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a b s t r a c t

Changeable degree spline (CD-spline for short) basis functions, defined by an iterative
integral method, are extensions of B-spline basis functions. A CD-spline basis function is a
piecewise function made up of polynomials of different degrees. In this paper, we will give
the explicit representations of CD-spline basis functions, from which the spanned linear
space can be seen clearly. Our method is also feasible for the explicit representations of the
other basis functions given in analogous integral ways.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The famous B-spline has many good properties for modeling free form shapes, so it has an important role in computer
aided geometric design [1]. Each B-spline basis function is a kind of spline function defined on a knot sequence T with a
natural number n. It is a piecewise function made up of polynomials of the same degree n on its support interval. All the
B-spline basis functions form a B-basis [2], possessing the optimal shape preserving property, for the space of polynomial
splines over T .

The changeable degree spline (CD-spline for short) is a kind of variable degree polynomial spline. That is, its basis
function is a piecewise function comprised of polynomials of variable degrees. Early polynomial splines of nonuniform
degrees were studied for shape-preserving interpolation purposes [3–6]. Later, [7] presented some requirements for
B-spline-like properties and constructed some multi-degree splines of degrees 1, 2, and 3. In [8], some two-degree
polynomial spline basis functions possessing B-spline-like properties are produced. In 2010, [9] introduced some splines
of arbitrary degree polynomials which are extensions of B-splines. However, their basis functions cannot form a B-basis.
This drawbackmotivates CD-splines, which are direct extensions of B-splines. CD-spline basis functions possess the optimal
shape preserving property. Moreover, when we use them to design curves made up of polynomial segments of different
degrees, the number of control points may be decreased [10].

CD-spline basis functions are defined on a knot sequence T and a degree sequence G by an iterative integral method.
Their representations are not explicit, so the space spanned by these basis functions is not clear. Does this space have
a truncated-power-function-like basis? If it has, how do we use this basis to represent the CD-spline basis functions?
Similar problems have been thoroughly studied as important parts of the theories of B-splines. B-spline basis functions
can be uniquely presented as linear combinations of truncated power functions [11,12]. These representations are used for
calculating curves/surfaces, transforming models between different systems, studying the spline spaces, and so on [13–15].
But these problems concerning explicit representations have not been settled for CD-splines. In this paper, we study them
in order to develop similar theories with B-splines.
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We firstly define some truncated polynomial functions Fi,D, i ∈ Z. Secondly, instead of showing Fi,D, i ∈ Z, to span
the same space with CD-spline basis functions, we prove that if a function has a local support interval and fulfills some
continuous conditions on the interval, it is unique up to a constant factor. Thirdly, for each CD-spline basis function, we use
a determinant relating to Fi,D, i ∈ Z, to get a function which has the same support interval and the same continuity as the
CD-spline basis function. So this CD-spline basis function can be expressed as a product of the determinant and some
constant. Lastly, this constant will be obtained from the normalized property of CD-spline basis functions.

This method for explicit representation uses only a few properties of CD-spline basis functions. It is also feasible for
many other basis functions defined in an analogous integral way [16]. They are Bernstein basis functions, B-spline basis
functions, C-Bézier and AT B-spline basis functions for algebraic trigonometric polynomial space [17–19], AH Bézier and AH
B-spline basis functions for algebraic hyperbolic polynomial space [20,21], AHT Bézier and NUAHT B-spline basis functions
for algebraic hyperbolic trigonometric polynomial space [22], ω Bézier and ω B-spline basis functions [23,24], and multi-
degree spline basis functions [9].

The rest of the paper is divided into four parts.We review the definitions and someproperties of CD-spline basis functions
in the next section. In Sections 3 and 4, we give the explicit representations of CD-spline basis functions for simple and
multiple knots, respectively. The last section includes some results.

2. Review

In this section, we review the definitions and some properties of CD-spline basis functions in [10] which will be used for
explicit representations.

Unlike for B-spline basis functions, for CD-spline basis functions one needs to know not only a knot sequence but also
the degree of each knot interval. Let T = {ti}i∈Z be a nondecreasing real number sequence and G = {di}i∈Z be a bounded
positive integer sequence satisfying the following condition:

(C) If ti−1 < ti = ti+1 = · · · = ti+m−1 < ti+m, then di = di+1 = · · · = di+m−1 and max{1, di − di−1 + 1} ≤ m ≤ di.

