The forbidden minor characterization of line-search antimatroids of rooted digraphs

Yoshio Okamoto*, Masataka Nakamura
Department of Systems Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo 153-8902, Japan

Received 10 January 2001; received in revised form 5 September 2001; accepted 8 December 2001

Abstract

An antimatroid is an accessible union-closed family of subsets of a finite set. A number of classes of antimatroids are closed under taking minors such as point-search antimatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor characterizations are known for point-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees and shelling antimatroids of posets. In this paper, we give the forbidden minor characterization of line-search antimatroids of rooted digraphs.

© 2002 Elsevier B.V. All rights reserved.
Keywords: Antimatroid; Forbidden minor; Line graph; Line-search antimatroid

1. Introduction

Various kinds of shelling procedures give rise to a class of combinatorial structures called antimatroids, which were introduced by Edelman [2] and Jamison-Walder [5]. Antimatroids can be seen as a combinatorial abstraction of convexity, while matroids can be seen as a combinatorial abstraction of linear independence. Antimatroids are related to matroids in that both can be defined by an apparently similar axioms. This close relationship between antimatroids and matroids provides a lot of interesting properties of antimatroids. For example, antimatroids can be characterized by a greedy algorithm

[^0]like matroids [1]. Note that one of the authors has recently given a greedy-algorithmic characterization of non-simple antimatroids, which is an extension of antimatroids [9].

Both antimatroids and matroids are subclasses of greedoids introduced by KorteLovász [6]. See [8] for details and various examples of greedoids. In greedoid theory, some classes are characterized by their forbidden minors: local poset greedoids [7]; undirected branching greedoids [3,13], and poset-shelling antimatroids and point-search antimatroids of rooted (di)graphs [10]. In this paper, we give the forbidden minor characterization for line-search antimatroids of rooted digraphs.

Note that there are still other antimatroids whose forbidden minor characterizations have not been known yet, for example, line-search antimatroids of rooted undirected graphs.

2. Preliminaries

2.1. Antimatroids

Let E be a non-empty finite set, and let \mathscr{F} be a family of subsets of E such that

$$
\begin{equation*}
\emptyset \in \mathscr{F}, \quad E \in \mathscr{F}, \tag{1}
\end{equation*}
$$

if $X \in \mathscr{F} \backslash\{\emptyset\}$, then there exists an $e \in X$ such that $X \backslash\{e\} \in \mathscr{F}$,

$$
\begin{equation*}
\text { if } X, Y \in \mathscr{F} \text {, then } X \cup Y \in \mathscr{F} \text {. } \tag{2}
\end{equation*}
$$

Then we call (E, \mathscr{F}) an antimatroid on E. When there is no risk of confusion, we use \mathscr{F} instead of (E, \mathscr{F}). Each element of \mathscr{F} is called a feasible set.

For an antimatroid \mathscr{F}, a minor $\mathscr{F}[A, B]$ is defined as follows:

$$
\begin{equation*}
\mathscr{F}[A, B]=\{X \backslash A: X \in \mathscr{F}, A \subseteq X \subseteq B\}, \tag{4}
\end{equation*}
$$

where $A, B \in \mathscr{F}$ and $A \subseteq B$. We can easily check that each minor of an antimatroid is also an antimatroid.

2.2. Point-search antimatroids of rooted digraphs

A digraph G is a pair (V, E) such that V is a non-empty finite set of vertices, and E is a subset of $\{(x, y): x, y \in V, x \neq y\}$ called a set of edges. For simplicity, we write $x y$ instead of (x, y). For an edge $x y \in E, x$ is called the tail, and y is called the head.

A path P in $G=(V, E)$ is a sequence of vertices $x_{1} x_{2} \cdots x_{m}$ with $x_{i} x_{i+1} \in E$ for $i=1, \ldots, m-1$. A path $P=x_{1} \cdots x_{m}$ is also called a path from x_{1} to x_{m}. For a path $P=x_{1} \cdots x_{m}$, if there exists an edge $x_{i} x_{j} \in E(i+1<j)$, then the edge $x_{i} x_{j}$ is called a short cut of the path P. A path without repeated vertices is called elementary. An elementary path without any short cuts is called straight.

