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Abstract

The generalized Gegenbauer polynomials are orthogonal polynomials with respect to the
weight function|x|2µ(1− x2)λ−1/2. An integral formula for these polynomials is proved,
which serves as a transformation betweenh-harmonic polynomials associated withZ2

invariant weight functions on the plane. The formula also gives a new integral transform
for the Jacobi polynomials, which contains several well-known formulae as special cases.
The new formulae can be used to prove the positivity of certain sums of the generalized
Gegenbauer and Jacobi polynomials.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

For λ > −1 and µ � 0, let C
(λ,µ)
n denote the generalized Gegenbauer

polynomials of degreen, defined by the generating function

∞∑
n=0

C(λ,µ)
n (x)rn = cµ

1∫
−1

1

(1− 2rtx + r2)
(1+ t)

(
1− t2)µ−1 dt,
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wherecµ is a constant defined by

c−1
µ =

1∫
−1

(1+ t)
(
1− t2)µ−1 dt =

√
π�(µ)

�(µ + 1/2)
.

The polynomialsC(λ,µ)
n are orthogonal polynomials with respect to the weight

function

wλ,µ(x) = |x|2µ(1− x2)λ−1/2
, λ,µ > −1/2.

One of the main result of the present paper is the following identity:

Theorem 1.1. For τ1 > κ1 > −1/2, τ2 > κ2 > −1/2, and 0 � θ � π ,

C(τ2,τ1)(cosθ)

�(τ1 + (n + 1)/2)C(τ2,τ1)
n (1)

= �(τ2 + 1/2)

�(τ1 − κ1)�(τ2 − κ2)�(κ2 + 1/2)

×
1∫

−1

1∫
−1

(
t2
1 cos2 θ + t2

2 sin2 θ
)n/2

× C
(κ2,κ1)
n (t1 cosθ(t2

1 cos2 θ + t2
2 sin2 θ)−1/2)

�(κ1 + (n + 1)/2)C(κ2,κ1)
n (1)

× |t1|2κ1|t2|2κ2
(
1− t2

1

)τ1−κ1−1(1− t2
2

)τ2−κ2−1 dt1 dt2. (1.1)

To put this result into perspective, let us relate it to several well-known
transformations for Jacobi polynomials and Gegenbauer polynomials. Using the
limit

lim
µ→0

cµ

1∫
−1

f (t)
(
1− t2)µ−1 dt = f (1) + f (−1)

2
, (1.2)

the generating function of the generalized Gegenbauer polynomials becomes the
generating function of the Gegenbauer polynomials, usually denoted byCλ

n(x),

whenµ = 0; that is,C(λ,0)
n = Cλ

n . Hence, settingτ1 = κ1 = 0 gives the following
identity of Feldheim and Vilenkin (cf. [2, p. 24]):

Cν
n(cosθ)

Cν
n(1)

= 2�(ν + 1/2)

�(λ + 1/2)�(ν − λ)

×
π∫

0

sin2λ ϕ cos2ν−2λ−1ϕ
[
1− sin2 θ cos2ϕ

]n/2
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× Cλ
n(cosθ(1− sin2 θ cos2ϕ)−1/2)

Cλ
n(1)

dϕ

for ν > λ > −1/2, 0 � θ � π . Furthermore, the generalized Gegenbauer
polynomials can be given in terms of the Jacobi polynomialsP

(α,β)
n , which are

orthogonal polynomials associated with the weight function(1− x)α(1+ x)β on
the interval[−1,1], normalized by

P (α,β)
n (1) =

(
n + α + 1

n

)
= (α + 1)n

n!
(see, for example, [6]). Recall the Pochhammer symbol(a)m = a(a + 1) · · · (a +
m − 1). The relation is [5, p. 27]

C
(λ,µ)
2n (x) = (λ + µ)n

(µ + 1/2)n
P

(λ−1/2,µ−1/2)
n

(
2x2 − 1

)
,

C
(λ,µ)
2n+1(x) = (λ + µ)n+1

(µ + 1/2)n+1
xP

(λ−1/2,µ+1/2)
n

(
2x2 − 1

)
. (1.3)

If we replacen in (1.1) by 2n and use the first relation of (1.3), we get the
following integral transform for the Jacobi polynomials:

Theorem 1.2. For γ > α > −1, δ > β > −1 and 0� θ � π/2,

P
(γ,δ)
n (cos2θ)

P
(γ,δ)
n (1)P (δ,γ )

n (1)

= cγ,αcδ,β

1∫
0

1∫
0

(
s2 cos2 θ + t2 sin2 θ

)n P
(α,β)
n (u(s, t, θ))

P
(α,β)
n (1)P (β,α)

n (1)

× s2β+1t2α+1(1− s2)γ−α−1(1− t2)δ−β−1 ds dt, (1.4)

where u(s, t, θ) = (s2 cosθ2 − t2 sinθ2)/(s2 cosθ2 + t2 sinθ2) and cγ,α is a
constant given by

c−1
γ,α =

1∫
−1

|t|2α+1(1− t2)γ−α−1
dt = �(α + 1)�(γ − α)

�(γ + 1)
.

This formula contains several well-known transforms. Settingβ = δ or γ = α

(use the limit (1.2)) in the formula (1.4) and making a proper change of variable,
we get the following two identities proved by Askey and Fitch in [3] (see also the
discussion in [2, p. 20]):

(1− x)α+µ

(1+ x)n+α+1

P
(α+µ,β)
n (x)

P
(α+µ,β)
n (1)
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= 2µ�(α + µ + 1)

�(α + 1)�(µ)

1∫
x

(1− y)α

(1+ y)n+α+µ+1

P
(α,β)
n (y)

P
(α,β)
n (1)

(y − x)µ−1 dy (1.5)

for α > −1,µ > 0, and−1< x < 1, and

(1+ x)β+µ

(1− x)n+β+1

P
(α,β+µ)
n (x)

P
(β+µ,α)
n (1)

= 2µ�(β + µ + 1)

�(β + 1)�(µ)

x∫
−1

(1+ y)β

(1− y)n+β+µ+1

P
(α,β)
n (y)

P
(β,α)
n (1)

(x − y)µ−1 dy (1.6)

for β > −1,µ > 0, and−1< x < 1. These transformations among the Jacobi and
Gegenbauer polynomials have applications in a number of problems, we refer to
the discussions in [2].

As almost always the case, a formula for the special functions is discovered
when one has the proper interpretation, often while working on something
else. The formula (1.1) is discovered through the study of transformation
betweenh-harmonics of different parameters on the plane. Theh-harmonics
are homogeneous polynomials orthogonal with respect to weight functions that
are invariant under reflection groups. They are generalizations of the classical
harmonic polynomials. There is a second order differential-difference operator,
playing the role of Laplacian, which is in the commutative algebra generated
by a family of commuting first order differential-difference operators (Dunkl’s
operators). For the general theory ofh-harmonics, we refer to [4,5] and
the references therein. For the question in hand, we work withh-harmonics
orthogonal with respect to the weight function|x1|2κ1|x2|2κ2, invariant under the
abelian groupZ2 ×Z2. The background and connection toh-harmonics are given
in Section 2, in which Theorem 1.1 will be proved and another transform of the
generalized Gegenbauer polynomials and Jacobi polynomials will also be given.

For the Jacobi polynomials, the transform (1.4) in Theorem 1.2 is a natural
extension of the well-known formulae (1.5) and (1.6). The formula (1.4) appears
to be new. Although such a formula is conceivable from combining the two
formulae (1.5) and (1.6), the exact formulation is not obvious. Now the formula
is stated, it might be possible to derive (1.4) this way, but we have not been
able to find the two-dimensional change of variables that would yield such a
deduction. In Section 3, an independent proof of Theorem 1.2 will be given using
the hypergeometric functions.

Finally, some applications and consequences of Theorems 1.1 and 1.2 will be
given in Section 4.
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2. h-harmonics and integral transforms

We restrict the discussion ofh-harmonics to the special case considered in
the present paper, which is the simplest case of the general theory asd = 2
and the group is abelian, see [4,5,7]. LetP2

n denote the space of homogeneous
polynomials of degreen in two variables and letΠ2

n denote the space of
polynomials of degreen in two variables. With respect to the groupZ2 × Z2
and two nonnegative parametersκ1 andκ2, the Dunkl operatorsDi are defined by