Then, with definitions like those for B-splines, T is called a knot sequence and G is called a degree sequence of T .
For each knot interval [ti, ti+1), its corresponding degree is di. For simplicity, the interval with degree n is called an

n-interval. If ti−1 < ti = ti+1 = · · · = ti+m−1 < ti+m, then the knots tj, j = i, . . . , i + m − 1, all have multiplicity m.
For simplicity, a knot of multiplicitym is called anm-knot.

In the rest of this paper, the sequence T will always be a knot sequence and the sequence G will always be a degree
sequence of T satisfying Condition (C), and D := maxi{di}.

For n = 0, 1, . . . ,D, functions Ni,n = Ni,n(t), i ∈ Z, over T and G are generated by the following iterative method. The
finally obtained functions Ni,D, i ∈ Z are the CD-spline basis functions over T and G .

Ni,n(t) :=


0, di < D − n,
1, t ∈ [ti, ti+1),
0, otherwise, di = D − n, t

−∞


δi,n−1Ni,n−1(s) − δi+1,n−1Ni+1,n−1(s)


ds, di > D − n,

(1)

where

δi,n :=


+∞

−∞

Ni,n(t)dt
−1

. (2)

If Ni,n = 0, then we set t

−∞

δi,nNi,n(s)ds =


0, t < ti,
1, t ≥ ti.

(3)

Actually, in this case, δi,nNi,n is the Dirac function.
If n = 0, then any di ≤ D − n. So the definitions of the initial functions Ni,0, i ∈ Z, are included in Formula (2).

Proposition 2.1. CD-spline basis functions Ni,D, i ∈ Z, possess the following B-spline-like properties.

(1) (Normalized property.)
+∞

i=−∞

Ni,D(t) ≡ 1.
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(2) (Local support property.) The function Ni,n is supported on [ti, ti+k), where k := ki,D and the sequence {ki,n}i∈Z is recursively
defined by

ki,n :=


0, di < D − n,
1, di = D − n,
ki,n−1, di+1 < D − n + 1,
ki+1,n−1 + 1, di+1 ≥ D − n + 1, di > D − n.

(4)

(3) (Basis property) On each interval [ti, ti+1), only functions Nj,D, i − di ≤ j ≤ i, are nonzero. They are linearly independent
polynomials of degree di.

For an explicit expression for Ni,D, we also need its continuity property. However, this property is complex since it is
related to the multiplicities of knots. So we will give the property for simple knots and then the multiple case when using it.

3. Explicit representations for simple knots

Starting from the most basic case and progressing onwards to the more complicated ones, we focus on simple knots in
this section. If all the knots in T are simple, then the degree sequence G should be decreasing for Condition (C). That is,
di−1 ≥ di for any i.

In this case, for each Ni,D, consider the continuity at the knots on its support interval [ti, ti+k]. Since each integration
increases the order of continuity of a function by 1, it is easy to get from (1) the continuous order pij of Ni,D at tj.

pij :=


dj − 1, i ≤ j ≤ i + k − 1,
c, j = i + k,

where c := ci,D is iteratively obtained by the following recursion for n = 0, 1, 2, . . . ,D:

ci,n :=


−2, di < D − n,
−1, di = D − n,
ci,n−1, di+1 < D − n + 1,
ci+1,n−1 + 1, di+1 ≥ D − n + 1, di > D − n.

(5)

We denote the linear space spanned by all the CD-spline basis functions over T and G asΩG[T ]. The spaceΩG[T ] is called
the changeable degree spline space (CDS-space for short) in this paper. Then, we define a subspace of ΩG[T ] as follows:

Γ
p
G [ti, ti+k] := {u(t) ∈ ΩG[T ]|u(t) = 0 if t ∉ [ti, ti+k], and for j ∈ [i, i + k], the continuous order of u(t)

at the knot tj is greater than or equal to pij}.

We call Γ p
G [ti, ti+k] the local support continuity changeable degree spline subspace (LSCCDS-subspace for short).

3.1. A class of truncated functions

Truncated power functions are usually used for explicit representations of B-spline basis functions. Each of them is a
piecewise function made up of zero and a power function. The power function possesses the same degree on each knot
interval.

