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In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in 
expanding space–times always decreases while in contracting space–times the energy density grows and 
the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It 
is, though, an open question if this energy condition can be violated in a controlled way, i.e., without 
introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this 
letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC 
without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases 
when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is 
always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute 
spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show 
that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving 
higher-derivative kinetic terms and discuss ways of removing the instability.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Traditionally, the null energy condition (NEC) is assumed in 
general relativity, high-energy physics, and cosmology. It implies 
that, for every null-vector kμ , the stress-energy tensor Tμν obeys 
the inequality

Tμνkμkν ≥ 0 . (1)

For perfect fluids, this criterion means that the sum of energy 
density ρ and pressure p remains non-negative. In a Friedmann–
Roberston–Walker (FRW) space–time (ds2 = −dt2 +a2dxidxi , where 
a is the scale factor), if using reduced Planck units (MPl = 1), the 
Einstein equations simplify to

3H2 = ρtot, (2)

2Ḣ = −(ρtot + ptot) . (3)

In an expanding universe, the total energy density or, equivalently, 
the Hubble parameter H = ȧ/a > 0 (where dot denotes differentia-
tion with respect to time t) always decreases if the NEC is satisfied. 
On the other hand, in a contracting universe, for which H < 0, 
NEC satisfaction leads to continuous increase of the total energy 
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density. In many cases, NEC violation is known to lead to patholo-
gies, such as negative kinetic energy states (ghost) or imaginary 
speed of sound (c2

s < 0, gradient instability) [1]. Recently, though, 
the question whether it is possible to violate the NEC without in-
troducing these instabilities has received a fair amount of attention 
[2–6].

Settling the issue is particularly important for bouncing cos-
mologies, where it is assumed that the big bang is not a begin-
ning but a bounce, connecting a cosmic phase of contraction to 
one of expansion [7–9]. The possibility of a contracting smooth-
ing phase is intriguing because it only requires simple ingredients, 
such as a perfect fluid component or scalar field with equation 
of state ε = (3/2)(1 + w) > 3 (where w = p/ρ), to smooth and 
flatten the cosmological background. In addition, (nearly) scale-
invariant, super-horizon modes with small non-gaussianity can be 
generated during contraction that seed structure in the expanding, 
post-bounce universe and hence explain observations of the cos-
mic microwave background (CMB) [10,11]. Also, the physics of the 
contracting phase is well understood: on macroscopic scales, it is 
fully described by the classical Friedmann solutions of general rel-
ativity while on microscopic scales, it can be modeled using scalar 
fields and potentials. It is a great advantage of smoothing con-
traction that, unlike inflation, it does not lead to a multiverse or 
self-reproduction and does not involve any initial conditions prob-
lem. But the contracting phase has to end at some point and has 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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to transit to the expanding phase of standard big-bang cosmology 
(bounce).

To realize a cosmological bounce, two general strategies have 
been suggested: theories either involving a singular or a non-
singular bounce. In the case of singular bounces, the energy density 
grows to reach the Planck scale. Consequently, understanding sin-
gular bounces requires some knowledge of or assumptions about 
quantum gravity [12,13]. In non-singular bouncing models, con-
traction stops at low energies and the transition to expansion 
occurs at a finite value of the scale factor, sufficiently far from 
the Planck scale, where the Hubble parameter is negative and fi-
nite. A successful transition to the high-energy expanding phase 
requires the Hubble parameter to grow, eventually hit zero, switch 
sign and continue to grow until a high enough energy ∼ H2 is 
reached for standard big-bang evolution to follow. This approach 
has the advantage that it does not require knowledge of quan-
tum gravity but one can safely rely on the low-energy effective 
theory. However, obviously, this type of non-singular bounce in-
volves a NEC violating form of stress-energy so that it stands or 
fails depending on whether it is possible to violate the NEC with-
out pathologies. (Alternatively, one could, of course, try to intro-
duce a modification to Einstein gravity that makes it possible to 
bounce without introducing a form of stress-energy that violates 
the NEC.)