D1f (x) = ∂f

∂x1
+ κ1

f (x) − f (−x1, x2)

x1
,

D2f (x) = ∂f

∂x2
+ κ2

f (x) − f (x1,−x2)

x2
,

wherex = (x1, x2). These operators commute, that is,D1D2 = D2D1, and they
satisfy DiP2

n ⊂ P2
n−1. The h-Laplacian is defined by∆h = D2

1 + D2
2, which

plays the role of the ordinary Laplacian. Indeed, lethκ(x1, x2) = |x1|κ1|x2|κ2;
thenP ∈ P2

n and∫
S1

PQh2
κ (x)dω = 0, ∀Q ∈ Π2

n−1,

if and only if ∆hP = 0. The space ofh-harmonic polynomials of degreen is
defined by

Hn

(
h2
κ

)=P2
n ∪ ker∆h.

Whenκ1 = κ2 = 0, theh-harmonics become the ordinary harmonics. We denote
byHn the space of ordinary harmonics of degreen. Just as the ordinary harmonic
polynomials, dimHn(h

2
κ) = 2 for n > 0 and dimH0(h

2
κ ) = 1. In the polar

coordinates

x1 = r cosθ, x2 = r sinθ, r � 0, 0� θ � 2π,

an orthonormal basis for the spaceHn(h
2
κ ) can be given in terms of the

generalized Gegenbauer polynomials

Y κ
n,1(x) = rnC̃(κ2,κ1)

n (cosθ),

Y κ
n,2(x) = rn

√
κ1 + κ2 + 1

κ2 + 1/2
sinθC̃

(κ2+1,κ1)
n−1 (cosθ), (2.1)

whereC̃
(λ,µ)
n denote the orthonormal generalized Gegenbauer polynomials with

respect to the normalized weight function and we setY κ
0,2(x) = 0. Furthermore,

there is an intertwining operatorVκ between the commutative algebras generated
by the partial derivatives and by the Dunkl operators, which is the unique linear
operator defined by

VκP2
n ⊂P2

n, Vκ1 = 1, DiVκ = Vκ∂i, i = 1,2,
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where∂i stands for∂/∂xi . Moreover, in the present situation, this operator is given
explicitly by an integral transform

Vκf (x1, x2) = cκ1cκ2

1∫
−1

1∫
−1

f (t1x1, t2x2)(1+ t1)(1+ t2)
(
1− t2

1

)κ1−1

× (
1− t2

2

)κ2−1
dt1 dt2.

Note thatVκ = id if κ1 = κ2 = 0 by the limit relation (1.2).
The intertwining operatorVκ is a one-to-one mapping fromH to Hn(h

2
κ ).

Consequently, the operatorVτ,κ defined by

Vτ,κ = VτV
−1
κ

is a one-to-one mapping fromHn(h
2
κ ) toHn(h

2
τ ). It turns out that forτ1 > κ1 and

τ2 > κ2, the operatorVτ,κ can be given as an integral transform as well.
Notice thatVκ is a product of two integrals of one variable, we only need to

consider one integral. Forµ > 0, define

Vµf (x) = cµ

1∫
−1

f (tx)(1+ t)
(
1− t2)µ−1 dt . (2.2)

ThenVµf is one-to-one on the space of polynomials. We defineVλ,µ = VλV
−1
µ .

Lemma 2.1. For λ > µ > 0,

Vλ,µf (x) = �(λ + 1/2)

�(λ − µ)�(µ + 1/2)

1∫
−1

f (xt)|t|2µ(1+ t)
(
1− t2)λ−µ−1 dt .

Proof. Using the fact thatV is one-to-one and takingf = Vµg, we only need to
show that forλ > µ > 0 andg(x) = xm, m ∈ N0,

Vλg(x) = bλ,µ

1∫
−1

Vµg(xs)|s|2µ(1+ s)
(
1− s2)λ−µ−1 ds (2.3)

for a proper constantbλ,µ. An easy computation shows that

Vµg(x) = cµ
�((m + 1+ εm)/2)�(µ)

�(µ + (m + 1+ εm)/2)
g(x), g(x) = xm,

whereε = 1 if m is odd, andε = 0 if m is even, which implies that forg(x) = xm

the right-hand side of (2.3) is equal to
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bλ,µcµ
�((m + 1+ εm)/2)�(µ)

�(µ + (m + 1+ εm)/2)

1∫
−1

sm|s|2k(1+ s)
(
1− s2)λ−µ−1 ds g(x)

= bλ,µcµ
�(µ)�(λ − µ)

�(λ)

�((m + 1+ εm)/2)�(λ)

�(λ + (m + 1+ εm)/2)
g(x)

= bλ,µcµc−1
λ

�(µ)�(λ − µ)

�(λ)
Vλg(x).

