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Admissible prediction problems in finite populations with arbitrary rank under matrix loss
function are investigated. For the general random effects linear model, we obtained the
necessary and sufficient conditions for a linear predictor of the linearly predictable vari-
able to be admissible in the two classes of homogeneous linear predictors and all linear
predictors and the class that contains all predictors, respectively. Moreover, we prove that
the best linear unbiased predictors (BLUPs) of the population total and the finite popula-
tion regression coefficient are admissible under different assumptions of superpopulation
models respectively.
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1. Introduction

For convenience, the following notationswill be used in this paper. For amatrixA,M (A),A′,A− andA+ denote the column
space, the transpose, any generalized inverse and the Moore–Penrose inverse, respectively, of A, A > 0 (A ⩾ 0) means that
A is a symmetric positive definite matrix (nonnegative definite matrix), A ⩾ B (A ⩽ B) means that A − B ⩾ 0 (B − A ⩾ 0),
the symbol, ,, is used for ‘defined as’, I is an identity matrix with an appropriate order.

LetP = {1, . . . ,N} be the set of labels of the units of a finite population of sizeN , whereN is known. Associatedwith the
ith unit of P , there are p + 1 quantities: yi, xi1, . . . , xip, where all but yi are known, i = 1, . . . ,N . Denote y = (y1, . . . , yN)′,
and X = (X1, . . . ,XN)′, where Xi = (xi1, . . . , xip)′, i = 1, . . . ,N . We express the relationships among the variables by the
linear model with stochastic regression coefficients

y = Xβ + e, (1.1)
where β and e are p × 1 and N × 1 unobservable random vectors, respectively, with E(β) = Aα, Cov(β) = U , E(e) =

0, Cov(e) = V , E(βe′) = W and E(eβ′) = W ′, X and A are known N × p and p × kmatrices respectively,

Σ =


U W
W ′ V


⩾ 0
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is a known (N + p) × (N + p) matrix, and α is a k × 1 unknown superparameter vector. This model is usually called
superpopulation model (cf. [6]). If (β′, e′)′ is a random vector of multivariate normal distribution, the model (1.1) will be
written as

y = Xβ + e, (β′, e′)′ ∼ N ((α′A′, 0′)′, Σ). (1.2)

Since Cov(β) = U > 0 is not necessary for the model (1.1) (or (1.2)), the above formulation includes, but is not limited to,
the fixed effects, mixed effects and randommodels.

Considerable attention has been given in the past to the problem of making inferences from a sample about certain
population quantity using the superpopulation approach (e.g., cf. [2–6,27,30–35,37,38]) to survey sampling. Under this
perspective, according to conditionality principle (cf. [1]), the sampling plan is not relevant to the inference. Let θ(y) be
some population quantity of interest which we want to predict in practice. Examples of such quantities are the population
linear function Qy, where Q is an h × N known matrix, and the population quadratic quantities like y ′Hy, where H ⩾ 0
is an N × N known matrix satisfying HX = 0. Denote the population total TN = 1′

Ny =
∑N

i=1 yi, where 1N = (1, . . . , 1)′,
and the finite population regression coefficient, βN = (X ′V−1X)−1X ′V−1y, where X and V are of full column rank, and β is
a fixed effect vector. Optimal prediction of TN has been considered by Royall [17], Royall and Herson [18], and Pereira and
Rodrigues [15]. All of these papers studied the best linear unbiased predictor (BLUP) of TN . Wang [20] considered the adaptive
ridge-type predictors of l ′y in the presence of multicollinearity among the columns of X , where l is an N × 1 known vector.
Bolfarine et al. [5] investigated the prediction of TN under regression superpopulation model when explanatory variable
vector is measured with error. The Bayes, minimax and best unbiased prediction of βN has also been studied (see, e.g., [2–
4]). For finite populations with arbitrary rank, under the quadratic loss function, the unique linear minimax predictor of the
linear predictable variableQy is obtained in the class of homogeneous linear predictors by Yu [32]. Xu andWang [28] proved
that this linear minimax predictor is also the unique minimax predictor of the linear predictable variable Qy in the class of
all predictors under normality. Liu and Rong [13] studied the problem of quadratic prediction for the quadratic quantity
y ′Hy in a general linear model. Liu and Rong [12] extended the problem of quadratic prediction from a general linear model
to a multivariate general linear model.

