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Selenocysteine Synthase (SELA, E.C. 2.9.1.1) from Escherichia coli is a homodecamer pyridoxal-50-phos-
phate containing enzyme responsible for the conversion of seryl-tRNAsec into selenocysteyl-tRNAsec in
the biosynthesis of the 21th amino acid, selenocysteine (Sec or U). This paper describes the cloning
of the E. coli selA gene into a modified pET29a(+) vector and its expression in E. coli strain WL81460,
a crucial modification allowing SELA expression without bound endogenous tRNAsec. This expression
strategy enabled the purification and additional biochemical and biophysical characterization of the
SELA decamer. The homogeneous SELA protein was obtained using three chromatographic steps. Size
Exclusion Chromatography and Native Gel Electrophoresis showed that SELA maintains a decameric
state with molecular mass of approximately 500 kDa with an isoelectric point of 6,03. A predominance
of a-helix structures was detected by circular dichroism with thermal stability up to 45 �C. The oligo-
meric assemblage of SELA was investigated by glutaraldehyde crosslinking experiments indicate that
SELA homodecameric structure is the result of a stepwise addition of intermediate oligomeric states
and not a direct monomer to homodecamer transition. Our results have contributed to the establish-
ment of a robust expression model for the enzyme free of bound RNA and are of general interest to
be taken into consideration in all cases of heterologous/homologous expressions of RNA-binding pro-
teins avoiding the carryover of endogenous RNAs, which may interfere with further biochemical
characterizations.

� 2012 Elsevier Inc. Open access under the Elsevier OA license. 
Introduction

Selenocysteine (Sec) amino acid was discovered in the mid-
1960 [1] as the 21th amino acid [2] present in the organisms of
all three domains of life: bacteria, archaea, and eukarya. Being an
additional amino acid residue to the canonical 20, it has a defined
codon for incorporation. This codon is fixed in all selenocysteine-
containing organisms as a UGA-Sec codon functionally differenti-
ated from the normal UGA-Stop codon by the cis-signaling of the
SECIS sequence (SElenoCysteine Incorporating Sequence) [3,4].
The initial steps of the selenocysteine synthesis pathway involve
the charging of tRNAsec (SELC) with serine by Seryl-tRNA Synthe-
tase (SerRS), followed by the conversion of seryl-tRNAsec into sele-
nocysteyl-tRNAsec by Selenocysteine Synthase (SELA, E.C. 2.9.1.1)
[5]. SELA is a homodecamer of approximately 500 kDa exclusive
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of the bacteria domain, which converts seryl-tRNAsec (Ser-tRNAsec)
into selenocysteyl-tRNAsec (Sec-tRNAsec) in a pyridoxal-50-phos-
phate (PLP) dependent mechanism [5,6].

In eukarya and archaea the conversion from Ser-tRNAsec to Sec-
tRNAsec occurs by a different pathway involving the sequential
phosphorylation of serine and conversion to Sec-tRNAsec by two
enzymes, a phosphoseryl-tRNAsec kinase (PSTK) and a Sep-tRNA:-
Sec-tRNA synthase (SepSecS) [7].

Aiming to better understand the selenocysteine incorporation
pathway, the selA gene was cloned into a modified expression
vector and the protein was expressed in a specific E. coli strain
(WL81460), whose tRNAsec was deleted, allowing for the prepa-
ration of tRNAsec-free SELA in large amounts. The native confor-
mation and isoelectric point of purified protein were analyzed
by biochemical methods and additional analyses were per-
formed using fluorescence spectroscopy and circular dichroism,
revealing that this expression method results in a protein
consistent with the biologically active SELA for biochemical
investigations.
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Materials and methods