A rooted digraph is a triple $G=(V, E, r)$, where $(V \cup\{r\}, E)$ is a digraph and r is a specified vertex called the root such that there exists a path from r to every vertex of V. A path from the root r is called a rooted path. A vertex v is called an atom if $r v \in E$.

Fig. 1. A rooted digraph and a rooted minor.

For a rooted digraph $G=(V, E, r)$, we consider the following procedure: first we choose one of the atoms, say v; next we shrink v to the root. If we repeat this procedure until all vertices are shrunk to the root, then we will obtain a sequence of vertices selected by the above procedure of shrinking. If we gather all of these sequences, then they form an antimatroid. Formally, for a rooted digraph $G=(V, E, r)$, we define the point-search antimatroid $\mathfrak{P} \mathfrak{S}_{D}(G)$ as follows:

$$
\begin{align*}
\mathfrak{P S}_{D}(G)=\{ & X \subseteq V: \text { every vertex } v \in X \text { can be reached by } \\
& \text { a rooted path in the subgraph induced by } X \cup\{r\}\} . \tag{5}
\end{align*}
$$

Note that the class of point-search antimatroids is closed under taking minors.
In a rooted digraph $G=(V, E, r)$, let $e=x y \in E$ be an edge of G. Suppose $P=$ $r u_{1} u_{2} \cdots u_{m}$ to be a straight rooted path such that $u_{m-1} u_{m}=e$. Then we say that e is supported by P, or P supports e. If there is no path supporting e, then e is called a redundant edge. If a rooted digraph contains no redundant edge, then it is called an irredundant rooted digraph. Note that redundant edges have no use for defining point-search antimatroids. In particular, irredundant rooted digraphs have no edge whose head is the root r or an atom. For a rooted digraph G, define G_{0} as the rooted digraph such that the redundant edges of G are deleted, then the point-search antimatroids of G and G_{0} are the same. Therefore, without loss of generality, when we consider point-search antimatroids of rooted digraphs, we only have to handle irredundant ones.

Let $G=(V, E, r)$ be a rooted digraph, and $\mathfrak{P S}_{D}(G)$ be the point-search antimatroid of G. For $A, B \in \mathfrak{P} \mathfrak{S}_{D}(G)$ with $A \subseteq B$, remove $V \backslash B$ and the edges incident to $V \backslash B$ from G, shrink the vertices A to r. Then delete all the redundant edges from the resultant graph. This procedure gives us an irredundant rooted digraph, which we call a rooted minor and denote by $G[A, B]$. Fig. 1 shows an example of rooted minors. Note that every rooted minor of an irredundant rooted digraph is also irredundant. Clearly, the point-search antimatroid of $G[A, B]$ is equal to the minor $\mathfrak{P} \mathfrak{S}_{D}(G)[A, B]$, namely $\mathfrak{P} \mathfrak{S}_{D}(G[A, B])=\mathfrak{P} \mathfrak{S}_{D}(G)[A, B]$. Furthermore, suppose G^{\prime} to be another irredundant rooted digraph. Then $\mathfrak{P S} \mathfrak{S}_{D}(G)$ contains a minor isomorphic to $\mathfrak{P S} \mathfrak{S}_{D}\left(G^{\prime}\right)$ if and only if there exists a rooted minor of G which is isomorphic to G^{\prime}.

A multi-digraph H is a quadruple ($N, A ; h, t$), where N is a non-empty finite set of nodes, A is a finite set of arcs, and h, t are maps from A to N. For $a \in A, h(a) \in N$ is called the head of a, and $t(a) \in N$ is the tail of a. A digraph is a special case of

Fig. 2. The Heuchenne condition.
multi-digraphs. A path in H is a sequence of arcs $a_{1} \cdots a_{k}$ such that $h\left(a_{i}\right)=t\left(a_{i+1}\right)$ for $i=1, \ldots, k-1$. If a path has no repeated arcs, it is called simple.