Our objective is to study admissibility of linear predictors of a linearly predictable variable Qy in models (1.1) and
(1.2). Similar problem has been received much attention in the theory of admissible estimator. Olsen et al. [14] provide
seminal results in the characterization of admissible linear estimators in the general linear model. They described necessary
conditions for the admissibility of unbiased linear estimators and showed that the admissible unbiased linear estimators
form a minimal complete class of unbiased linear estimators. Their necessary conditions are demonstrably not sufficient.
LaMotte [10] noted an extension of their characterization. Without the restriction to unbiasedness, Cohen [9] characterized
admissible linear estimators of the mean vector while assuming a covariance matrix of the form σ2I . Rao [16] accomplished
the same characterization formodelswithmean vectors varying through a linear subspace and covariancematrix of the form
σ2V withV known. Neither of these efforts appears to generalize tomodels inwhich the covariancematrix varies overmore
than one dimension. LaMotte [11] characterized admissible linear estimators while allowing for relations between elements
of the mean vector and covariance matrix, and allowing the covariance matrix to vary in an arbitrary subset of nonnegative
definite symmetric matrices. All these efforts but Rao [16] appear to characterize admissible linear estimators under the
quadratic loss function. Rao [16] observed that an admissible linear estimator under the quadratic loss function is also an
admissible linear estimator under the matrix loss function. However, the problem of admissible linear estimators under the
matrix loss function has not been solved completely. Wu [22] provided the characterization of admissible linear estimators
under thematrix loss function. Some other important references on the subject are Zontek [36], Stepniak [19], Chen et al. [7],
Wu [23–25], Wu and Chen [26], and Chen and Zhan [8].

In the present paper, we present an efficient way to study the admissibility of an linear predictor. Our idea consists in
an appropriate representation of the risk matrix function. In this way we reduce the general problem of the admissibility of
predictors to an admissible estimation problemwhich can be solved by some known results. In consequence admissibility of
linear predictors in superpopulationmodels (1.1) and (1.2) and the different predictor classes under thematrix loss function
is characterized.

The left of the paper is organized as follows. In the following parts of Section 1, some notions and lemma are provided.
In Section 2, under the model (1.1) admissibility of a linear predictor in two classes of homogeneous linear predictors and
all linear predictors are discussed and the corresponding necessary and sufficient conditions for a linear predictor to be
admissible in the two classes of linear predictors are derived. In Section 3, under the model (1.2) a problem of admissibility
of a linear predictor in the class of all predictors is mentioned and the corresponding necessary and sufficient conditions
for a linear predictor to be admissible in the class of all predictors are obtained. Then, in Section 4, we apply our main
results to several superpopulation models with fixed effects vector. Moreover, we prove that the BLUPs of Qy, TN and βN
are admissible in the above predictor classes under different assumptions of superpopulation models respectively.

In order to predict Qy, we select a sample s of size s from P according to some specified sampling plan. Let r = P − s
be the unobserved part of P of size r . After the sample s has been selected, we may reorder the elements of y such that we
have the corresponding partitions of y, X , V and W , that is:

y =


ys
yr


, X =


Xs
Xr


, V =


Vs Vsr
Vrs Vr


, and W =


Wps

...Wpr


.
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Partitioning Q into Q = (Qs
...Qr), we may write Qy = Qsys + Qryr . For the models (1.1) and (1.2), we have

Cov(y) = (X
...I)Σ


X ′

I


= XUX ′

+ W ′X ′
+ XW + V

=


XsUX ′

s + WspX ′

s + XsWps + Vs XsUX ′

r + WspX ′

r + XrWps + Vsr

XrUX ′

s + WrpX ′

s + XsWpr + Vrs XrUX ′

r + WrpX ′

r + XrWpr + Vr


,


Λs Λsr
Λrs Λr


, Λ. (1.3)

We may consider the following specific structures for Λ:
Case 1. The matrix Λ = V is a known arbitrary symmetric nonnegative definite matrix. Such a situation arises when β is a
fixed effects vector.