Here, we will use some truncated power-like functions. They may have different degrees on the knot intervals. These
functions, denoted as Fi = Fi(t), i ∈ Z, are defined as follows:

Fi(t) :=


0, t < ti,
f ij , tj ≤ t < tj+1, j = i, i + 1, . . . , (6)

where f ij := f ij (t) is a function on [tj, tj+1) defined by

f ij (t) :=


(t − ti)di , j = i,
dj

w=0

1
w!

f ij−1
(w)

(tj)(t − tj)w, j > i.
(7)

In fact, f ij is the Taylor polynomial [25] of order dj of f ij−1 at tj if j > i. From (6) and (7), it is easy to see the following
properties of Fi.

Proposition 3.1. (1) On the interval [tj, tj+1), each Fi is a polynomial of degree dj if j ≥ i.
(2) Each Fi ∈ ΩG[T ].
(3) The functions Fi, i ∈ Z, are linearly independent.
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Fig. 1. Example of a truncated function for simple knots.

(4) If j ≥ i, then the order of continuity of Fi at tj is equal to dj − 1 if j = i, and greater than or equal to dj otherwise.

We give an example of such functions Fi, i ∈ Z, in Fig. 1. Its knot sequence is

{· · · < t1 < t2 < t3 < t4 < t5 < t6 < t7 < · · ·}

and its corresponding degree sequence is

{. . . , 5, 5, 3, 3, 2, 2, . . .}.

The piecewise function F2 is shown by a solid curve. On each dj-interval [tj, tj+1), F2 is a polynomial of degree dj, where
j = 2, 3, 4, . . . .

3.2. The dimension of an LSCCDS-subspace

In this subsection, we consider the dimension of the LSCCDS-subspace.

Lemma 3.1. For any function h = h(t) ∈ ΩG[T ], if each right derivative h(j)(ti+) = 0 for j = 0, 1, . . . , di − 1, then there
exists one real number ai such that

h(t) = aiFi(t), t ∈ [ti, ti+1).

Proof. Since h is a polynomial function of degree less than or equal to di on [ti, ti+1), then it can be written as

h =

di
l=0

bl(t − ti)l

for some real numbers bl. Taking into account that h(j)(ti+) = 0 for j = 0, 1, . . . , di − 1, we have bl = 0 for l = 0,
1, . . . , di − 1. Therefore,

h = bdi(t − ti)di .

According to the definition of Fi, we have Fi(t) = (t − ti)di , t ∈ [ti, ti+1), and the claim follows with ai = bdi . �

From (4) and (5), we deduce the following results:

Lemma 3.2. k = c + 2.

Lemma 3.3. Given integers i, q and l such that l ≥ 1 and i ≤ q ≤ i + l, the determinant
Fi(tq) Fi+1(tq) · · · Fi+l(tq)
F ′

i (tq) F ′

i+1(tq) · · · F ′

i+l(tq)
...

...
...

...

F (l)
i (tq) F (l)

i+1(tq) · · · F (l)
i+l(tq)

 ≠ 0.
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Proof. Use reduction to absurdity. Assume that the determinant is equal to zero. Then, there are l+1 numbers {bj}i+l
j=i, which

are not all equal to zero, satisfying

i+l
j=i

bj


Fj(tq)
F ′

j (tq)
...

F (l)
j (tq)

 = 0.

Let Y (t) =
i+l

j=i bjFj(t). From Proposition 3.1(1) and (4), we see that, on the interval [tq−1, tq), Y is a polynomial function
whose degree is less than or equal to its order of continuity at tq. Since Y (tq) = 0, it follows that Y (t) ≡ 0, which means
that bj = 0 for all i ≤ j ≤ i + l. This conflicts with the assumption. So the lemma is proved. �

From the above lemmas, we get the dimension of Γ p
G [ti, ti+k].

Theorem 3.1. The dimension of the linear space Γ
p
G [ti, ti+k] is 1.

Proof. Let u = u(t) be an arbitrary function in Γ r
G [ti, ti+k]. Thus, we have

u(l)(tj−) = u(l)(tj) = u(l)(tj+),

where l = 0, 1, . . . , dj − 1 and j = i, i + 1, . . . , i + k − 1.
Consider u on [ti, ti+1) firstly. From Lemma 3.1, there is a real number ai such that

u(t) = aiFi(t), t ∈ [ti, ti+1).

Secondly, consider the function u−aiFi on the interval [ti, ti+2). According to the continuity of u, there exists an ai+1 such
that

u(t) − aiFi(t) = ai+1Fi+1(t).

That is,

u(t) = aiFi(t) + ai+1Fi+1(t), t ∈ [ti, ti+2).