Recently, an interesting novel ansatz, mimetic cosmology, has 
been proposed that is supposed to violate the NEC and to avoid as-
sociated pathologies, such as gradient or ghost instabilities [14,15]. 
In this paper, we revisit this claim and show that simple mimetic 
scenarios can indeed evade ghost instabilities but nevertheless 
have gradient instabilities even if the NEC is satisfied (except for 
trivial cases). In Sec. 2, we start with briefly reviewing the basics 
of mimetic cosmology. Then, we derive the second-order action 
in spatially-flat and co-moving gauges in Sec. 3. We demonstrate 
in Sec. 4 that the mimetic theory can be understood as a singu-
lar limit of known, well-behaved theories involving higher-order 
kinetic terms and briefly discuss ways of avoiding instabilities. Fi-
nally, in Sec. 5, we relate our result to earlier work that was done 
in Newtonian gauge and stress the importance of analyzing stabil-
ity using the action formalism with gauge-invariant quantities as 
opposed to considering only the perturbed equations of motion.

2. Basics of mimetic cosmology

In mimetic cosmology, the underlying idea is to perform a met-
ric transformation,

gμν = (
g̃αβ∂αφ∂βφ

)
g̃μν. (4)

Here and throughout, φ is a scalar field, gμν is the physical metric, 
g̃μν is an auxiliary metric and we use reduced Planck units M2

Pl =
1/(8πGN) = 1 with GN being Newton’s constant. It is easy to see 
that the scalar field satisfies the mimetic constraint

gμν∂μφ∂νφ = −1. (5)

The transformation in Eq. (4) isolates the conformal degree of free-
dom in a covariant way and is a particular example of singular
metric transformations [16,17].

In [18] it has been shown that the mimetic transformation as 
defined in Eq. (4) is equivalent to introducing a Lagrange multiplier 
in the Einstein–Hilbert action for the physical metric gμν , i.e.,

S =
∫

d4x
√−g

(
1

2
R + λ

(
gμν∂μφ∂νφ + 1

))
, (6)

where R is the Ricci scalar, g the metric determinant and λ the 
non-zero Lagrange multiplier. In both formulations, the mimetic 
constraint parametrically renders the scalar field φ to follow the 
background solution φ = t + constant. Consequently, mimetic cos-
mology can either be considered as a modification of Einstein’s 
gravity or as the introduction of a new form of stress-energy. In 
the following, we will embrace the latter point of view; in particu-
lar, because it makes extensions and generalizations of the mimetic 
idea possible.

We shall consider the mimetic action as introduced in Ref. [15],

S =
∫

d4x
√−g

1

2
R (7)

+
∫

d4x
√−g

(
λ

(
gμν∂μφ∂νφ + 1

) − V (φ)
)

+
∫

d4x
√−g

γ

2
(�φ)2,

where γ is a non-zero constant. In the context of mimetic gravity, 
the higher-order term ∝ γ has been introduced for purely phe-
nomenological reasons, i.e., to obtain dynamical spatial gradient 
terms in a simple way, and does not follow from the underly-
ing principles of mimetic theory. Interestingly, though, the action 
in Eq. (7) coincides with the action for the IR-limit of projectable 
Hořava–Lifshitz gravity [19]. We will further comment on the con-
nection between these two theories in the discussion section.

In a FRW space–time, the mimetic action in Eq. (7) admits the 
homogeneous background solution

3H2 + 2Ḣ = 2

2 − 3γ
V (φ), (8)

Ḣ = 1

1 − 3γ
λ, (9)

φ = t. (10)

Obviously, for appropriate values of the parameters λ and γ , 
Ḣ can be positive such that the background solution violates the 
NEC. This is an interesting feature of mimetic gravity since it 
presents a novel way of NEC violation that would require relatively 
simple ingredients – a singular metric transformation using a sin-
gle scalar field. NEC violation is often known, though, to involve 
pathologies, such as ghost or gradient instabilities. In the next sec-
tion, we perform the linear stability analysis and show that the 
background corresponding to the action in Eq. (7) is not well-
behaved under perturbations.

3. Linear stability analysis

To identify the presence of any instabilities, we employ the ac-
tion formalism and derive the linear theory for first-order, gauge-
invariant quantities. For this purpose, it is convenient to work with 
the ADM decomposition of the metric,

ds2 = −N2dt2 + hij(Nidt + dxi)(N jdt + dx j), (11)

where N is the lapse, Ni is the shift and hij is the spatial metric 
that we use to raise and lower indices. Note that at zeroth order, 
N = 1 and Ni = 0 and hij = a(t)δi j , the well-known FRW metric, 
and φ̇ = 1, the mimetic solution.