Cloning, bacterial strains and growth conditions

The selA gene was amplified from E. coli K12 genomic DNA (DNA-
easy Tissue Kit–Qiagen) by Polymerase Chain Reaction (PCR). Two
oligodeoxynucleotide primers for PCR amplification, i.e. SELA-1
(50-ACTGTATCATATGACAACCGAAACGCGTTTCCTCTATAG-30) and
SELA-2 (50-TAGCTAAGCTTTCATTTCAACAACATCTCCAAAAAC CG-30)
with NdeI and HindIII restriction sites, respectively, were synthe-
sized, based on the available sequence (Genebank accession num-
ber P0A821). PCR was carried out in a PTC-100 thermocycler (MJ
Research Inc.) with 2.5 U of Platinum Taq DNA Polymerase High
Fidelity (Invitrogen) according to the manufacturer’s conditions.
The sample was subjected to 3 min denaturation at 96 �C followed
by 30 cycles of denaturation at 96 �C for 0.5 min, annealing at 55 �C
for 0.5 min and extension at 68 �C for 1.5 min.

The 1392pb product of selA gene was purified in a 1% agarose
gel, digested with NdeI-HindIII restriction enzymes, cloned into
NdeI-HindIII digested pET29a(+) vector and transformed into
E. coli DH5a competent cells. Escherichia coli WL81460 strain, a
derivate of FM433 strain carrying an in-frame deletion in the selC
gene and kanamycin-resistant was a kind gift from Dr. August
Böck [8]. This strain was modified for the expression of T7 RNA
polymerase enzyme by a genome integration of the kDE3 prophage
using Lambda DE3 Lysogenization kit (Stratagene) following the
manufacturer’s instructions. Plasmid pET29a(+) kanamycin resis-
tance gene was substituted by ampicilin resistance with the pET-
Duet-1 vector sequence using DraIII and SapI restriction enzymes
(Fermentas). The ampicillin-resistant pET29a(+) was transformed
into E. coli WL81460(kDE3) competent cells and selected by
50 lg/mL ampicillin and 30 lg/mL kanamycin, in LB agar medium.

To overexpress the encoded SELA protein, 3 liters of E. coli
WL81460(kDE3) cells were grown aerobically in LB selective med-
ium to O.D.600 of 1.0 at 37 �C. The culture was induced by the addi-
tion of 0.1 mM IPTG for 2 h at 37 �C and the cells were harvested by
centrifugation at 4000g and stored frozen at �20 �C.
Purification and characterization of SELA protein

The frozen cells expressing the recombinant SELA were solubi-
lized in buffer A (20 mM potassium phosphate pH 7.5, 10 lM PLP
and 10 lg/mL lysozyme) and lised by ultrasound disruption (550
Sonic Dismembrator Fisher Scientific). The cell extract was clarified
by centrifugation at 30,000g for 30 min and the supernatant was
precipitated by the addition of ammonium sulfate to 25% satura-
tion in ice and centrifuged at 20,000g for 20 min. The sediment
was suspended in buffer A without lysozyme and desalted on a
5 mL Hi Trap Desalting column (GE) previously equilibrated with
this buffer at a flow rate of 2.0 mL/min. The desalted fraction was
applied to a 2.0 � 12.0 cm Hydroxyapatite ion exchange column
(Bio-Rad) and SELA eluted as the flow through. The purified SELA
was applied to a Hi Trap Q HP ion exchange column (GE) and
eluted with 300 mM KCl in buffer A of a linear KCl gradient (0–
1000 mM). The recombinant SELA protein was desalted again as
described previously and the fractions collected were adjusted to
10% of glycerol and concentrated up to 8.0 mg/mL by ultrafiltration
(10 kDa, Amicon).

Purified SELA was analyzed by size-exclusion chromatography
in a Superdex 200 HL column (1.6 � 60 cm size) (GE) equilibrated
with buffer A without PLP. The yellow color of the eluted SELA indi-
cate that after purification the protein retains the bound PLP. Olig-
omerization states were verified by 4–15% native gradient gel
electrophoresis in a Phast System (GE) using molecular weight
standards containing thyroglobulin (669 kDa), ferritin (440 kDa),
catalase (232 kDa) and aldolase (140 kDa). The concentration of
pure SELA protein in the solution was determined spectrophoto-
metrically at 280 nm by considering the predicted aromatic amino
acids content and the predicted molar extinction coefficient
(e = 35410 M�1 cm�1) obtained from ProtParam tools [9]. Isoelec-
tric focusing was performed in the Phast System (GE) using precast
PhastGel IEF gels (pI range 3–9) and pI markers according to the
manufacturer’s instructions.