Recursively, we deduce that there exist k real numbers al, i ≤ l ≤ i + k − 1, such that

u(t) =

i+k−1
l=i

alFl(t), t ∈ [ti, ti+k).

Then consider the continuity of u at ti+k. We have u(l)(ti+k) = 0, for l = 0, 1, . . . , c. That is,

i+k−1
l=i

alFl(ti+k) = 0,

i+k−1
l=i

alF ′

l (ti+k) = 0,

...
i+k−1
l=i

alF
(c)
l (ti+k) = 0.

(8)

Since k = c + 2, (8) can also be represented as
Fi(ti+k) Fi+1(ti+k) · · · Fi+c+1(ti+k)
F ′

i (ti+k) F ′

i+1(ti+k) · · · F ′

i+c+1(ti+k)
...

...
...

...

F (c)
i (ti+k) F (c)

i+1(ti+k) · · · F (c)
i+c+1(ti+k)




ai
ai+1
...

ai+c+1

 = 0. (9)

The dimension of Γ
p
G [ti, ti+k] is equal to the dimension of the solution space of the system of linear equations (9). From

Lemma 3.3, we see that the coefficient matrix of (9) has full rank c + 1. And since the number of variables of (9) is c + 2, the
dimension of its solution space is 1 [26]. Therefore, Γ p

G [ti, ti+k] is a linear space of dimension 1. �

From the proof of Theorem 3.1, we see that each CD-spline basis function Ni,D can be represented as a linear combination
of some functions Fj. So, the functions Fi, i ∈ Z, also form a basis for the CDS-space.
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3.3. The determinantal representation

In this subsection, we will use the basis {Fj}i∈Z to explicitly represent Ni,D.
According to Theorem 3.1 and the definition of Γ r

G [ti, ti+k], we have Ni,D ∈ Γ r
G [ti, ti+k], and the dimension of Γ r

G [ti, ti+k]

is 1. If we find a function H ∈ Γ r
G [ti, ti+k], then there must be Ni,D = αH for some real number α. Thus we give the following

theorem.

Theorem 3.2. Let

ϕi = ϕi(t) :=



Fi(t) Fi+1(t) · · · Fi+c+1(t)
Fi(ti+k) Fi+1(ti+k) · · · Fi+c+1(ti+k)
F ′

i (ti+k) F ′

i+1(ti+k) · · · F ′

i+c+1(ti+k)
...

...
...

...

F (c)
i (ti+k) F (c)

i+1(ti+k) · · · F (c)
i+c+1(ti+k)


. (10)

Then we have

Ni,D = αiϕi, (11)

where

αi :=
(−1)di

Ai
i−di · · · Ai

i−1

ϕi−di(ti) · · · ϕi−1(ti) ϕi(ti)
Ai
i−di · · · Ai

i−1 Ai
i

 (12)

and

Ai
j :=


ϕ′

j (ti+)

ϕ′′

j (ti+)

...

ϕ
(di)
j (ti+)

 . (13)

Proof. From (10), it is easy to deduce that the function ϕi is a linear combination of Fj, for j = i, i + 1, . . . , i + c + 1. From
the properties of Fj, it is easy for us to see that ϕi ∈ Γ

p
G [ti, ti+k]. So there exists a coefficient αi such that Ni,D = αiϕi.

To get αi, we use Proposition 2.1. Considering the nonzero CD-spline basis functions on the interval [ti, ti+1), we havei
j=i−di

Nj,D(t) ≡ 1. Hence, there exists the following system of linear equations:



i
j=i−di

αjϕj(ti) = 1,

i
j=i−di

αjϕ
′

j (ti+) = 0,

...
i

j=i−di

αjϕ
(di)
j (ti+) = 0.

(14)

Doing the same as in the proof of Lemma 3.3, we see that the coefficient matrix of (14) is full rank. So (14) has a unique
solution. Using Cramer’s rule [26], we obtain that

αi =

ϕi−di(ti) · · · ϕi−1(ti) 1
Ai
i−di · · · Ai

i−1 0

ϕi−di(ti) · · · ϕi−1(ti) ϕi(ti)
Ai
i−di · · · Ai

i−1 Ai
i

 =
(−1)di

Ai
i−di · · · Ai

i−1

ϕi−di(ti) · · · ϕi−1(ti) ϕi(ti)
Ai
i−di · · · Ai

i−1 Ai
i

 .
Thus, the theorem is proved. �

If we focus on another interval including the knot ti, we may get a different representation of αi. But it must be equal to
the given expression for αi because of the linear independence of {Fi(t)}i∈Z and the uniqueness of αi.
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4. Explicit representation extensions for multiple knots

We consider the case of multiple knots in this section. As it is a generalization of the previous one, some of the notation
here will be defined by extension from that in the last section. We add an overline to indicate the extended notation.

