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1. Introduction

Let M;, denote the set of complex matrices of order n. For matrices A = (a;;), B = (b;j) € My, we
denote by p(A) the spectral radius of A, by A o B = (ajjb;j) the Hadamard product of A and B, and by
A ® Bthe Kronecker product of A and B. The notation A < B means that B — Ais entrywise nonnegative,
and ||A]| denotes the spectral norm (largest singular value) of A.

Zhan [7] conjectured that p (A o B) < p(AB) for nonnegative matrices A, B € My, which was proved
by Audenaert [1], and by Horn and Zhang [4], respectively. The aim of this paper is to generalize
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this inequality to an arbitrary finite number of nonnegative matrices by using the ideas of Horn and
Zhang, and to prove the inequality ||A o B|| < p (AT B) for nonnegative matrices, which improves Schur’s
inequality ||A o B|| < ||A|l||B]| [3, Theorem 5.5.1]. In the last section, we give counterexamples to two
conjectures proposed in [2,5].

2. An inequality for the spectral radius

In this section, we generalize the spectral radius inequality p(A o B) < p(AB) to an arbitrary finite
number of nonnegative matrices. For A € M, and o C {1, 2,...,n}, A[x] denotes the principal sub-
matrix of A indexed by «. One version of the following lemma can be found in [6, Lemma 2.2]. Here
the statement is more explicit and we give a new proof.

Lemma 1. Let A1, Ay, ..., Ax € My. Then
AjoAyo---0Ah= (A1 QAR - QA [xl,
where

a={1, " T+ k2 4y 422 0k 4 ) + 3,
3 4+l ) 4, 0k

Proof. Let e; € R" be the vector whose only nonzero component is the ith component, which equals
1fori=1,...,n.Set

E= (@ ® er---® ep),

where we denote by RKe; = €; ® - - - @ e, the k-fold Kronecker product of e;. One verifies that ETAE =
Ala] forany A € M.
Let Ay = (al-(j[)) for 1 <t <k.Then
2 k
i(j])algj Vo ai(j) = (e[ A16) ® (e} Aze) ® - - ® (e] Axej)
= @)A1 @A - @A) ')

—el[ET(A ® A, ® - @ AYEle;.

a

Hence
AoAyo- oA =EA®A® ®AE=A QAR @A)l O
Lemma 2. Let A, B, C € M, be nonnegative and let 8 C {1, ..., n} be nonempty.
(1) IfA<B, then p(A) < p(B).
(2) p(AIBD < p(A).
(3) AIBIBIB] <(AB)[B].
(4) IfA<B, then AC <BC.

Proof. Lemma 2.1 of [4] contains (1), (2), and (3). One verifies (4) with a computation. []

Theorem 3. Let A1, Ay, . .., Ay € M, be nonnegative matrices. Then
p(AroAzo---0A) < p(AAy - - - Ap). (M
Proof. For nonnegative matrices A1, Ay, . ..,Ax € M,, Lemmas 1 and 2 ensure that

(A1 OA20~--OAk)k
= (AjoAyo---0A)(Ayo---0Ar0A))---(AkoAjo0---0AK_1)
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=M1 QA4 - QA a](A2 Q- A RAD[a] - (A ® A1 ® - - - ® Ar—1)[x]
S(ARAR - QA)A R - QARAN) x](A3® - - QA ® A1 ® Ay)[]
Ak ® AL ® - ®Ar—1)[] (by (3) and (4) of Lemma 2)

CS(ARAR® - QA)AQ - - QARA) - (AARAI ® - @ Ak—1))la]
= ((AjAy - - Ap) ® (Ax - - - AkA1) ® -+ - @ (AkAq - - - Ak—1))[a].

Therefore,

pk(A1 0Ayo---0Ay)
= p((AyoAyo--0AY")
<p(((AA2---A) @ (A - - AkA1) @ - - ® (AkAq - - - Ak—1))[a]) (by (1) of Lemma 2)
<Pp((AAr---A) @ (Az -+ - AkA1) @ - - - @ (AkA1 - - - Ak—1)) (by (2) of Lemma 2)
= pAAy - A p(Az -+ - AkAr) - - p(AkAr - - - Ap—1)
=P AiAy- Ay, O

Since the Hadamard product is commutative, it follows from (1) that
P(AjoAzo---0A)< rr})in PAymAp2) ** + Apk)),

where p is any permutationof 1,2, .. ., k.
3. Inequalities for the spectral norm

It is known [3, Theorem 5.5.1] that for matrices A, B € My, ||A o B|| < ||A||||B]|. A natural question is
whether ||A o B|| < ||AB||. This is not true even for two nonnegative matrices A and B. Consider

A:<8 %) and B:(é (1)) (2)

for which
[AoB|| =1 > 0=|AB]|.