Circular dichroism spectroscopy (CD) and Intrinsic fluorescence
spectroscopy

Far UV CD spectra of recombinant SELA protein at 0.2 mg/mL in
20 mM potassium phosphate (pH 7.5) were recorded in a Jasco J-
715 spectropolarimeter over a wavelength range of 190–250 nm
by the signal averaging of 16 accumulations using a scanning speed
of 100 nm/min, a spectral bandwidth of 1 nm, and a response of 0.5
s. The data analysis was performed using CDSSTR program and
SP29 and SP37A were used as protein databases [10]. The thermal
denaturation of SELA at 0.2 mg/mL concentration was performed in
20 mM potassium phosphate (pH 7.5) and 10 mM Dithiothreitol to
promote denaturation by reduction of the three potential disul-
fides bounds. The thermal denaturation process was followed by
measuring the decrease in the CD signal at 222 nm as a function
of temperature in the range of 10 �C to 90 �C at 1� C min�1. The
measurements were recorded every 2 �C temperature increments
after 90 s stabilization at each temperature.

Intrinsic fluorescence measurements were taken in a quartz 10
x 2 mm cuvette in an ISS-PC1 spectrofluorimeter at 25 �C using
0.1 mg/mL of SELA protein in 20 mM potassium phosphate, pH
7.5. The emission spectra were recorded in a 300–450 nm range
using an excitation wavelength of 295 nm and a 305 nm filter cut-
off in the emission. The results are an average of three independent
experiments and each measurement was corrected for the buffer
contribution.

Chemical crosslinking

Chemical crosslinkings were performed according to [11], with
glutaraldehyde at 0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.5, 1, 2, 3 and 5%
and 30 lM of the recombinant SELA monomer during 3 h reactions
at 25 �C. The reactions were analyzed by native and denaturing
PAGE.
Results and discussion

Purification and oligomerization analysis of SELA protein

The initial experiments in our laboratory aiming to obtain the
recombinant SELA from E. coli cells resulted in a preparation that
contained a tightly bound nucleotide species, resistant to RNAse
and DNAse treatment. Due to these results we have modified the
expression of SELA to the E. coli WL81460 strain due to its defi-
ciency in the production of SELA specific tRNA (seryl-tRNAsec).
For such purpose, we had to establish the kDE3 lysogen, generating
the strain E. coli WL81460(kDE3) and change the antibiotic resis-
tance of the pET29(+) construct from kanamycin to ampicillin.
These characteristics allowed the production of a homogeneous
sample of recombinant SELA, free of bound nucleotides for accu-
rate biochemical and biophysical characterizations. We believe
that this approach is relevant for the investigation of all tRNA-
binding proteins for accurate biochemical characterizations.

The purified SELA protein from E. coli WL81460(kDE3) strains
achieved high homogeneity after size exclusion chromatography
using a Superdex 200 HL (1.6 x 60 cm) column (10,000 kDa to
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600,000 kDa separation range). Recombinant SELA protein has a
yellow color before and after size exclusion chromatography indi-
cating the presence of a covalently bound PLP, as seen also by
Forchhammer et al., 1991 [12]. The binding of seryl-tRNAsec to
the SELA PLP is essential to Sec synthesis.

The results showed a single peak that was eluted in the exclu-
sion volume of approximately 48 mL, which corresponds to the
decameric structure of SELA protein (Fig. 1A). SDS–PAGE analysis
confirmed the purity of the sample and the approximate mono-
meric molecular mass of 50 kDa (Fig. 1A). The purified SELA protein
oligomerization state was verified by native gradient gel electro-
phoresis (4% to 15%) (Fig. 1B). Both methods, i.e. Size Exclusion
Chromatography and Native Gradient Gel Electrophoresis are con-
sistent and show a calculated molecular mass of 600,000 kDa for
the recombinant SELA protein, equivalent to a decamer. The exper-
imental isoelectric point of 6.03 +/- 0.10 is consistent with the pre-
dicted value of 6.21. These results are in agreement with the data
published by Forchhammer and co-workers [12] and Engelhart et
al., [13], confirming that the recombinant SELA obtained by our
procedure is equivalent to the native SELA.