Case 2. The matrix Λ = XUX ′
+ V = X2U22X ′

2 + V , where U22 is a known matrix and X = (X1
...X2). Such a situation arises

when we consider the mixed effects model

y = X1τ + X2ξ + ε

where τ is a fixed unknown parameter vector, and ξ and ε are all uncorrelated randomvectors such that E(ξ) = 0, Cov(ξ) =

U22, and β = (τ ′, ξ′)′.
Consider the following classes of linear predictors of Qy:
L H = {Lys : L is an h × smatrix}, the class of all homogeneous linear predictors;
L I = {Lys + a : L is an h × smatrix, a is an h × 1 vector}, the class of all linear predictors.
Let δ(ys) be a predictor of Qy. In this article, we will use the matrix loss function

L(δ(ys),Qy) = (δ(ys) − Qy)(δ(ys) − Qy)′, (1.4)

and corresponding risk function defined as R(δ(ys),Qy) = E[L(δ(ys),Qy)], where E(·) denotes expectation under the
model (1.1) (or (1.2)).

Definition 1.1. The predictor δ1(ys) is called as good as δ2(ys) iff R(δ1(ys),Qy) ⩽ R(δ2(ys),Qy) for all α ∈ Rk, and δ1(ys)
is called better than δ2(ys) iff δ1(ys) is as good as δ2(ys) and R(δ1(ys),Qy) ≠ R(δ2(ys),Qy) at some α0 in Rk. Let L be a
class of predictors. Then a predictor δ(ys) is said to be admissible for Qy in L iff δ(ys) ∈ L and there exists no predictor in
L which is better than δ(ys).

Definition 1.2. Qy is called a linearly predictable variable, if there exists a linear predictor Lys + a in L I such that
E(Lys + a − Qy) = 0 for all α ∈ Rk.

Lemma 1.1. Qy is a linearly predictable variable iff M (A′X ′
rQ

′
r) ⊂ M (A′X ′

s).

Proof. Its proof is obvious and therefore omitted here. �

2. Admissibility of a linear predictor in the class of linear predictors

In this section, we investigate the conditions of for a linear predictor to be admissible in the two linear predictor classes
L H and L I , respectively.

The following Lemma 2.1 is a direct consequence of Theorem 3.1 in [23].

Lemma 2.1. Consider the following model

ys = XsAα + es (2.1)

where es is an s × 1 unobservable random vector, with E(es) = 0, Cov (es) = Λs, Xs, A and Λs are known s × p, p × k and s × s
matrices respectively, and α is a k × 1 unknown parameter vector. If Sα is linearly estimable under the model (2.1), then, under
the loss function (d − Sα)(d − Sα)′, Lys is an admissible estimator for Sα in L H if and only if
(i) LΛs = LXsABΛs(equivalently M (ΛsL′) ⊂ M (XsA)),
(ii) LXsA = S; or b(LXsA − S)C(LXsA − S)′ + LXsACA′X ′

sL
′
− SCS ′ ⩾ 0 does not hold for all b ∈ (0, 1) when LXsA ≠ S ,

hereafter T = Λs + XsAA′X ′
s , B = (A′X ′

sT
+XsA)−A′X ′

sT
+, and C = BΛsB′.

Theorem 2.1. Under the model (1.1), let Qy be a linearly predictable variable. Then the following statements 1°, 2°, and 3° are
equivalent:
1° Lys is an admissible predictor of Qy in the class L H under loss function (1.4);
2° L satisfies
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(i) LΛs = LXsABΛs + (Qs + QrΛrsΛ
+

s )(I − XsAB)Λs (equivalentlyM (ΛsL′
− (Λs

...Λsr)Q ′) ⊂ M (XsA)),
(ii) LXsA = QXA; or b(LXsA − QXA)C(LXsA − QXA)′ + (L − Qs)XsA × CA′X ′

s(L − Qs)
′

− QrXrACA′X ′
rQ

′
r −

QrΛrsΛ
+

s XsAC(LXsA−QXA)′ − (LXsA−QXA)CA′X ′
sΛ

+

s ΛsrQ ′
r ⩾ 0 does not hold for all b ∈ (0, 1)when LXsA ≠ QXA;