The ADM decomposition of the mimetic action as given in 
Eq. (7) is

S =
∫

d4x
√

h N LADM (12)

with the Lagrangian density
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LADM = 1

2

(
R(3) + 1

N2

(
E2

i j − E2
))

(13)

+ λ

(
− 1

N2
φ̇2 + 2

Ni

N2
φ̇∂iφ + gij∂iφ∂ jφ + 1

)

+ γ

2

1

h N2

(
∂t

(√
h
−φ̇ + Ni∂iφ

N

)
+ ∂i

(√
h

Niφ̇

N

)
+

+ ∂i

(√
hNgij∂ jφ

))2

− V (φ),

where h is the spatial-metric determinant, R(3) is the three dimen-
sional Ricci scalar, gij = hij − Ni N j/N2 is the inverse spatial metric, 
and Kij = −Eij/N is the extrinsic curvature with

Eij = 1

2

(
ḣi j − ∇i N j − ∇ j Ni

)
. (14)

To study the linear theory of scalar perturbations, we next have 
to choose a particular gauge to fix the remaining degrees of free-
dom.

3.1. Spatially-flat gauge

First, we shall derive the second-order action in spatially-flat 
gauge in which all spatial inhomogeneities are promoted to per-
turbations of the scalar field δφ ≡ π(t, x) while the spatial metric 
does not carry any perturbations, hij = a2δi j . Our gauge choice 
makes it straightforward to identify the instability and to relate 
our results to both Newtonian gauge in which the original calcu-
lation has been performed [15] and to co-moving gauge in which 
the source of the instability can be most easily understood.

In spatially-flat gauge, expanding each term in the action in 
Eq. (13) to second order in perturbations yields

S(2)
π =

∫
d4x a3L(2)

π (15)

with

L(2)
π =

(
−λ̄ + 9

2
γ H2

)
π̇2 + λ̄

(∂kπ)2

a2
+ 3

2
˙̄V Hπ2 (16)

+
(
−3H2 − λ̄ + 27γ H2

)
N2

1 +
(

2λ̄ − 27γ H2
)
π̇ N1

− 2

(
(1 − 3γ )H N1 + λ̄π + 3

2
γ

(
Hπ̇ − Ḣπ

)) 
χ

a2

+ γ

2

(

χ + 
π

a2

)2

+ 3γ H(2N1 − π̇ )

π

a2

+ γ

2

(
π̈2 + Ṅ2

1 − 2π̈ Ṅ1 + 2
(
Ṅ1 − π̈

) 
χ + 
π

a2

)

+ 3γ H
(
π̈ (π̇ − 3N1) − 2Ṅ1 (π̇ − 2N1)

)
+ 2 (N1 − π̇ ) δλ ,

where 
 ≡ ∂i∂
i , δλ = λ − λ̄ is the linear perturbation to the homo-

geneous Lagrange multiplier λ̄, N1 = N −1 and Ni = ∂iχ , the linear 
perturbations to the lapse and shift, respectively, and we have used 
that on the mimetic background V̇ = V ,φφ̇ = V ,φ . (The bar over 
any quantity below refers to the unperturbed value.) Note, from 
Eq. (16), we can immediately recover the result found in Ref. [20]
that studied linear-order perturbations of the mimetic scalar for 
γ = 0 on flat space (N1 = 
χ = 0). In this case, the action in 
Eq. (16) reduces to its first line and the ghost instability is, in-
deed, avoidable for λ̄ > 0, as suggested in [20]. However, what was 
missed is that avoiding the ghost instability comes at the cost of 
introducing a gradient instability!

At linear order, the equation for δλ yields a new mimetic con-
straint,

N1 = π̇ , (17)

such that time derivatives of the lapse N1 do not carry any ad-
ditional degree of freedom. Substituting the linear-order mimetic 
constraint into Eq. (16) and using the background solution in 
Eq. (9) to eliminate λ̄, the action simplifies to

L(2)
π = −3

2
(2 − 3γ ) H2π̇2 (18)

+ 1

2

(
(2 − 3γ ) Ḣ + 3γ H2

) (∂kπ)2

a2
+ 3

2
˙̄V Hπ2

−
(

(2 − 3γ )
(

Ḣπ + Hπ̇
) − γ


π

a2

)

χ

a2
+ γ

2

(

χ

a2

)2

+ γ

2

(

π

a2

)2

.

The equation for χ follows immediately as

γ

χ

a2
= (2 − 3γ )

(
Hπ̇ + Ḣπ

) − γ

π

a2
. (19)

From the χ -equation, it is straightforward to recover the results 
found by Chamseddine et al. in Ref. [15] by way of canonical coor-
dinate transformation, as we show in the Appendix A.