Choosing the constantbλ,µ so that the constant in front ofVλg(x) is 1 gives

bλ,µ = c−1
µ cλ

�(λ)

�(µ)�(λ − µ)
= �(λ + 1/2)

�(λ − µ)�(µ + 1/2)
.

This proves the desired result.✷
We note that the conditionλ > µ is necessary. In particular, we cannot take

λ = 0 to get a formula forV −1
µ . For the record, we write down a formula for the

inverse ofV −1
µ below. Forµ > 0, let [µ] denote the integer part ofµ.

Proposition 2.2. Let µ > 0. If g is an even function, then

V −1
µ g(x) = aµ

d

dx

(
d

x dx

)[µ]{
x2[µ]+1

1∫
0

g(xs)s2µ(1− s2)−(µ−[µ]) ds

}
;

if g is an odd function, then

V −1
µ g(x) = aµ

(
d

x dx

)[µ]+1
{
x2[µ]+2

1∫
0

g(xs)s2µ+1(1− s2)−(µ−[µ]) ds

}
,

where aµ = 2−[µ]�(1/2)/(�(µ + 1/2)�(−µ + [µ] + 1)).

The proof amounts to verify that the given formula satisfiesV −1
µ gm(x) = xm

for gm(x) = V (xm), m ∈ N0; note thatgm has been computed in the proof of the
lemma. We omit the details.

For the weight functionhκ(x) = |x1|κ1|x2|κ2, an integral formula forVτ,κ

follows from Lemma 2.1. The formula can be written in the following form:

Corollary 2.3. For τ1 > κ1 � 0 and τ2 > κ2 � 0,

Vτ,κf (x) = aτ,κh
−2
κ (x)Vτ−κ

(
fh2

κ

)
(x),

where

aτ,κ = c−1
τ1−κ1

c−1
τ1−κ1

�(τ1 + 1/2)

�(κ1 + 1/2)�(τ1 − κ1)

�(τ2 + 1/2)

�(κ2 + 1/2)�(τ2 − κ1)
.
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The integral transform of the generalized Gegenbauer polynomials is the
consequence of the formula forVτ,κ .

Proof of Theorem 1.1. First we assume thatκ1 � 0 andκ2 � 0. The orthonormal
basis (2.1) ofHn(h

2
κ ) shows thatY κ

n,1(x1, x2) is even inx2 andY κ
n,2(x1, x2) is odd

in x2. Recall thatVτ,κ is a one-to-one mapping fromHn(h
2
κ ) to Hn(h

2
τ ). The

formula forVτ,κ in the lemma shows that iff (x1, x2) is even (respectively odd)
in x2, thenVτ,κf (x1, x2) is also even (respectively odd) inx2. Consequently, we
must haveY τ

n,1 = BnVτ,κY
κ
n,1 for some constantBn. That is,

(
x2

1 + x2
2

)n/2
C(τ2,τ1)

n

(
x1√

x2
1 + x2

2

)

= BnVτ,κ

[(
x2

1 + x2
2

)n/2
C(κ2,κ1)

n

(
x1√

x1
2 + x2

2

)]
. (2.4)

The constantBn can be determined by settingx1 = 1 andx2 = 0. SinceC(κ2,κ1)
n is

even ifn is even and is odd ifn is odd, we havetn1C
(κ2,κ1)
n (t1/|t|) = |t1|C(κ2,κ1)

n (1),
which gives

C(τ2,τ1)
n (1) = BnC

(κ2,κ1)
n (1)

1∫
−1

|t1|n+2κ1
(
1− t2

1

)τ1−κ1−1 dt1

×
1∫

−1

|t2|2κ2
(
1− t2

2

)τ2−κ2−1 dt2.