Now we give some inequalities for the spectral norm of the Hadamard product of nonnegative
matrices, one of which improves the inequality ||A o B|| < ||A||||B]|-

Denote by AT the transpose of a matrix A. For an arbitrary finite number of nonnegative matrices,
we have

Theorem 4. Let A, Ay, ..., Ay € M, be nonnegative matrices. Then
141 0 Ag 0 -+ 0 Akl < p'/2 (AATARAT - - - AAD).

Proof. For nonnegative matrices A1, A, . .., Ay € M;,, Lemmas 1 and 2 ensure that

((AjoAyo---0A)(A 0Ayo---0A)H
= (AjoAyo---0A)(Aj0Ayo---0A) (Ayo---0AoA)(Azo---0A oA
---(AkoAio---0Ak—1)(Ax 0 Aq o-~-oAk_1)T
= (A10A; o-~-oAk)(A{oAgo---oAz)(Azo“-oAk oA1)(A£o---oA£oA¥)
-+ (Ag 0 Ay o-~-oAk_1)(A£oA€o-~-oAZ_1)
= A ®AQ - QA)X]A] ®A]® - @AD[X]A; ® -+ ® Ay ® Ap)le]
Ay Q- QAL @AD] -+ (A ® A ® - @ A1) [a](A] ®A] ® -+ @ A_y)let]
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S(AM®AR - QANA A ® - QANA ® - @A @A)
AR QALRA) - (A®A® - @A1)AL ®A @ ®AL_ )]
= (MAJAA] - AAD) ® (ArAL - - ALALAIA]) ® -+ - ® (AkALAIA] - - - Aka1Af_y))[]
and hence
1A 0 A2 0 - - 0 Al|*
= p"((A1oAro---0AY (Ao 0 0 AY)
= p((A1 oAz 0+ 0 A)(A1 0 Ay 0+ 0 AYY)
<P ((MATAZAY - - AAL) ® (AL -+ - AALAIAT) ® - - - ® (ALALAIAT - - Aa1Ar_p))lat])
<P(AMATAA, - AAD) © (ArA) - AALAIAD) ® -+ @ (AALAIA] - - A1 AL 1))
= D(AATAZA] - - ALA p(A2A] - - - AALAMAY) - - p(AALMAT - - A 1AL )

= ok ATAAT - AAD). O

Theorem 5. Let A1, Ay, . .., Ax € M, be nonnegative matrices. If k is even then

1A1 0 Ay 0 -+ 0 Arll < p'* (AT A2ATAL - - - AL_1A) P/ (MATAsA - - Ak 1AL
if k is odd then

Ay oAz 0 0 Al < p'/2(AIATASAL - - AT ALATALATA, - - - A 1AD).

Proof. If k is even, Lemmas 1 and 2 ensure that
((AjoAyo--- oAk)T(Al oAyo--- oAk))k/2
= (Al oAl o - 0A)@Ay 0 0AL0A)(AS 0 0 AL 0 A] 0 A))
(Ago---0Ar0A0Ay oA3)-«-(A£_l oAz oA¥ 0. oAﬁ_z)(A,< oAjo0---0AK_1)
=A A Q- ®AD[](A ® - ®A®AD[a](A] ® - - ® A, ® A} ® A))[]
(A ®AL QAT ® - AL _D]A® A ® - - ® Ar—1)[e]
SATRA®- ®ADML® - ®AR®ANA ®- - ®AL ®A] @A)
AL QALRAI® - AL A B A - ® A1))e]
= (A1A2A3A4 - - A1 AL) ® (Ayhs - - Ak 1ApA) ®
@ (Ap_AA Ay - - Af_3Ar—2) ® (ALAIAS -+ AL A1) el
So
IA1 0 Az 0+ 0 A
= p"?((A1oAz 0 0 A (A1 0 Ay 0 -+ - 0 AY))
=p(((A1oAz 0 0A) (A1 0Ayo -+ 0 A?)
<P((ATAATAL - - - Al_1AY) ® (AJA3 -+ - A—1A[A)) ®
@ (A1 AAL Ay - Ap_3Ak—2) @ (ALAIAY - - Ay yAr-1)e])
<P((ATAATAL - - AL_1AY) ® (AjAs - - Ar_1ALAY) ®
- ® (A AAT Ay - - Ap_3Ak—2) ® (ALAIAL -+ AL ,Ak1))
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= p(AJA2ALAg - - Ap_1A) P (AYA3 - - - Ak 1ALAr)
< P (A1 AkAT Ay -+ Ap_3Ak—2) p(ALALAY - - - Ap_yAk—1)
= 0" (AT AAL A - - AL A PN (A1 ALAs - - A1 AD),
in which the final equality follows from the two inequalities
PATAA AL - AL 1A = p(A3As- - - AL AATAY) = -+ = p(Ay_1AkAT Az - - - AL_3Ak—2)
and
P(AIAZA - - A 1AL) = p(AYAs - - A1 AAr) = - - = (AiAYAs - - Al A1),
If k is odd, consider