In order to see the continuity of each Ni,D, we firstly give the following definition.

Definition 4.1. Let i, l be two integers such that i ≤ l. The integer i can be −∞ and l can be +∞ as well. Nonnegative
integral numbers r i,lj , j = i, i + 1, . . . , l, are defined from the knot sequence T .

r i,lj := The times that tj appears in the knot subsequence {tv}lv=i.

Then we get the continuous order of Ni,D at tj as follows:

pij :=


dj − r i,i+k

j , ti ≤ tj < ti+k,

c, tj = ti+k,

where c := c i,D is iteratively obtained by the following recursion for n = 0, 1, 2, . . . ,D:

c i,n :=


−2, di < D − n,
−2, ti = ti+1,
−1, ti ≠ ti+1,

di = D − n,
c i,n−1, di+1 < D − n + 1,
c i+1,n−1 + 1, di+1 ≥ D − n + 1, di > D − n.

(15)

In this section, the CDS-space over T and G is still denoted as ΩG[T ]. The LSCCDS-subspace over [ti, ti+k] is

Γ
p
G[ti, ti+k] := {u(t) ∈ ΩG[T ]|u(t) = 0 if t ∉ [ti, ti+k], and for j ∈ [i, i + k], the continuous order of u(t)

at the knot tj is greater than or equal to pij}.

4.1. A class of truncated functions

Like in Section 3.1, we define F i = F i(t), i ∈ Z, as follows:

F i(t) :=


0, t < ti,
f
i
j(t), tj ≤ t < tj+1, j = i, i + 1, . . . ,

(16)

where f
i
j = f

i
j(t) is a function on [tj, tj+1) defined by

f
i
j(t) :=


(t − ti)di−r i,+∞

i +1, tj = ti,
f
i
j−r i,jj

, M i
j ≤ dj,

dj
w=0

1
w!

f
i
j−r i,jj

(w)

(tj)(t − tj)w, M i
j > dj,

tj > ti,
(17)

and

M i
j := min{di − r i,+∞

i + 1, di+1, di+2, . . . , dj−r i,jj
}.

From Formula (17), we see that the degree of f
i
i is determined by not only the degree di but also the multiplicity of the

knot ti. Assume that the current function is f
i
j on [tj, tj+1). Then the last function is f

i
j−r i,jj

since the last nonzero knot interval

is [tj−r i,jj
, tj). If the degree of f

i
j−r i,jj

is less than or equal to the current degree dj, then the current function is equal to the last

function; otherwise, the current function is equal to the Taylor polynomial [25] of order dj of the last function at tj.
We give an example of such functions F i, i ∈ Z, in Fig. 2. Here, the knot sequence is

{· · · ≤ t1 < t2 = t3 = t4 < t5 = t6 < t7 < t8 ≤ · · ·}

and its corresponding degree sequence is

{. . . , 2, 4, 4, 4, 5, 5, 3, . . .}.
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Fig. 2. Example of truncated functions for multiple knots.

We show the functions F 2, F 3 and F 4 by solid, dotted and dashed lines, respectively. On the 4-interval [t2, t5),

F 2 = (t − t2)4, F 3 = (t − t3)3, F 4 = (t − t4)2.

On the 5-interval [t5, t7), F 2, F 3 and F 4 are unchanged. We have

F 2 = (t − t2)4, F 3 = (t − t3)3, F 4 = (t − t4)2.

On the 3-interval [t7, t8), we still have

F 3 = (t − t3)3, F 4 = (t − t4)2,

but F 2 is equal to the Taylor polynomial of order 3 of (t − t2)4 at t7.
We easily derive the following properties of F i, i ∈ Z, from their definitions.

Proposition 4.1. (1) Each F i on the interval [tj, tj+1) is a polynomial of degree less than or equal to dj if j ≥ i.
(2) Each F i ∈ ΩG[T ].
(3) The functions F i, i ∈ Z, are linearly independent.
(4) If j ≥ i, then the order of continuity of F i at tj is equal to di − r i,+∞

i if tj = ti, and greater than or equal to dj otherwise.