Computing the integrals to determine the formula forBn and settingx1 = cosθ
andx2 = sinθ in (2.4) proves the desired result for the case thatκ1 � 0 andκ2 � 0.
The analytic continuation extends the range toκ1 > −1/2 andκ2 > −1/2. ✷

Notice that (1.1) is just the transformation (2.4) betweenh-harmonics of
different parameters. The same interpretation forh-harmonics even inx2 applies
to the integral formula (1.4) for the Jacobi polynomials; in particular, a further
restriction on the weight function of theh-harmonics gives such an interpretation
to the classical formulae (1.5) and (1.6).

With the definition ofVµ at (2.2), the generating function of the generalized
Gegenbauer polynomials shows that

C(λ,µ)
n (x) = VµCλ+µ

n (x), µ � 0.

It follows that forσ > 0,

VσV
−1
µ C(λ,µ)

n (x) = VσC
λ+µ
n (x) = VσC

λ+µ−σ+σ
n (x) = C(λ+µ−σ,σ )

n (x).
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Consequently, as another application of the formula ofVλ,µ in Lemma 2.1, we
obtain the following integral formula of the generalized Gegenbauer polynomials:

Proposition 2.4. For µ � 0 and λ � σ > 0,

C(λ−σ,µ+σ)
n (x)

= �(µ + σ + 1/2)

�(σ)�(µ + 1/2)

1∫
−1

C(λ,µ)
n (xt)|t|2µ(1+ t)

(
1− t2)σ−1 dt .

In particular, using the above formula for 2n and the first formula of (1.3),
a proper change of variable gives the first of the following well-known formulae
for the Jacobi polynomials [3, p. 420],

(1− x)α+σ P
(α+σ,β−σ)
n (x)

P
(α+σ,β−σ)
n (1)

= �(α + σ + 1)

�(α + 1)�(σ)

1∫
x

(1− y)α
P

(α,β)
n (y)

P
(α,β)
n (1)

(y − x)σ−1 dy

for α > −1, σ > 0, and−1< x < 1, and

(1+ x)β+σ P
(α−σ,β+σ)
n (x)

P
(β+σ,α−σ)
n (1)

= �(β + σ + 1)

�(β + 1)�(σ)

x∫
−1

(1+ y)β
P

(α,β)
n (y)

P
(β,α)
n (1)

(x − y)σ−1 dy

for β > −1, σ > 0, and−1< x < 1.

3. Hypergeometric functions and Jacobi polynomials

The formula (1.1) is established as a transformation betweenh-harmonics
of different parameters. In this section, we give a direct proof using the
hypergeometric functions. Since the generalized Gegenbauer polynomials can be
written in terms of the Jacobi polynomials by (1.3), we give such a proof for the
formula (1.4). Recall that the hypergeometric function is defined by

2F1(a, b; c;x)=
∞∑

n=0

(a)n(b)n

(c)nn! xn, |x| < 1,
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wherea, b, c are parameters. The Jacobi polynomials can be written as

P
(α,β)
n (x)

P
(α,β)
n (1)

= 2F1

(
−n,n + α + β + 1;α + 1; 1− x

2

)
. (3.1)

We need two lemmas on the hypergeometric function.

Lemma 3.1. If �(e) > �(c) > 0, then(
u + (1− u)s

)−a
2F1

(
a, e − c + b; e; u

u + (1− u)s

)
= �(e)

�(c)�(e − c)

1∫
0

2F1

(
a, b; c; ut

ut + (1− u)s

)
× (

ut + (1− u)s
)−a

tc−1(1− t)e−c−1 dt .

Proof. We start with Bateman’s integral [1, Theorem 2.2.4, p. 68]

2F1(a, c − b; e;x)

= �(e)

�(c)�(e − c)

1∫
0

2F1(a, c − b; c, xt)tc−1(1− t)e−c−1 dt

and Pfaff’s relation [1, Theorem 2.2.5, p. 68]

2F1(a, b; c;x)= (1− x)−a
2F1

(
a, c − b; c; x

x − 1

)
.

Together they give the following integral relation

2F1(a, c − b; e;x) = �(e)

�(c)�(e − c)

1∫
0

2F1

(
a, b; c; xt

xt − 1

)
× (1− tx)−atc−1(1− t)e−c−1 dt .

Settingx = z/(z − 1) so that 1− xt = 1 − (1 − t)z/(1 − z) and using Pfaff ’s
relation again, we get

2F1(a, e − c + b; e; z) = (1− z)−a
2F1

(
a, c − b; e; z

z − 1

)
= �(e)

�(c)�(e − c)

1∫
0

2F1

(
a, b; c; zt

zt + (1− z)

)
× (

1− (1− t)z
)−a

tc−1(1− t)e−c−1 dt .

