,0], we obtain a near-best dQI based on the box-spline�3

0. In Fig. 3, we
give the graph of the fundamental function corresponding toQ3,2 for 	 = −7/30. �

5. Examples of near-best iQIs

5.1. Near-best iQI based on theH -spline�1
1

According to Section 2, theH -spline�1
1 is supported onH2, and it is of classC3 and degree 8. Moreover,

the spaceS(�1
1) containsP2. It was shown in[14] that the associated differential quasi-interpolant is
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Fig. 3. Graph of the fundamental function ofQ3,2 for 	 = − 7
30.

defined by

Df =
∑
i∈Z2

(
f (i) − 25

168
(D(2,0)f (i) + D(1,1)f (i) + D(0,2)f (i))

)
�1

1(. − i),

and it is exact onP2. Then we deduce the following formulae:

m0,0 =
∑
i∈Z2

�1
1(. − i), m1,0 =

∑
i∈Z2

i1�
1
1(. − i),

m2,0 =
∑
i∈Z2

(
i21 − 25

84

)
�1

1(. − i), m1,1 =
∑
i∈Z2

(
i1i2 − 25

168

)
�1

1(. − i),

and by symmetry we get the expressions ofm0,1 andm0,2.
The near-best iQI based on�1

1 is given by

T2,sf =
∑
i∈Z2


∑

�∈H ∗
s

d�〈f (. + i + �), �1
1〉

 �1

1(. − i).
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From Lemma 4.1 we deduce the moments��(�
1
1)= ∫

m�(x)�1
1(x)dx, |�|�2, of�1

1. Their values are the
following:

�(0,0) = 1, �(1,0) = �(1,0) = 0, �(2,0) = �(0,2) = 2�(1,1) = 25
84.

Then, we easily verify thatT2,s is exact onP2 if and only if the coefficientsd� satisfy

∑
�∈H ∗

s

d� = 1 and
∑
�∈H ∗

s

�2
1d� = −25

42
.

In particular, fors = 1, these coefficients are unique and the corresponding iQI is given by

T2,1f =
∑
i∈Z2

(
53

28
〈f, �1

1〉 − 25

168

3∑
l=1

〈f (. ± el), �
1
1〉
)

�1
1(. − i).

Now, assume thats >1, then by using a similar technique as in Proposition 5.1, one can show the following
result.

Proposition 15. Let c∗
0,0 = 1 + 25

28s2 andc
∗
2t,0 = − 25

168s2 . Then

(c∗
0,0,0, . . . ,0︸ ︷︷ ︸

t2+t−1

, c∗
2t,0,0, . . . ,0︸ ︷︷ ︸

t

)T ∈ R(t+1)2

is a solution of Problem(2) for k = 1 ands >1.

Hence, the near minimally normed iQI based on�1
1 and exact onP2 takes the following form:

T2,sf =
∑
i∈Z2

((
1 + 25

28s2

)
〈f, �1

1〉 − 25

168s2

3∑
l=1

〈f (. ± el), �
1
1〉
)

�1
1(. − i).

It is simple to check that‖T2,s‖∞�1+ 25
14s2 , and therefore the sequence(T2,s)s�1 converges in the infinite

norm to the operator̃S.

5.2. Near-best iQI based on theH -spline�3
1

According to Section 2, theH -spline�3
1 is of classC5, degree 11 and supportH3. As S(�3

1) contains
polynomials of total degree�4, one can define quasi-interpolants which are exact onP4. For instance,
by using only the values of�3

1 onH ∗
2 , seeFig. 4, we have got the following expression of its associated

differential quasi-interpolant:

Df =
∑
i∈Z2

�i(f )�
3
1(. − i),
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a2  a3  a2

a2  a3  a2

with (a0,  a1,  a2,  a3) =( )24528
66528

,
6663

66528
,

48
66528

,
289

66528

a3  a1  a1  a3

a3  a1  a1  a3

a2  a1  a0  a1  a2

Fig. 4. The values of�3
1 onH∗

2 .

where

�i(f ) = f (i) + 13

56
(D(2,0)f (i) + D(1,1)f (i) + D(0,2)f (i))

+ 2435

84672
(D(4,0)f (i) + 2D(3,1)f (i) + 3D(2,2)f (i) + 2D(1,3)f (i) + D(0,4)f (i)).

Then, the exactness ofD on P4 allows us to express the monomialsm�, |�|�4, in terms of the integer
translates of�3

1. On the other hand, in order to give an explicit formula of the iQI based on�3
1, we need

to compute the moments��(�
3
1)= ∫

m�(x)�3
1(x)dx, |�|�4. Once again, these moments are determined

only in terms of the values given inFig. 4. Hence, after computation we get

�(0,0) = 1,
�(1,0) = �(0,1) = �(1,2) = �(2,1) = �(3,0) = �(0,3) = 0,

�(2,0) = �(0,2) = 2�(1,1) = 13
28,

�(4,0) = �(0,4) = 2�(2,2) = 2�(3,1) = 2�(1,3) = 38
63. (10)

We introduce now the following iQI

T3,sf =
∑
i∈Z2


∑

�∈H ∗
s

d�〈f (. + i + �), �3
1〉

 �3

1(. − i).

Using the values given in (10) and the expressions of the monomialsm�, |�|�4, as linear combinations
of the integer translates of�3

1 provided by the quasi-interpolantD, we verify that the iQIT3,s is exact on
P4 if and only if∑

�∈H ∗
s

c� = 1,
∑
�∈H ∗

s

�2
1c� = 0 and

∑
�∈H ∗

s

�4
1c� = 307

3528
.

As in Section 5.1, whens = 2, a sequenced of H2 is entirely determined by its elementsd0,0, d1,0, d2,0,
andd2,1. In this case, the exactness equations ofT3,2 on P4 are

d0,0 + 6d1,0 + 6d2,0 + 6d2,1 = 1,
d1,0 + 4d2,0 + 3d2,1 = 0,
d1,0 + 16d2,0 + 9d2,1 = 307

14112. (11)

Therefore, if we putd21 = 	, 	 ∈ R, then the other three coefficients in (11) can be computed in terms of
	. Moreover, we have the following result.
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Proposition 16. For each	 ∈ [− 307
42336,0], T3,2f =∑

i∈Z2 �i(f, 	)�3
0(. − i), with

�i(f, 	) =
(

29145

28224
+ 3	

)
f (i) −

(
307

42336
+ 	

) 3∑
l=1

f (i ± el) +
(

307

169344
− 1

2
	

)

×
3∑

l=1

f (i ± 2el) + 	(f (±(e1 + e3)) + f (±(e2 + e3)) + f (±(−e1 + e2)))

is a near minimally normed iQI associated to�3
1.

Proof. The proof is similar to that of Proposition 15.3.�

Remark 17. According to Proposition 6.2, the near-minimally iQIT3,2 is not unique. In addition, for
all 	 ∈ [− 307

42336,0], we have‖T3,2‖� 3835
3528 = 1.087. Then, we remark that this bound is close to 1, and

therefore this quasi-interpolant seems very interesting.
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