The presence of endogenous RNA in the recombinant SELA at
2.0 mg/mL concentration was verified in the Qubit fluorometer
(Invitrogen) using the Quant-iT RNA assay. A comparative analysis
of recombinant SELA measured in the same protein concentration
detected approximately 1 lg/mL RNA in SELA expressed in E. coli
BL21(kDE3) while no signal was detected (below 20 ng/mL) in
SELA expressed in E. coli WL81460(kDE3). This result is suggestive
that the recombinant SELA binds tightly to endogenous SELC RNA.
Circular dichroism (CD) and thermal denaturation

To further characterize the recombinant SELA obtained, circular
dichroism (CD) and Thermal Stability tests were performed. The far
UV CD spectra at 25 �C displayed two negative bands at 222 and
208 nm and a positive band near 200 nm (Fig. 2A). The estimated
a-helix and b-strands content ranged from 74% to 76%, and from
10% to 13%, respectively, the content of turns ranged from 2% to
4% and that of unrelated structures ranged from 9% to 12%. These
results indicate that the purified E. coli SELA protein is formed
mainly by a-helices with a significant b-strands core, consistent
with the Methanoccocus jannaschii structure (GI: 78101334), in
Fig. 1. Recombinant SELA purification protein using Superdex 200 HL (1.6 � 60 cm) colum
at 280 nm. Samples were analyzed by SDS–PAGE (15%). Lane 1, molecular-mass marke
approximately 50 mL. (B) Native gel electrophoresis of the purified recombinant SELA. La
Size Exclusion Chromatography.
which the putative SELA of archaea is mostly formed by a-helices
and has a b-strand core [12,14].

The temperature variation in the SELA secondary structure
showed that the protein stability is maintained up to 45 �C. SELA
has a thermal transition from 60 to 70 �C with a Tm of 66 �C and
an evident plateau above 70 �C, in which all secondary structures
are lost and the protein is completely denatured (Fig. 2B). These re-
sults indicate that the recombinant SELA, lacking the bound RNA,
has a stable fold that withstands thermal degradation.

Intrinsic fluorescence spectroscopy

The tertiary structure of SELA protein from E. coli was also stud-
ied by tryptophan intrinsic fluorescence as an additional method to
verify that the folding of the recombinant SELA is stable and con-
sistent with the putative homologue from M. jannaschii. The SELA
emission spectrum showed a maximum fluorescence wavelength
at approximately 336 nm upon excitation at 295 nm (Fig. 2C).
The high signal of fluorescence intensity obtained is an average
of the contributions of the four tryptophan residues presented in
each monomer of SELA protein and indicates that these residues
are relatively buried in the structure of the protein.

Chemical crosslinking assays

Aiming at the characterization of the oligomeric assemblage of
SELA, crosslinking experiments were conducted using the reagent
glutaraldehyde in conjunction with denaturing and non-denatur-
ing gel electrophoresis. The results (Fig. 3A and B) indicate that
the crosslinking reaction occurred between SELA monomers. A
strong band is visible with the expected molecular mass of
600 kDa (Fig. 3A) in the absence of glutaraldehyde. These results
are consistent with our size exclusion chromatography data and
those of Forchhammer, 1991 [12].