Settingz = u/(u + (1− u)s) gives the stated formula.✷
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Lemma 3.2. If −a ∈ N0, �(a + b − c) > −1, �(d) > �(b) > 0, then

2F1(a, d; c;u) = �(d − c + 1)

�(b − c + 1)�(d − b)

1∫
0

(
(1− u)t + u

)−a

× 2F1

(
a, b; c; u

u + (1− u)t

)
ta+b−c(1− t)d−b−1 dt .

Proof. Let n = −a ∈ N0. The definition of2F1 gives(
(1− u)t + u

)−a
2F1

(
a, b; c; u

u + (1− u)t

)
=

n∑
k=0

(−n)k(b)k

(c)kk! uk
(
t + (1− t)u

)n−k
.

Using the binomial formula to expand(t + (1− t)u)n−k so that the Beta integral
can be used to carry out the integration, we get

1∫
0

(
(1− u)t + u

)−a
2F1

(
a, b; c; u

u + (1− u)t

)
ta+b−c(1− t)d−b−1 dt

=
n∑

k=0

(−n)k(b)k

(c)kk!
n−k∑
j=0

(
n − k

j

)

× �(b − c + j − n + 1)�(n − k − j + d − b)

�(d − c − k + 1)
.

Changing the order of the summations and using the fact that(
n − k

j

)
= (−1)j

(−n)j (−j)k

j !(−n)k
and (A − k)k = (−1)k(1− A)k,

the summation overk can be seen to be a3F2 and the above double sum becomes

�(b − c + 1)�(d − b)

�(d − c + 1)

n∑
j=0

(−n)j (d − b)j

(c − b)jj ! 3F2

( −j, b, c − d

c,1− d + b − j
;1

)
uj

= �(b − c + 1)�(d − b)

�(d − c + 1)

n∑
j=0

(−n)j (c − b)j

(c)j j !
(c − b)j (d)j

(c)j (d − b)j
uj

= �(b − c + 1)�(d − b)

�(d − c + 1)
2F1(−n,d; c;u),

where the Pfaff–Saalshütz formula [1, Theorem 2.2.6, p. 69] is used to sum
the 3F2. This proves the lemma.✷
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The transformation that gives the formula (1.4) is the following expression of
the hypergeometric function:

Proposition 3.3. If −a ∈ N0, �(a + b − c) > −1, �(e) > �(c), and �(d − e +
b − c) > 0, then

2F1(a, d; e;u) = �(d − e + 1)

�(b − c + 1)�(d − e + c − b)

�(e)

�(c)�(e − c)

×
1∫

0

1∫
0

2F1

(
a, b; c; ut

ut + (1− u)s

)(
ut + (1− u)s

)−a

× tc−1(1− t)e−c−1sa+b−c(1− s)d−e+c−b−1 dt ds.

Proof. In the formula of Lemma 3.2 replacingb by e − c + b andc by e gives

2F1(a, d; e;u)

= �(d − c + 1)

�(b − c + 1)�(d − e + c − b)

1∫
0

(
u + (1− u)s

)−a

× 2F1

(
a, e − c + b; e; u

u + (1− u)s

)
sa+b−c(1− s)d−e+c−b−1 ds.

Notice that the2F1 inside the integral is exactly the same as the left-hand
side in Lemma 3.1. The desired result follows from substituting the formula in
Lemma 3.1 into the above formula.✷

Using the2F1 expression of the Jacobi polynomials at (3.1), the formula (1.4)
follows from the above proposition upon settinga = −n, b = n + α + β + 1,
c = α + 1, d = n + γ + δ + 1, e = γ + 1, andu = sin2 θ .

4. Applications

We discuss several applications of the formulae (1.1) and (1.4) in this section.
These applications are similar to those that are consequences of (1.5) and (1.6) as
discussed in [2] and their proofs are also similar, so we shall be brief.