4.2. The dimension of an LSCCDS-subspace

We give, like Lemma 3.1, the following lemma.

Lemma 4.1. Let s := r i,i+k
i . For any function h = h(t) ∈ ΩG[T ], if the right derivative h(j)(ti+) = 0 for j = 0, 1, . . . , di − s,

then there exist s numbers al, i ≤ l ≤ i + s − 1, such that

h(t) =

i+s−1
l=i

alF l(t), t ∈ [ti, ti+s).

Proof. Since h on [ti, ti+r) is a polynomial function whose degree is less than or equal to di, it can be presented as

h =

di
l=0

bl(t − ti)l

for some real number bl. Because h(j)(ti+) = 0 for j = 0, 1, . . . , di − s, we have bl = 0 for l = 0, 1, . . . , di − s. Therefore,

h =

di
l=di−s+1

bl(t − ti)l =

i+s−1
l=i

bdi+l−i−s+1(t − ti)di+l−i−s+1.

According to the definitions of F i, i ∈ Z, we have for l = i, i + 1, . . . , i + s − 1,

F l = (t − tl)dl−r l,+∞

l +1
= (t − ti)di+l−i−s+1, t ∈ [ti, ti+s),

and the claim follows with al = bdi+l−i−s+1. �
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From Formula (4), we have

r i,i+ki,n
i+ki,n

=


1, di < D − n,
2, ti = ti+1,
1, ti ≠ ti+1,

di = D − n.

Let e := r i,i+k
i+k . Thus, we easily get:

Lemma 4.2. k = c + e + 1.

Lemma 4.3. Given integers i, q and l such that l ≥ r i,+∞

i and i ≤ q ≤ i + l, the determinant
F i(tq) F i+1(tq) · · · F i+l(tq)
F

′

i(tq) F
′

i+1(tq) · · · F
′

i+l(tq)
...

...
...

...

F
(l)
i (tq) F

(l)
i+1(tq) · · · F

(l)
i+l(tq)

 ≠ 0.

The lemma is similar to Lemma 3.3, so we do not prove it here. From Lemmas 4.2 and 4.3, we get the dimension of
Γ

p
G[ti, ti+k].

Theorem 4.1. The dimension of the linear space Γ
p
G[ti, ti+k] is 1.

Proof. Assume that u = u(t) is an arbitrary function in Γ
p
G[ti, ti+k]. Thus, for j = i, i + 1, . . . , i + k − e, we have

u(l)(tj−) = u(l)(tj) = u(l)(tj+), l = 0, 1, . . . , dj − r i,i+k
j .

From Lemma 4.1, the function u on [ti, ti+s) is represented as the linear combination of {F l}
i+s−1
l=i . That is, there are real

numbers {al}i+s−1
l=i such that

u =

i+s−1
l=i

alF l.

Let v = r i,i+k
i+s . Consider the function u −

i+s−1
l=i alF l on [ti, ti+s+v). According to Lemma 4.1, we see that there are real

numbers {al}i+s+v−1
l=i+s such that on the interval [ti, ti+s+v),

u −

i+s−1
l=i

alF l =

i+s+v−1
l=i+s

alF l.

That is,

u =

i+s+v−1
l=i

alF l, t ∈ [ti, ti+s+v−1).

Recursively, we deduce that there exist k − e + 1 real numbers al, i ≤ l ≤ i + k − e, such that

u =

i+k−e
l=i

alF l, t ∈ [ti, ti+k).

Then we focus on the continuity of u at the knot ti+k. From Lemma 4.2, we have the following system of linear equations:
F i(ti+k) F i+1(ti+k) · · · F i+c+1(ti+k)

F
′

i(ti+k) F
′

i+1(ti+k) · · · F
′

i+c+1(ti+k)
...

...
...

...

F
(c)
i (ti+k) F

(c)
i+1(ti+k) · · · F

(c)
i+c+1(ti+k)




ai
ai+1
...

ai+c+1

 = 0. (18)

By a proof like that of Theorem3.1, the dimension of the solution space of (18) is equal to 1. Thismeans that the dimension
of Γ p

G[ti, ti+k] is 1. �
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4.3. The determinantal representation

The theorem for determinantal representations, like Theorem 3.2, is given as follows.

Theorem 4.2. Let w := r i,+∞

i and

ϕi = ϕi(t) :=



F i(t) F i+1(t) · · · F i+c+1(t)
F i(ti+k) F i+1(ti+k) · · · F i+c+1(ti+k)

F
′

i(ti+k) F
′

i+1(ti+k) · · · F
′

i+c+1(ti+k)
...