If γ = 0 and we have no higher-derivative term in the mimetic 
action (7), the χ -equation renders

Hπ̇ + Ḣπ = 0, (20)

and the second-order action reduces to

S(2)
π,γ =0 =

∫
d4x a3

(
−3 (∂t(Hπ))2 +

(
H

∂kπ

a

)2
)

. (21)

Here, we have used Eq. (20), the background solution in
Eqs. (8)–(9) and, integrated by parts to find aλ̄(∂kπ)2 = aH2(∂kπ)2

and (3/2)V̇ π2 = 3Ḣ2π2 + 6H Ḣππ̇ . It is immediately apparent 
that, independent of the sign of λ̄, both the kinetic and gradient 
terms for the gauge-invariant quantity Hπ carry wrong sign, indi-
cating the presence of instabilities even if the background satisfies 
the NEC, i.e., Ḣ = λ̄ ≥ 0. In our convention, ghost instability cor-
responds to a negative coefficient of the kinetic term π̇2 in the 
action and gradient instability corresponds to a positive coefficient 
of the gradient term (∂kπ)2. (Note that π is not gauge-invariant!) 
But, from Eq. (20), it follows the combination Hπ has no time-
dependence. Hence, the action is formally unstable but there is no 
dynamics; consequently, the instabilities cannot grow and there is 
no pathology classically (though there may be pathologies in the 
quantized theory).

In the generic case where γ 	= 0, substituting the equation for 
χ into Eq. (18) and integrating by parts, the second-order action 
in spatially-flat gauge takes the simple form

S(2)
π =

∫
d4x a3

(
−2 − 3γ

γ
(∂t(Hπ))2 +

(
H

∂kπ

a

)2
)

. (22)

Hence, in Eq. (22), we see that the theory has a gradient instability 
for all backgrounds and it may or may not have a ghost instability, 
depending on the sign of (2 − 3γ )/γ . Note that, after integrating 
out χ , the final action for the γ = 0 case as given in Eq. (21)
cannot be obtained as the γ → 0 limit of Eq. (22). That means, the 
instability appears for any non-zero γ .
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3.2. Co-moving gauge

To better understand the source of the gradient instability, it 
proves useful to repeat parts of the linear stability analysis in co-
moving gauge and then to compare our results in both gauges.

In co-moving gauge, all spatial inhomogeneities are promoted 
to the metric,

hij = a2(t)e2ζ(t,x)δi j, (23)

where ζ is the gauge-invariant, co-moving curvature perturbation; 
while the scalar field remains homogeneous and does not carry 
any perturbations,

πζ = 0. (24)

In co-moving gauge, the mimetic action defined in Eq. (13)
takes the form

Sζ =
∫

d4x a3e3ζ NLζ (25)

with

Lζ = −e−2ζ

(
2

ζ

a2
+ (∂kζ )2

a2

)
− 3

1

N2
(H + ζ̇ )2 (26)

+ 2
e−2ζ

N2

(
(H + ζ̇ )


χ

a2
+ H

∂kζ∂kχ

a2

)

+ λ

(
−

˙̄φ2

N2
+ 1

)
− V (φ̄)

+ γ

2

(
− 3

˙̄φ
N2

(
H + ζ̇

) −
¨̄φ

N2
−

˙̄φ
N

∂t

(
1

N

)
+

+ e−2ζ
˙̄φ
N

(
1

N


χ

a2
+ ∂kζ∂kχ

a2
+ ∂k

(
1

N

)
∂kχ

a2

))2

;

here, the first two lines are the contribution of the gravitational 
sector.

We shall expand this action around the mimetic background 
given through Eq. (10) to second order in perturbations. As in 
Sec. 3.1, at second-order in perturbations, the λ-sector of the La-
grangian,(−λ̄N1 + 2δλ

)
N1, (27)

yields a first-order mimetic constraint resulting from the linearized 
field equation for δλ,

N1 = 0. (28)

Note that Eq. (28) is consistent with the expression for N1 in 
spatially-flat gauge, Eq. (17): Under an infinitesimal coordinate 
change ξ0, the lapse transforms as N1|g1 = N1|g2 − ξ̇0, where |g
denotes that a quantity is evaluated in gauge g [21]. For trans-
formations between the spatially-flat and co-moving gauges on 
the mimetic background ( ˙̄φ = 1), the defining coordinate change 
ξ0
π→ζ = −π can be identified, for example, by using the fact 

that scalar-field perturbations transform as π = πζ − ξ0
π→ζ

˙̄φ and 
πζ = 0 by definition. Hence, N1|π = N1|ζ + π̇ = π̇ as found in 
Eq. (17).