A multi-digraph $H=(N, A ; h, t)$ defines a digraph $G=(A, E)$ by $E=\{(a, b): a, b \in A, a \neq$ $b, h(a)=t(b)\}$, which is called the line graph of H. A digraph G is a line graph if there exists some multi-digraph of which G is the line graph. Syslo [14] gives a polynomial-time algorithm which decides whether the given digraph is a line graph or not. The algorithm is based on the following characterization of line graphs [4,11]:

Proposition 1. Let $G=(V, E)$ be a digraph. G is a line graph if and only if for every $x, y, z, w \in V,(x, y),(z, y),(z, w) \in E$ imply $(x, w) \in E$, as shown in Fig. 2.

The condition of this proposition is called the Heuchenne condition, or the H-condition, for short.

A rooted multi-digraph is a quintuple $(N, A, r ; h, t)$, where $(N \cup\{r\}, A ; h, t)$ is a multi-digraph and r is a specified node called a root such that for every arc there exists a simple path from r which contains it. A rooted multi-digraph $H=\left(N, A, r^{\prime} ; h, t\right)$ also gives its rooted line graph as follows: add a new node $r^{\prime \prime}$ and insert an arc $r^{\prime \prime} r^{\prime}$ to H, and construct the line graph of this resultant multi-digraph, then we have a digraph G whose vertices are $A \cup\{r\}$, where r is a vertex corresponding to the arc $r^{\prime \prime} r^{\prime}$. By assumption, it is obvious that there exists a rooted path to every vertex in G. Hence G is a rooted digraph.

3. The forbidden minor characterization of line-search antimatroids

In analogy to point-search antimatroids, we define the line-search antimatroid $\mathfrak{L} \mathfrak{S}_{D}(H)$ of a rooted multi-digraph $H=(N, A, r ; h, t)$ as follows:

$$
\begin{equation*}
\mathfrak{L} \mathfrak{S}_{D}(H)=\{X \subseteq A: \text { every arc } a \in X \text { is contained in a simple } \tag{6}
\end{equation*}
$$

path from r on the subgraph induced by $X\}$.
Note that line-search antimatroids of rooted multi-digraphs are also closed under taking their minors.

Let G be the rooted line graph of a rooted multi-digraph H. Then the line-search antimatroid of H coincides with the point-search antimatroid of G. Therefore, the class of point-search antimatroids of rooted digraphs includes that of line-search antimatroids

Fig. 3. The forbidden minor D_{5} of point-search antimatroids of rooted digraphs.

Fig. 4. The rooted digraph A which violates the H-condition.
of rooted multi-digraphs. It is easily checked that there is a one-to-one correspondence between line-search antimatroids of rooted multi-digraphs and irredundant rooted digraphs which satisfy the H -condition.

Point-search antimatroids of rooted digraphs are characterized by the forbidden minor [10]:

Proposition 2. \mathscr{F} is the point-search antimatroid of a rooted digraph if and only if \mathscr{F} does not contain a minor isomorphic to $D_{5}=\{\emptyset,\{x\},\{y\},\{x, y\},\{x, y, z\}\}$, as shown in Fig. 3.

Hence, in order to characterize line-search antimatroids of rooted digraphs, we only need to characterize point-search antimatroids of irredundant rooted digraphs which violate the H -condition.

For example, the irredundant rooted digraph $A=(V(A), E(A), r)$ defined as

$$
\begin{align*}
& V(A)=\{a, b, c, d\} \tag{7}\\
& E(A)=\{(r, a),(r, b),(a, c),(b, c),(b, d)\} \tag{8}
\end{align*}
$$

which is shown in Fig. 4, violates the H-condition.

Fig. 5. The rooted digraph B which violates the H -condition.

Fig. 6. The rooted digraph $C_{m, n}(m, n \geqslant 1)$ which violates the H-condition, where the broken arrows represent arbitrarily long paths.