Theorem 4.1. Let τ1 > κ1 > −1/2 and τ2 > κ2 > −1/2, and −1 � x � 1. Then
there exists a measure dµx(y) such that

C
(τ2,τ1)
n (y)

�(τ1 + (n + 1)/2)C(τ2,τ1)
n (1)

=
1∫

−1

C
(κ2,κ1)
n (y)

�(κ1 + (n + 1)/2)C(κ2,κ1)
n (1)

dµx(y),

(4.1)
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where
∫ 1
−1 dµx(y) = 1, dµx(y) is independent of n and dµx(y) > 0 for

−1< x < 1 and −1< y < 1.

Proof. The Poisson kernelP (λ,µ) of C(λ,µ)
n satisfies (cf. [7])

P (λ,µ)(r;x, y)

=
∞∑

j=0

(
h(λ,µ)
n

)−1
C

(λ,µ)
j (x)C

(λ,µ)
j (y)rj

= cλcµ

1∫
−1

1∫
−1

1− r2

(1− 2r(xyt1 − 2
√

1− x2
√

1− y2 t2) + r2)λ+µ+1

× (1+ t1)(1+ t2)
(
1− t2

1

)λ−1(1− t2
2

)µ−1 dt1 dt2

for |r| < 1, −1� x, y � 1, whereh(λ,µ)
n is theL2 norm ofC(λ,µ)

n ,

h(λ,µ)
n =

1∫
−1

[
C(λ,µ)

n (x)
]2

w̃λ,µ(x)dx = λ + µ + 1

n + λ + µ + 1
C(λ,µ)

n (1),

and

w̃λ,µ = �(λ + µ + 1)

(�(λ + 1/2)�(µ + 1/2))
wλ,µ

is the normalized weight function. It shows, in particular, thatP (λ,µ)(r;x, y) is
strict positive. LetK(τ,κ)(r;x, y) be defined by

K(τ,κ)(r;x, y) = �(τ1 + 1/2)

�(κ1 + 1/2)

∞∑
n=0

�(κ1 + (n + 1)/2)

�(τ1 + (n + 1)/2)

n + κ1 + κ2 + 1

κ1 + κ2 + 1

× C
(τ2,τ1)
n (x)C

(κ2,κ1)
n (y)

C
(τ2,τ1)
n (1)

rn, (4.2)

where 0� |r| < 1. The orthogonality ofC(κ2,κ1)
n shows that

1∫
−1

K(τ,κ)(r;x, y)w̃κ2,κ1(y)dy = 1.

By (1.1), the above equation is equivalent to

K(τ,κ)(r;x, y) = �(τ2 + 1/2)

�(τ1 − κ1)�(τ2 − κ2)�(κ2 + 1/2)

×
1∫

−1

1∫
−1

P (κ2,κ1)
(
rv(t1, t2, x);x, y

)|t1|2κ1|t2|2κ2
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× (
1− t2

1

)τ1−κ1−1(1− t2
2

)τ2−κ2−1 dt1 dt2,

where v(t1, t2, x) = t2
1 cos2 θ + t2

2 sin2 θ and x = cosθ . Consequently, since
|v(t1, t2, θ)| � 1, it follows thatK(τ,κ)(r;x, y) is positive. Furthermore, by (4.2),

rn C
(τ2,τ1)
n (x)

�(τ1 + (n + 1)/2)C(τ2,τ1)
n (1)

=
1∫

−1

C
(κ2,κ1)
n (y)

�(κ1 + (n + 1)/2)C(κ2,κ1)
n (1)

K(κ2,κ1)(r;x, y)w̃κ2,κ1(y)dy.

Taking the limitr → 1 finishes the proof. ✷
If τ1 = 0 andκ1 = 0, then the theorem becomes the classical result for the

Gegenbauer polynomials, see [2, Theorem 3.3, p. 25]. Takingn to be even in
Theorem 4.1 and using the relation (1.3) gives the following:

Theorem 4.2. Let γ > α > −1 and δ > β > −1, and −1 � x � 1. Then there
exists a measure dµx(y) such that

P
(γ,δ)
n (y)

P
(γ,δ)
n (1)P (δ,γ )

n (1)
=

1∫
−1

P
(α,β)
n (y)

P
(α,β)
n (1)P (β,α)

n (1)
dµx(y),

where
∫ 1
−1 dµx(y) = 1, dµx(y) is independent of n, and dµx(y) > 0 for

−1< x < 1 and −1< y < 1.