Substituting Eq. (28) into Eq. (26), the expressions significantly 
simplify and the second-order action in co-moving gauge takes the 
form

S(2)
ζ =

∫
d4x a3L(2)

ζ (29)
with

L(2)
ζ = −

(
3 − 9

2
γ

)
ζ̇ 2 + (∂kζ )2

a2
(30)

+ (2 − 3γ ) ζ̇

χ

a2
+ γ

2

(

χ

a2

)2

+ 9

2

(
3

3γ − 2

2
H2 − V̄

)
ζ 2 + 9

3γ − 2

2
H ∂tζ

2 .

The χ -equation reduces to the simple relation

γ

χ

a2
= −(2 − 3γ )ζ̇ . (31)

Note that, if γ = 0, the equation for χ renders ζ non-dynamical 
(that is, ζ̇ = 0 precisely).

Integrating out χ and using the background solution in Eq. (8)
to eliminate V̄ yields the second-order action for ζ :

S(2)
ζ =

∫
d4xa3

(
−Aγ ζ̇ 2 + (∂kζ )2

a2

)
, (32)

with the kinetic coefficient

Aγ =
{

3 if γ = 0 ,

2−3γ
γ if γ 	= 0 ,

(33)

in agreement with our results in spatially-flat gauge as given in 
Eqs. (21)–(22); the consistency of both calculations can be easily 
verified by applying the well-known transformation rule for scalar 
perturbations to the spatial curvature ψ . By definition, ψ |π = 0, 
ψ |ζ = −ζ , and ψ transforms as ψ |g1 = ψ |g2 + Hξ0

g1→g2. With 
ξ0
π→ζ = −π as shown above, ζ = −Hπ .

(Note that the spatial metric hij introduced in Eq. (11) can be 
related to ψ , for example, via hij = a2(t)

(
(1 − 2ψ |ζ )δi j + αi j +

O(2) + . . .
)
, where αi j is a traceless and transverse tensor and does 

not carry scalar degrees of freedom so we can neglect it. Note, 
though, that, in contrast to ψ , hij is gauge independent.)

For all values of γ (including γ = 0), the first-order mimetic 
constraint leads to notable consequences:

– in co-moving gauge, the λ-sector does not contribute to the 
second-order action;

– the remaining scalar sector only contributes to the kinetic 
term ∼ ζ̇ 2 but it does not contribute to the gradient term of ζ ; 
instead, all contribution to (∂kζ )2 comes from the gravitational 
Einstein–Hilbert term in the action which is the source of the 
gradient instability. Without the higher-order term (γ = 0), 
the theory formally suffers from both ghost and gradient in-
stabilities, both coming from the Einstein–Hilbert term in the 
action, but the co-moving curvature remains non-dynamical 
so that the instability cannot grow. Adding the higher-order 
kinetic term (γ 	= 0) can eliminate the ghost for appropriate 
choice of γ and make ζ become dynamical but it cannot alle-
viate the gradient instability.

It is worth emphasizing that these features could easily be rec-
ognized by employing the action formalism and performing the 
perturbation calculation in co-moving gauge, using gauge-invariant 
quantities. Working in spatially-flat gauge leads to the same con-
clusion, as it should, but the ultimate source of the instability is 
obscured. Working at the level of the perturbed equations of mo-
tion, on the other hand, can lead to wrong conclusions about the 
instability.
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4. Mimetic cosmology as a singular limit of higher-derivative 
theories

In the previous section, we have shown that gradient instabili-
ties arise within mimetic cosmology if we add higher-order kinetic 
terms. Without higher-order kinetic terms, on the other hand, cur-
vature modes do not get excited. To better understand the nature 
of both mimetic theory and the associated gradient instability, we 
next demonstrate that the mimetic action in Eq. (7) can be recov-
ered as the limit of known higher-derivative theories.

We shall consider the following action,

S =
∫

d4x
√−g

1

2
R (34)

+
∫

d4x
√−g

(
λ

(
∂μφ∂μφ + 1

) − ξ

2
λ2 − V (φ)

)

+
∫

d4x
√−g

γ

2
(�φ)2,

where ξ and γ are constants and λ is a dynamical variable de-
scribed by the equation of motion

ξλ = (
∂μφ∂μφ + 1

)
. (35)

If ξ = 0, λ acts as a Lagrange multiplier, the λ-equation be-
comes the mimetic constraint and the action reduces to the 
mimetic action in Eq. (7).