Additionally, the following three kinds of irredundant rooted digraphs $B, C_{m, n}, D_{l, m, n}$ also violate the H -condition; $B=(V(B), E(B), r)$ is defined as

$$
\begin{align*}
V(B) & =\{a, b, c, d\}, \tag{9}\\
E(B) & =\{(r, a),(r, b),(a, c),(b, c),(b, d),(c, d)\}, \tag{10}
\end{align*}
$$

which is shown in Fig. 5; $C_{m, n}=\left(V\left(C_{m, n}\right), E\left(C_{m, n}\right), r\right)$ is defined as

$$
\begin{align*}
& V\left(C_{m, n}\right)=\left\{a, b, c=x_{0}, d=y_{0}, e, x_{1}, \ldots, x_{m-1}, y_{1}, \ldots, y_{n-1}\right\}, \tag{11}\\
& E\left(C_{m, n}\right)=\left\{(r, a),(r, b),(a, c),(b, d),\left(c, x_{1}\right),\left(d, y_{1}\right),(e, c),(e, d),\right. \\
&\left(x_{1}, x_{2}\right), \ldots,\left(x_{m-2}, x_{m-1}\right),\left(x_{m-1}, e\right), \\
&\left.\left(y_{1}, y_{2}\right), \ldots,\left(y_{n-2}, y_{n-1}\right),\left(y_{n-1}, e\right)\right\}, \tag{12}
\end{align*}
$$

where $m, n \geqslant 1$, which is shown in Fig. $6 ; D_{l, m, n}=\left(V\left(D_{l, m, n}\right), E\left(D_{l, m, n}\right), r\right)$ is defined as

$$
\begin{align*}
& V\left(D_{l, m, n}\right)=\left\{a, b, c=x_{0}, d=y_{0}, e, f=z_{0},\right. \\
&\left.x_{1}, \ldots, x_{l-1}, y_{1}, \ldots, y_{m-1}, z_{1}, \ldots, z_{n-1}\right\}, \tag{13}\\
& E\left(D_{l, m, n}\right)=\left\{(r, a),(r, b),(a, c),(b, d),\left(c, x_{1}\right),\left(d, y_{1}\right),(e, c),(e, d),\right. \\
&\left(f, z_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{l-2}, x_{l-1}\right),\left(x_{l-1}, f\right), \\
&\left(y_{1}, y_{2}\right), \ldots,\left(y_{m-2}, y_{m-1}\right),\left(y_{m-1}, f\right), \\
&\left.\left(z_{1}, z_{2}\right), \ldots,\left(z_{n-2}, z_{n-1}\right),\left(z_{n-1}, e\right)\right\}, \tag{14}
\end{align*}
$$

where $l, m, n \geqslant 1$, which is shown in Fig. 7 .

Fig. 7. The rooted digraph $D_{l, m, n}(l, m, n \geqslant 1)$ which violates the H -condition, where the broken arrows represent arbitrarily long paths.

Therefore, it is clear that if G is a rooted line graph then it cannot contain the above rooted digraphs as its rooted minors. Indeed, it turns out to be sufficient to exclude these minors to get a rooted line graph.

Theorem 3. Let G be an irredundant rooted digraph. Then, G is a rooted line graph if and only if G has no rooted minor isomorphic to $A, B, C_{m, n}$ or $D_{l, m, n}(l, m, n \geqslant 1)$.

Proof. We only need to show the sufficiency. Let $G=(V, E, r)$ be an irredundant rooted digraph containing four vertices x, y, z, w which violate the H -condition and is minor-minimal with respect to this property. Let $\mathscr{W}=\{x, y, z, w\}$.

A vertex $a \in \mathscr{W}$ is the joint of a straight path P from r to a vertex of \mathscr{W} if a is the first vertex of \mathscr{W} along the path P from r. Let T be the set of joints for straight paths in G. From the assumption, we have $T \neq \emptyset$ and there must exist a path supporting each of the edges $x y, z y, z w$, which we denote by P, Q, R, respectively. We consider the following cases according to the size of T.