...
...

...

F
(c)
i (ti+k) F

(c)
i+1(ti+k) · · · F

(c)
i+c+1(ti+k)


. (19)

Then we have

Ni,D = αiϕi, (20)

where

αi :=

(−1)di−w+1
Ai

i+w−di−1 · · · A
i
i−1 A

i
i+1 · · · A

i
i+w−1

ϕi+w−di−1(ti) ϕi+w−di(ti) · · · ϕi+w−1(ti)
A
i
i+w−di−1 A

i
i+w−di · · · A

i
i+w−1

 (21)

and

A
i
j :=


ϕ′

j(ti+)

ϕ′′

j (ti+)

...

ϕ
(di)
j (ti+)

 . (22)

Proof. A simple proof is given here since it is similar to the proof of Theorem 3.2. Firstly, each CD-spline basis function is
represented as

Ni,D = αiϕi

because the function ϕi ∈ Γ
p
G[ti, ti+k].

Then we use the normalized property of CD-spline basis functions. On the nonzero interval [ti, ti+w), we havei+w−1
j=i+w−di−1 Nj,D(t) ≡ 1. Hence, we have the following system of linear equations:

i+w−1
j=i+w−di−1

αjϕj(ti) = 1,

i+w−1
j=i+w−di−1

αjϕ
′

j(ti+) = 0,

...
i+w−1

j=i+w−di−1

αjϕ
(di)
j (ti+) = 0.

(23)

The coefficient matrix of (23) is full rank. So we use Cramer’s rule [26] to get αi as follows:

αi =

ϕi+w−di−1(ti) · · · ϕi−1(ti) 1 ϕi+1(ti) · · · ϕi+w−1(ti)
A
i
i+w−di−1 · · · A

i
i−1 0 A

i
i+1 · · · A

i
i+w−1

ϕi+w−di−1(ti) ϕi+w−di(ti) · · · ϕi+w−1(ti)
A
i
i+w−di−1 A

i
i+w−di · · · A

i
i+w−1


=

(−1)di−w+1
Ai

i+w−di−1 · · · A
i
i−1 A

i
i+1 · · · A

i
i+w−1

ϕi+w−di−1(ti) ϕi+w−di(ti) · · · ϕi+w−1(ti)
A
i
i+w−di−1 A

i
i+w−di · · · A

i
i+w−1

 .

The theorem is proved. �
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5. Some results

In this section, we give some results deduced from the explicit representations of CD-spline basis functions.
Firstly, we present Ni,D as a linear combination of some functions F j. On the basis of (22) and the properties of

determinants [26], we give the following theorem as a corollary of Theorem 4.2.

Theorem 5.1. Let

λj :=


F i(ti+k) · · · F j−1(ti+k) F j+1(ti+k) · · · F i+c+1(ti+k)

F
′

i(ti+k) · · · F
′

j−1(ti+k) F
′

j+1(ti+k) · · · F
′

i+c+1(ti+k)

...
...

...
...

...
...

F
(c)
i (ti+k) · · · F

(c)
j−1(ti+k) F

(c)
j+1(ti+k) · · · F

(c)
i+c+1(ti+k)


(24)

and

β j := (−1)j−iλjαi (25)

for j = i, i + 1, . . . , i + c + 1. Then we have

Ni,D(t) =

i+c+1
j=i

β jF j(t). (26)

Secondly, we answer the question posed in Section 1. In this paper, we have found some changeable degree truncated
power functions F i, i ∈ Z. They are linearly independent and can represent every CD-spline basis function. Thus they form a
basis for CDS-space. From the process of explicit representations, we have the following remark concerning the CDS-space.

Remark 5.1. The CDS-space over the knot sequence T and degree sequence G

ΩG[T ] = {piecewise function u(t) over T | u(t) limited to each knot interval [ti, ti+1)

is a polynomial function of degree ≤ di; the continuous order at each knot ti of u(t)
is greater than or equal to di − mi, where mi is the multiplicity of ti}.

Thirdly, in this process of explicit representation, we only use a few properties of CD-spline basis functions. These
properties are normalization, local support, continuous order and basis properties. All of them are easily obtained from
the integral definitions. So our method for explicit representations is also feasible for all the integral defined basis functions
mentioned in Section 1.
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