In particular, if γ = α, thenP
(α,β)

k (1) = P
(γ,δ)

k (1) can be removed from the
denominator, and this becomes a special case of Theorem 3.4 of [2]; notice
that the indices of the Jacobi polynomials in the numerator and denominator are
reversed. The caseδ = β gives its counterpart in which the indices of the Jacobi
polynomials in the numerator and denominator are the same.

As an immediate consequence of Theorem 4.1, we state the following result:

Theorem 4.3. If τ1 > κ1 > −1/2 and τ2 > κ2 > −1/2, and

f (x) =
n∑

j=0

aj

C
(κ2,κ1)
j (x)

(κ1 + 1/2)j/2C
(κ2,κ1)
j (1)

� 0,

then

g(y) =
n∑

j=0

aj

C
(τ2,τ1)
j (y)

(τ1 + 1/2)j/2C
(τ2,τ1)
j (1)

> 0, −1< y < 1,

unless aj ≡ 0, j = 0,1, . . . , n.
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Clearly, the result can be stated for infinite series as long as the absolute
convergence of the series is assumed. Ifτ1 = κ1 = 0, then this theorem reduces to
Theorem 3.2 in [2]. Since it is known [2, (1.22), p. 24] that

n∑
k=0

C
1/2
k (x)

C
1/2
k (1)

=
n∑

k=0

P
(0,0)
k (x) > 0, −1< x � 1, (4.3)

andC
(λ,0)
n = Cλ

n , the proposition gives the following:

Corollary 4.4. If τ2 � 1/2 and τ1 � 0, then
n∑

k=0

�((k + 1)/2)

�(τ1 + (k + 1)/2)

C
(τ2,τ1)
k (x)

C
(τ2,τ1)
k (1)

> 0, −1< x � 1,

and the inequality holds for −1 � x � 1 if τ1 > 0.

Proof. For−1< x < 1 the inequality follows from the proposition and (4.3) with
κ1 = 0 andκ2 = 1/2. At x = 1 the inequality is trivially positive. Forτ1 > 0, the
inequality atx = −1 becomes

n∑
k=0

(−1)k
�((k + 1)/2)

�(τ1 + (k + 1)/2)
= 1

�(τ1)

n∑
k=0

(−1)k
1∫

0

tτ1−1(1− t)k/2 dt,

which is easily seen to be positive upon summing up the geometric sequence.✷
If τ1 = 0, then the corollary becomes the classical result for the Gegenbauer

polynomials, see [2, (3.35), p. 25]. Furthermore, the following result follows
from Theorem 4.2, or from takingn to be even in Theorem 4.3 and using the
relation (1.3):

Theorem 4.5. If γ > α > −1, δ > β > 1, and

f (x) =
n∑

k=0

ak

P
(α,β)

k (x)

P
(α,β)
k (1)P (β,α)

k (1)
� 0, −1< x < 1,

then

g(y) =
n∑

k=0

ak

P
(γ,δ)
k (y)

P
(γ,δ)

k (1)P (δ,γ )

k (1)
> 0, −1< y < 1,

unless ak = 0, k = 0,1, . . . , n.

Again, if γ = α, then P
(α,β)
k (1) = P

(γ,δ)

k (1) can be removed from the
denominator and this becomes a special case of Theorem 3.5 of [2]. The case
δ = β gives its counterpart in which the indices of the Jacobi polynomials in the
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numerator and denominator are the same. As an application of the above theorem
we get the following:

Corollary 4.6. If α,β > 0 then

n∑
k=0

P
(α,β)
k (x)

P
(α,β)
k (1)P (β,α)

k (1)
> 0, −1 � x � 1.

Proof. SinceP (0,0)
k (1) = 1, the inequality follows form the theorem and (4.3) for

−1 < x < 1. At x = 1 the positivity is trivial, and atx = −1, using the fact that
P

(α,β)
k (−1) = (−1)kP (α,β)

k (1), the sum becomes

n∑
k=0

(−1)k

P
(α,β)

k (1)
=

n∑
k=0

(−1)k
/(

k + α

k

)
,

which is positive since{1/( k+α
k

)} is a decreasing sequence.✷
We note that using the formulaP (α,β)

k (−x) = (−1)kP (α,β)
k (x), the above

formula withx replaced by−x also gives

n∑
k=0

P
(α,β)
k (x)

P
(α,β)
k (1)P (α,β)

k (−1)
> 0, −1 � x � 1.
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