Case $1 .|T|=1$. It is easily checked that this case leads to a contradiction.
Case 2. $|T|=2$. This has the following six subcases.
Case 2.1: $T=\{x, y\}$. The path Q is not straight since Q must go through x or y. This is a contradiction.

Case 2.2. $T=\{x, z\}$. A path with the joint x supports the edge $x y$, and a path with the joint z supports the edges $z y$ and $z w$. From the minimality of G, the vertices of G must be $\{r, x, y, z, w\}$. If we consider all the possible edges among them, then we obtain A and B.

Case 2.3. $T=\{x, w\}$. Suppose that the path Q goes through x, then the edge $x y$ is a short cut. This is a contradiction. Therefore, Q must go through w but not through x. Moreover, Q is $r \cdots w \cdots z y$ since Q does not go through y. If a path with the joint w has no vertex between r and w, then it is a short-cut of the path R. Therefore, it has an extra vertex p between r and w, namely the path is $r p w$, from the minimality of G. Moreover, the path with the joint x is $r x$ from the minimality of G as a rooted minor. Since the path R does not go through w, it must go through x. We consider the subcases according to whether R goes through the edge $x y$ or not.

Case 2.3.1. R goes through $x y . R$ is $r \cdots x y \cdots z$. If there is a common vertex of the part $y \cdots z$ of R and the part $w \cdots z$ of Q except for z, then G must contain $D_{l, m, n}$ as a subgraph. Otherwise, G must contain $C_{m, n}$ as a subgraph.

Fig. 8. Case 2.3.2. Broken arrows represent arbitrarily long paths.
Now we should check that if G has no rooted minor isomorphic to $C_{m, n}$ and $D_{l, m, n}$, then G must have A or B as its rooted minor, or it leads to a contradiction.

Case 2.3.1.1: $C_{m, n}$ has extra edges. Refer Definition $(11,12)$ of $C_{m, n}$.
Case 2.3.1.1.1: The edge cd exists. If we shrink a to r and we set $a=c$ and $c=x_{1}$, then we can reduce this case to A or B.

Case 2.3.1.1.2: The edge $x_{i} y_{j}$ exists $(0<i<m, 0<j<n)$. If we shrink a, b, c, $x_{1}, \ldots, x_{i-1}, y_{0}, \ldots, y_{j-2}$ to r and we set $a=x_{i}, b=y_{j-1}, c=x_{i+1}$ and $d=y_{j}$, then we reduce this case to A or B.

Case 2.3.1.1.3: The edge $x_{i} e$ exists. A contradiction since the edge $x_{m-1} e$ is redundant.

Case 2.3.1.2: $D_{l, m, n}$ has extra edges. We can check similarly to Case 2.3.1.1.
Case 2.3.2: R does not go through $x y$. Then, we obtain the graphs shown in Fig. 8, where I is a path from x to z and J is a path from w to z. In the left case, I and J have a unique common vertex z, and in the right case they have at least two common vertices.

Now we show that these graphs have A or B as a rooted minor. We consider the left case. The right case is shown similarly.

Case 2.3.2.1: The length of I is one, and the length of J is also one. If we shrink p to r, then it is reduced to B.

Case 2.3.2.2: The length of I is one, and the length of J is more than one. Let $J=w j_{1} j_{2} \ldots j_{h} z$ for $h \geqslant 1$. If we shrink $p, w, j_{1}, \ldots, j_{h-1}$ to r, then it is reduced to B.

Case 2.3.2.3: The length of I is more than two, and the length of J is one. If we shrink p and w to r, then it is reduced to A.

Case 2.3.2.4: The length of I is more than two, and the length of J is one. Let $I=x i_{1} i_{2} \ldots i_{k} z$ for $k \geqslant 2$. If we delete i_{2}, \ldots, i_{k} and shrink p and w to r, then it is reduced to A.