If ξ 	= 0, substituting the expression for λ in Eq. (35) into the 
original action in Eq. (36), we find

S =
∫

d4x
√−g

1

2
R (36)

+
∫

d4x
√−g

(
1

2ξ

(
∂μφ∂μφ + 1

)2 − V (φ)

)

+
∫

d4x
√−g

γ

2
(�φ)2 .

This action represents a particular example of well-known P (X)-
theories (where X ≡ (∂φ)2/2) with additional higher-derivative 
terms, such as k-inflation [22], k-essence [23], or ghost conden-
sate [2]. If γ = 0, P (X)-theories encounter gradient instabilities on 
NEC violating backgrounds but are well-behaved if the NEC is sat-
isfied. If γ 	= 0, P (X)-theories suffer from Ostrogradski instability 
that cannot be removed without altering the theory [24].

First, we show that the mimetic background can be recovered 
as a continuous limit of Eq. (36) as ξ → 0.

4.1. Mimetic background as a smooth limit for ξ → 0

The action in Eq. (36) admits the FRW background solution

2 − 3γ φ̇2

2

(
3H2 + 2Ḣ

)
=− 1

2ξ

(
φ̇2 − 1

)2 + V (φ)

+ γ

(
6Hφ̈φ̇ + φ̇

...
φ + 1

2
φ̈2

)
,

(37)

(
1 − 3γ φ̇2

)
Ḣ = − φ̇2

ξ

(
φ̇2 − 1

)
+ γ φ̇

(...
φ + 3Hφ̈

)
. (38)

In the limit of ξ → 0, the scalar field must satisfy the mimetic 
constraint in Eq. (5),

φ̇2 − 1 = 0, (39)

as otherwise the total energy density (∝ H2) would diverge. With 
the corresponding (mimetic) solution φ = t + constant, Eq. (37) re-
duces to its mimetic counterpart Eq. (8),
2 − 3γ

2

(
3H2 + 2Ḣ

)
= V (φ) . (40)

Finally, it is straightforward to recover Eq. (9) from Eq. (38). Using 
Eq. (35),

φ̇2 = 1 − ξλ , (41)

and keeping terms to leading order in ξ , the Ḣ-equation simplifies 
to its mimetic counterpart

(1 − 3γ ) Ḣ = λ . (42)

Hence, as claimed, the mimetic background can be recovered as 
a continuous limit of the higher-derivative theory given through 
Eq. (36).

Notably, this is not the case for the perturbed action. We will 
next show that the second-order mimetic action is a singular limit
of Eq. (36) as ξ → 0. By singular limit, we mean the stability 
behavior for ξ = 0 undergoes a discontinuous jump compared to 
finite ξ .

4.2. Second-order mimetic action as a singular limit for ξ → 0

Similar to Sec. 3.2, we perform the linear stability analysis by 
expanding the action in Eq. (36) around the homogeneous back-
ground solutions derived from Eqs. (37)–(38) to quadratic order 
in perturbations, using ADM variables. In co-moving gauge, the 
second-order action is

S(2)
ζ =

∫
d4x a3L(2)

ζ , (43)

where the Lagrangian density is

L(2)
ζ = −3

(
1 − 3

2
γ φ̇2

)
ζ̇ 2 + (∂kζ )2

a2
(44)

+ 2
(
−H N1 + γ

(
φ̈ + 3Hφ̇

)
φ̇N1 + γ

2
φ̇2Ṅ1

) 
χ

a2

+
(

2 − 3γ φ̇2
)

ζ̇

χ

a2
+ γ

2
φ̇2

(

χ

a2

)2

+ γ

2
φ̇2Ṅ2

1

+
(

−2

ζ

a2
+ 3H

(
2 − 3γ φ̇2

)
ζ̇ + 3γ φ̇2ζ̈

)
N1

+
(

− 3H2 + 1

ξ

(
3φ̇4 − φ̇2

)
+

+ γ
(
φ̈2 + 9H2φ̇2 − 2

...
φφ̇ − 6Ḣφ̇2

))
N2

1 ;

here we used the background equations to eliminate terms ∝ ζ N1
and ∝ ζ 2. Varying the action with respect to 
χ leads to the con-
straint equation

γ φ̇2 
χ

a2
= −

(
2 − 3γ φ̇2

)
ζ̇ (45)

+ 2
(

H − γ φ̇
(
φ̈ + 3Hφ̇

))
N1 − γ φ̇2Ṅ1.