A1 oAz 00 Akl = pX((A1 oAz 0 0 AT (A1 0 Ay o --- 0 AY))

and
(AyoAzo- - 0A) (Al oAyo - oA)*
= (A¥0A50-~-0A[)(A2 o---0A oAl)(A§o~--oAzoA{oAg)
(A40~-~0Ak OA1 OA2 OA3)--~(Ak_] OAk OA1 O-~-0Ak_2)(A£OA-{O-~-OA£_1)
(A1 0 Ay o-~-oAk)(Ago-~-oA£oA¥)(A3 0---0Ak0Aj0Ay)---
(Ak_1Ag 0 Aj 0 -~ 0 Ak_y) (Ao Ay o -+~ 0 Agy).
It follows that

A1 0 A2 0 - - - 0 Al|*
<p*TV2ATAATA, - A ATAIATASAL - AT AL)
p &2 (A A AAL - AT AATARATA, - - - A1 AT)
= oM (AT AAL - A AATAATA - ArAD). O

Corollary 6. Let A, B € M, be nonnegative. Then
1A 0 Bl < p(A"B). (3)

Proof. Theorem 5 ensures that
IAo Bl <p'*(ATB)p'/*(AB") = p'/*(ATB)p'/*(BTA) = p(ATB). O

Since
p(AoB)<|AoB| <p(A'B)<||ATB| < [A]l|BI,
Corollary 6 improves the inequality ||A o B|| < ||A||||B]| and implies that p(A o B) < p(ATB) and ||A o
B|| < ||ATB|| for nonnegative matrices.

Remark 1. In Corollary 6 the nonnegativity condition cannot be removed and the inequality does not
hold for positive semidefinite matrices. Consider the following example:

1 —1 1 1
A=<_1 1) and B:(1 1)
for which A and B are both positive semidefinite and

lAoB| =2 > 0= p(A’B).
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Remark 2. The transpose in (3) is necessary: the matrices in (2) provide a counterexample to the
inequality ||A o B|| < p(AB), as well as to the weaker inequality ||A o B|| < ||AB]|.

4. Counterexamples to two conjectures

Denote by A and A* the entrywise complex conjugate and the conjugate transpose of a matrix
A € My, respectively. We write the decreasingly ordered singular values of A € My, as s1(A) > s2(A)
> ... >5,(A). Huang [5] and Zhan [2] made the following two conjectures, respectively: For A, B € M,

{s7(AoB)} < {sj(A o A)s;(BoB)}, (4)
and

I(AoB)(AoB)*| <[(AoA)(BoB)|| (5)
where <,, means weak majorization and || - || is any unitarily invariant norm. Since for any X, Y € My,

{si(XY)} <w {s;(X)sj(Y)} [8, p. 20], (5) is stronger than (4). Du [2] proved (5) for the spectral norm, the
trace norm, and the Frobenius norm. Here we give counterexamples to (4) and (5) for other unitarily
invariant norms. Recall that the Ky Fan k-norm of a matrix A € My, is ||A] ) = Z}‘:] si(A).

Let

2 1 1 2 -1 -1
A=|1 2 1], B=|-1 2 -1
1 1 2 -1 -1 2

The singular values of A o B are {5,5,2}, the singular values of Ao A = Bo B are {6,3,3}, and the
singular values of (A o A)(B o B)T are {36, 9, 9}. We have

52452 =50>45=6>4+32=36+9,
which contradicts (4). The contradiction
(Ao B)(AoB)*|l2) > (Ao A)(BoB) ||z)

of (5) follows from observing that s;((A o B)(A o B)*) = s]-2 (A o B) for every j.
In fact, (5) is invalid for nonnegative matrices and the Ky Fan 2-norm. One example is

8§ 7 4 7 6 0
A=|0 0 6] and B=|3 1 6
6 10 7 4 10 7

However, we have not found nonnegative matrices A, B contradicting (4).

Problem 1. Is the inequality (4) correct for nonnegative matrices A, B?
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