Case 2.3.2.5: The lengths of both I and J are more than one. Let $I=x i_{1} i_{2} \ldots i_{k} z$ for $k \geqslant 1$, and $J=w j_{1} \ldots j_{h} z$ for $h \geqslant 1$. If we delete i_{2}, \ldots, i_{k} and shrink $p, w, j_{1}, \ldots, j_{h}$ to r, then it is reduced to A.

Case 2.4: $T=\{y, w\}$. From the minimality and the irredundancy of G, the length of a path with the joint y is two, and let it be rpy. Similarly, the length of a path

Fig. 9. Case 2-6.
with the joint w is two, and let it be $r q w$. If $p=q$, then the three edges $x y, z y$ and $z w$ are always redundant. Therefore, we have $p \neq q$.

The path Q goes through neither x nor y. Therefore, Q is rqw $\cdots z y$.
The path R does not go through w. Hence, it must go through y. If we delete x, then it is reduced to $C_{m, n}$ or $D_{l, m, n}$.

Case 2.5: $T=\{y, z\}$. The path P does not go through y. Therefore, it must go through z. Then, it is a contradiction since the edge $z y$ is a short cut.

Case 2.6: $T=\{z, w\}$. Since the path P does not go through z, it must go through w. From the minimality of G, the length of a path with the joint w is two, and the length of a path with the joint z is one. Now, we obtain the graph shown in Fig. 9. Then, if we delete the vertices of the path $w \cdots x$ except for w, then it is reduced to A.

Case 3: $|T|=3$. This has the following four subcases.
Case 3.1: $T=\{x, y, z\}$. The path P has the joint x. Moreover, the paths Q and R have the joint z. Suppose that the length of a path Y with the joint y is one. Then the edges $x y$ and $z y$ are redundant. Therefore, the length of Y is more than one, that is, $Y=r y_{1} \cdots y_{k} p y$ for $k \geqslant 0$. Note that p is contained neither in P nor in Q.

Let $P=r u_{1} \cdots u_{l} x$ and $Q=r v_{1} \cdots v_{m} z$ for $l, m \geqslant 0$. If we delete p and shrink $u_{1}, \ldots, u_{l}, v_{1}, \ldots, v_{m}, y_{1}, \ldots, y_{k}$ to r, then it is reduced to A or B.

Case 3.2: $T=\{x, y, w\}$. Suppose that the length of a path Y with the joint y is one. Then the edges $x y$ and $z y$ are redundant. Therefore, the length of Y is more than one, that is, $Y=r y_{1} \cdots y_{k} p y$ for $k \geqslant 0$. If we delete x, then $\{p, y, z, w\}$ is the set of vertices which violates the H -condition. Therefore, it is reduced to Case 2.3 .

Case 3.3: $T=\{x, z, w\}$. The path P has the joint x. Moreover, the paths Q and R have the joint z. Suppose that the length of a path Y with the joint w is one. Then the edge $z w$ is redundant. Therefore, the length of Y is more than one, that is, $Y=r y_{1} \cdots y_{k} p w$ for $k \geqslant 0$. Note that p is contained neither in P nor in Q.

Let $P=r u_{1} \cdots u_{l} x$ and $Q=r v_{1} \cdots v_{m} z$ for $l, m \geq 0$. If we delete p, and shrink $u_{1}, \ldots, u_{l}, v_{1}, \ldots, v_{m}, y_{1}, \ldots, y_{k}$ to r, then it is reduced to A or B.

Case 3.4: $T=\{y, z, w\}$. The paths Q and R have the joint z. Let Y be the path with the joint y. Note that the length of Y is more than one. Similarly, let W be the path with the joint w, then its length is more than one. The path P supporting the edge $x y$
has the joint w. Let p be the vertex of Y which precedes y and q be the vertex of W which precedes w. Suppose that $p=q$, and consider the path P supporting the edge $x y$. The joint of P is not y. If the joint of P is z, then the edge $z y$ is a short-cut of P. If the joint of P is w, then the edge $p y$ is a short-cut of P. Therefore, we have $p \neq q$.