If γ = 0, the χ -equation yields a closed expression for the lapse 
perturbation,

N1 = ζ̇

H
, (46)

and the second-order action

S(2)
ζ,γ =0 =

∫
d4xa3

(
− 3ζ̇ 2 + (∂kζ )2

a2
− 2


ζ

a2
N1 (47)

+ 6H N1ζ̇ + 1

ξ
φ̇2

(
3φ̇2 − 1

)
N2

1 − 3H2N2
1

)
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reduces to

S(2)
ζ,γ =0 =

∫
d4xa3

(
1

ξ
φ̇2 3φ̇2 − 1

H2
ζ̇ 2 + Ḣ

H2

(∂kζ )2

a2

)
. (48)

Obviously, this expression differs from the second-order mimetic 
action S(2)

ζ,γ =0 in Eq. (32), corresponding to ξ = 0. This is an exam-
ple of what we mean by a singular limit of the action in Eq. (48). 
In this case, the root cause is that Eq. (36) alone is not equiva-
lent to Eq. (34). It is only equivalent if one additionally imposes 
the constraint in Eq. (35). With this additional constraint, we re-
cover the perturbed mimetic action by deriving the expression for 
δλ from Eq. (35),

ξδλ = φ̇2N1 = (
1 − ξ λ̄

)
N1 . (49)

Evaluating the δλ-equation for ξ = 0 leads to the mimetic con-
straint on the lapse: N1 = 0; the action in Eq. (47) reduces to its 
mimetic counterpart in Eq. (32) and the χ -equation (45) renders 
ζ̇ = 0. On the other hand, for finite ξ , N1 = ζ̇ /H 	= 0 as given in 
Eq. (46) so terms proportional to the lapse N1 and its square N2

1
in Eq. (47) can counteract the wrong-sign terms ∝ ζ̇ 2, ∝ (∂kζ )2

resulting from the Einstein–Hilbert part of the original action in 
Eq. (36). This is how it is possible that, for ξ 	= 0, the pertur-
bations are stable on NEC satisfying backgrounds with 3φ̇2 > 1
(no ghost); otherwise, the linear-order perturbations are unsta-
ble (ghost and/or gradient instability) – the well-known feature of 
P (X) theories.

If γ 	= 0, substituting the expression for 
χ/a2 from Eq. (45)
into the action in Eq. (44) and integrating by parts yields

L(2)
ζ = −2 − 3γ φ̇2

γ φ̇2
ζ̇ 2 + (∂kζ )2

a2
(50)

+ 2

(
ζ̈ − 
ζ

a2
+ 1

γ φ̇2

(
H

(
2 − 3γ φ̇2

)
− 2γ φ̈φ̇

)
ζ̇

)
N1

−
(

2

(
1

γ φ̇2
− 3

)
H2 +

(
1 + 3γ φ̇2

)
Ḣ − 1

ξ

(
3φ̇4 − φ̇2

)

− 4H
φ̈

φ̇
+ γ φ̇

(
3Hφ̈ + ...

φ
))

N2
1 .

Varying with respect to the lapse N1, we write the Hamiltonian 
constraint as

B̄(t) N1 = ζ̈ − 
ζ

a2
+

(
2 − 3γ φ̇2

)
H − 2γ φ̈φ̇

γ φ̇2
ζ̇ , (51)

with the time dependent coefficient

B̄(t) = −1

ξ
φ̇2

(
3φ̇2 − 1

)
+ 2

1 − 3γ φ̇2

γ φ̇2
H2 (52)

+
(

1 + 3γ φ̇2
)

Ḣ − 4H
φ̈

φ̇
+ γ φ̇

(...
φ + 3Hφ̈

)
.

Finally, substituting the expression for N1, the second-order action 
for ζ defined through Eq. (43) is given by the Lagrangian density

L(2)
ζ = −2 − 3γ φ̇2

γ φ̇2
ζ̇ 2 + (∂kζ )2

a2
(53)

+ 1

B̄(t)

(
ζ̈ − 
ζ

a2
+

(
2 − 3γ φ̇2

)
H − 2γ φ̈φ̇

γ φ̇2
ζ̇

)2

.