Native gel electrophoresis results (Fig. 3A) show that at glutar-
aldehyde concentrations above 1.0% three oligomeric states, smal-
ler than the expected decamer (approximately 100, 200, and
300 kDa) are visible. The intensity of those oligomeric classes in-
creases in function of the concentration of glutaraldehyde. These
results are suggestive that SELA reaches the homodecameric
structure by the stepwise addition of intermediate oligomeric
n (GE). (A) Size Exclusion Chromatographic (SEC) profile of SELA protein monitored
r (kDa), Lane 2, Protein preparation applied to SEC, Lane 3, SELA protein eluted at
ne 1, molecular-mass marker (kDa), Lane 2, Recombinant SELA protein at 4 lM after



Fig. 2. Structural analysis of SELA protein. (A) CD spectra of SELA at 0.2 mg/mL in 20 mM potassium phosphate buffer (pH 7.5) at 25 �C. (B) Transition curve of the thermal
denaturation of SELA protein monitoring the changes at 222 nm as a function of temperature (10–90 �C) with 0.2 mg/mL protein in buffer with 10 mM of DTT to avoid the
interference of sulfide bonds during the denaturation process. The results are an average of three independent experiments. (C) Intrinsic fluorescence emission spectra of
SELA protein at 25 �C using 0.1 mg/mL of SELA protein in 20 mM potassium phosphate, pH 7.5. The emission spectra in the 300–450 nm range were recorded using an
excitation wavelength of 295 nm and a cutoff 305 nm filter in the emission.

Fig. 3. Oligomeric assembly of SELA. (A) Native gel electrophoresis and B) SDS–PAGE, analysis of the recombinant SELA crosslinking with increasing concentrations of
glutaraldehyde showing the sequential formation of oligomeric structures. Lanes 1, Molecular mass marker, Lanes 2, SELA without glutaraldehyde, Lanes 3 to 6, SELA with 1,
2, 3 and 5% glutaraldehyde show the formation of larger SELA complexes. The SDS–PAGE (B) confirms the absence of free SELA under the same crosslinking conditions under
which SELA is present as a high molecular mass that does not enter the gel mech.
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states, e.g., monomer–dimer–tetramer–hexamer–decamer, op-
posed to the transition from a monomer to a homodecamer. The
SDS–PAGE analyses of the crosslinking reaction (Fig. 3B) are consis-
tent with these results, revealing the absence of the free mono-
meric form.

Conclusions

Selenocysteine Synthase (SELA) from E. coli is a pyridoxal-50-
phosphate containing enzyme responsible for the formation of
selenocysteyl-tRNAsec from seryl-tRNAsec and selenophosphate
[15]. The expression of SELA in the WL81460(kDE3) strain of
E. coli and the establishment of a purification protocol are of rel-
evance since we have shown that the protein expressed in SELC
containing E. coli cells binds and co-purifies endogenous RNA,
probably tRNAsec. Such a tRNAsec-bound SELA protein may be het-
erogeneous in the number of tRNA molecules bound per decamer,
compromising subsequent biochemical investigations. The analy-
sis of the recombinant SELA, free of bound RNA is consistent with
the results expected for the native protein by SDS–PAGE analysis,
revealing a 50 kDa monomer. The native gradient gel electropho-
resis demonstrated that a decamer is formed as a stable oligo-
meric state. The SELA biophysical analyses are consistent with
the expected characteristics of E. coli SELA, regarding its isoelec-
tric point and secondary structure elements content, as deter-
mined by circular dichroism studies. Two additional
experiments, namely thermal denaturation assays and intrinsic
fluorescence showed that the structure is compact and stably
folded. Interestingly, the expression of the recombinant SELA in
the SELC deficient E. coli strain WL81460(kDE3) allowed the
observing the stepwise oligomeric assembly of the homodecamer.
Our results of SELA characterization are consistent with the data
previously published contributing to the establishment of a ro-
bust expression model for the enzyme free of bound endogenous
tRNAsec. The use of the previous expression methodology resulted
in an RNA-bound recombinant SELA, which otherwise would
interfere with the functional experimentation of the enzyme.
These results are of general interest and should be taken into con-
sideration in all cases of heterologous/homologous expressions of
recombinant RNA-binding proteins to avoid the carryover of
endogenous RNAs, which may interfere with further biochemical
characterizations.
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