Let $Y=r y_{1} \cdots y_{l} p y, W=r w_{1} \cdots w_{m} q w$ and $Q=r q_{1} \cdots q_{n} z$ for $l, m, n \geqslant 0$. If we delete p and x, and shrink $y_{1}, \ldots, y_{l}, w_{1}, \ldots, w_{m}, q_{1}, \ldots, q_{n}$ to r, then it is reduced to A or B.

Case 4: $|T|=4$. It is easily checked that this case is reduced to Case 3.1 or Case 3.3.

Theorem 3 directly gives the forbidden minor characterization of line-search antimatroids of rooted digraphs as below.

Corollary 4. Let \mathscr{F} be an antimatroid. Then, \mathscr{F} is a line-search antimatroid of a rooted digraph if and only if \mathscr{F} has no minor isomorphic to D_{5} or the point-search antimatroids of $A, B, C_{m, n}$ or $D_{l, m, n}(l, m, n \geqslant 1)$.

Robertson-Seymour [12] have shown the Graph Minor Theorem, that is, in every infinite set of graphs there are two graphs such that one is a minor of the other. From this theorem, we conclude that every minor-closed property of graphs can be characterized by finitely many forbidden minors. But for antimatroids, Theorem 3 implies that there exists an infinite set of antimatroids such that any of them is not a proper minor of the other one.

Acknowledgements

The authors give thanks to anonymous referees for their useful comments.

References

[1] E. Boyd, U. Faigle, An algorithmic characterization of antimatroids, Discrete Appl. Math. 28 (1990) 197-205.
[2] P.H. Edelman, Meet-distributive lattices and anti-exchange closure, Algebra Univ. 10 (1980) 290-299.
[3] O. Goecke, R. Schrader, Minor characterization of undirected branching greedoids-a short proof, Discrete Math. 82 (1990) 93-99.
[4] C. Heuchenne, Sur une certain correspondence entre graphes, Bull. Soc. Roy. Sci. Liege 33 (1964) 14-19.
[5] R.E. Jamison-Walder, A perspective on abstract convexity: classifying alignments by varieties, in: D.C. Kay, M. Breem (Eds.), Convexity and Related Combinatorial Geometry, Dekker, New York, 1982, pp. 113-150.
[6] B. Korte, L. Lovász, Greedoids, a structural framework for the greedy algorithm, in: W.R. Pulleyblank (Ed.), Progress in Combinatorial Optimization, Proceedings of the Silver Jubilee Conference on Combinatorics, Waterloo, June 1982, Academic Press, London, New York, San Francisco, 1984, pp. 221-243.
[7] B. Korte, L. Lovász, Polymatroid greedoids, J. Combin. Theory B 38 (1985) 41-72.
[8] B. Korte, L. Lovász, R. Schrader, Greedoids, Springer, Berlin, Heidelberg, 1991.
[9] M. Nakamura, Algorithmic characterizations of non-simple greedoids and antimatroids, Proceedings of the Fifth Japan-Korea Joint Workshop on Algorithms and Computation, Tokyo, July 2000, pp. 122-129.
[10] M. Nakamura, Excluded-minor characterizations of antimatroids arisen from posets and graph searches, submitted for publication, Discrete Appl. Math., in press.
[11] E. Prisner, Graph Dynamics, Longman, Essex, 1995.
[12] N. Robertson, P.D. Seymour, Graph minors XX: Wagner's conjecture.
[13] W. Schmidt, A characterization of undirected branching greedoids, J. Combin. Theory B 45 (1988) 160-182.
[14] M. Syslo, A labeling algorithm to recognize a line digraph and output its root graph, Inform. Process. Lett. 15 (1982) 28-30.

[^0]: * Corresponding author. Current address: Department of Computer Science, Institute of Theoretical Computer Science, ETH Zürich, CH-8092, Zürich, Switzerland.

 E-mail addresses: okamotoy@inf.ethz.ch, yoshio@klee.c.u-tokyo.ac.jp (Y. Okamoto), nakamura@klee. c.u-tokyo.ac.jp (M. Nakamura).