The higher-order time derivative ζ̈ 2 and the lack of any additional 
constraints on ζ indicates an Ostrogradski instability [24], as men-
tioned above. It is easy to see that for ξ → 0, 1/B̄(t) → 0, or 
alternatively, N1 → 0, and the action reduces to its mimetic coun-
terpart in Eq. (32) for γ 	= 0. In this sense, the mimetic action is 
a continuous limit of the action in Eq. (53). On the other hand, 
the transition from the Ostrogradski instability to the (mimetic) 
gradient instability is a discontinuous jump. For any ξ 	= 0, the 
higher-order derivative term and, hence, the Ostrogradski instabil-
ity is present but it vanishes when ξ = 0, i.e., ξ = 0 is a singular 
limit.

5. Discussion

In this letter, we have performed a complete stability analysis 
of the recently introduced mimetic theory. We were particularly 
interested in the question whether mimetic cosmology opens up a 
new way to stably violate the null energy condition.

We have found that the mimetic theory suffers from a gradi-
ent instability even if the null energy condition is satisfied. We 
have shown that the source of the gradient instability is the grav-
itational Einstein–Hilbert term in the action while the linear-order 
mimetic constraint prevents the scalar-field sector from contribut-
ing additional gradient terms that might stabilize the theory.

In addition, we have demonstrated that the second-order 
mimetic action is a singular limit of known higher-derivative theo-
ries. In particular, we have shown that even though for the higher-
derivative theory the background equations of motion smoothly 
converge to the mimetic equations of motion in the limit ξ → 0, 
the linear stability behavior undergoes a discontinuous jump in 
the same limit. This finding reveals that the mimetic theory is 
truly distinct from these higher-derivative theories. This lesson is 
important in considering other theories that approach the mimetic 
in some limit. For example, it has been noted that the projectable 
Hořava–Lifshitz gravity approaches our mimetic action in the IR-
limit [19]. What we have shown here indicates that one should 
do an independent stability analysis in the regime where gradient 
instabilities become dangerous, taking careful account of any ad-
ditional contributions that are different from the mimetic theory. 
See for example [25,26].

To perform our stability analysis, we focused on a particular 
mimetic action introduced in Ref. [15] but our results can easily 
be generalized. For example, our interpretation of the mimetic the-
ory as a singular limit of known higher-derivative theories opens 
up possible directions for future work, such as modifying the 
Lagrange-multiplier constraint in a way that eliminates the insta-
bility during NEC violation.
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Appendix A. Recovering the results in Ref. [15] from Eq. (19)

We show here that it is straightforward to recover the results 
found by Chamseddine et al. in Ref. [15], where the linear-order 
mimetic perturbations were analyzed in Newtonian gauge, at the 
level of the equations of motion. In Newtonian gauge, the per-
turbed metric takes the form

ds2 = −(1 + 2�N)dt2 + (1 − 2�N)a2(t)δi jdxidx j . (A.1)

Here, �N is the Newtonian gravitational potential and �N is the 
Newtonian spatial curvature. Notably, in the absence of anisotropic 
stress, �N = �N . For an infinitesimal coordinate change ξ0, the 
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canonical transformation rules between spatially-flat and Newto-
nian gauges read as follows [21],

�|π = �N + Hξ0
π→N , (A.2)

χ |π = χ |N + ξ0
π→N , (A.3)

π = π |N − ξ0
π→N

˙̄φ . (A.4)

By definition, �|π = 0 and χ |N = 0, and the mimetic constraint in 
Eq. (5) renders ˙̄φ = 1 and �N = π̇ |N . It follows,

χ |π = − π̇ |N

H
, (A.5)

π = π |N + π̇ |N

H
. (A.6)

Substituting into Eq. (19), we find the equation for the Newtonian 
scalar-field perturbation π |N ,

(2 − 3γ )
(
π̈ |N + Hπ̇ |N + Ḣπ |N

) − γ

π |N

a2
= 0 ; (A.7)

in agreement with the result found in Ref. [15]. Note, though, 
that the equation for πN is not determinative with respect to the 
stability of the physical metric perturbations, since the equation 
of motion only indicates the relative sign of kinetic and gradient 
terms of π |N and is insensitive to their absolute sign. One of the 
important lessons of the present analysis is the advantages of em-
ploying canonical, gauge-invariant quantities and reading off the 
overall sign of the perturbed action in order to determine the ex-
istence and nature of instabilities.
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