3° L satisfies

(i) LΛs = LXsABΛs + (Qs + QrΛrsT+)(I − XsAB)Λs (equivalently M (ΛsL′
− (Λs

...Λsr)Q ′) ⊂ M (XsA)),
(ii) LXsA = QXA; or f (b, L) , b(LXsA − QXA)C(LXsA − QXA)′ + (L − Qs)XsACA′X ′

s(L − Qs)
′
− QrXrACA′X ′

rQ
′
r −

QrΛrsT+XsA(A′X ′
sT

+XsA)−(LXsA−QXA)′−(LXsA−QXA)(A′X ′
sT

+XsA)−×A′X ′
sT

+ΛsrQ ′
r ⩾ 0 does not hold for all b ∈

(0, 1) when LXsA ≠ QXA.

Proof. Note that M (Λsr) ⊂ M (Λs), we have

ΛrsΛ
+

s Λs = Λrs. (2.2)

Therefore, we deduce that

E(Lys − Qy)(Lys − Qy)′ = (L − Qs)Λs(L − Qs)
′
− (L − Qs)ΛsrQ ′

r − QrΛrs(L − Qs)
′

+ (LXsA − QXA)αα′(LXsA − QXA)′

= (L − Qs − QrΛrsΛ
+

s )Λs(L − Qs − QrΛrsΛ
+

s )′ + QrΛrQ ′

r − QrΛrsΛ
+

s ΛsrQ ′

r

= E{[(L − Qs − QrΛrsΛ
+

s )ys − (QrXr − QrΛrsΛ
+

s Xs)Aα][(L − Qs − QrΛrsΛ
+

s )ys
− (QrXr − QrΛrsΛ

+

s Xs)Aα]
′
} + Qr(Λr − ΛrsΛ

+

s Λsr)Q ′

r .

Noting that Qr(Λr −ΛrsΛ
+

s Λsr)Q ′
r has no effect on the admissibility of a predictor, therefore, to prove that Lys is admissible

forQy in the classL H weneedonly to show that (L−Qs−QrΛrsΛ
+

s )ys is an admissible estimator for (QrXr−QrΛrsΛ
+

s Xs)Aα
under the model (2.1) and loss function [d − (QrXr − QrΛrsΛ

+

s × Xs)Aα][d − (QrXr − QrΛrsΛ
+

s Xs)Aα]
′ in the class L H .

On the other hand, Qy is a linearly predictable variable, it follows from Lemma 1.1 that M (A′X ′
rQ

′
r) ⊂ M (A′X ′

s), and hence
M (A′X ′

rQ
′
r − A′X ′

sΛ
+

s ΛsrQ ′
r) ⊂ M (A′X ′

s). Therefore (QrXr − QrΛrsΛ
+

s Xs)Aα is linearly estimable under the model (2.1).
These together with Lemma 2.1 imply that 1° is equivalent to 2°.

We now prove that 2° is equivalent to 3◦. Noting T = Λs + XsAA′X ′
s and M (Λ+

s ) = M (Λs) ⊂ M (T ), it follows that

QrΛrsΛ
+

s (I − XsAB)Λs = QrΛrsΛ
+

s TT
+(I − XsA(A′X ′

sT
+XsA)−A′X ′

sT
+)Λs

= QrΛrsΛ
+

s ΛsT+(I − XsA(A′X ′

sT
+XsA)−A′X ′

sT
+)Λs

= QrΛrsT+(I − XsA(A′X ′

sT
+XsA)−A′X ′

sT
+)Λs

= QrΛrsT+(I − XsAB)Λs.

Hence the condition (i) in 2° is equivalent to the condition (i) in 3◦.
Observing T = Λs+XsAA′X ′

s,M (Λ+

s ) = M (Λs) ⊂ M (T ) = M (T+), T+TΛ+

s = Λ+

s ,M (A′X ′
sL

′
−A′X ′Q ′) ⊂ M (A′X ′

s) =

M (A′X ′
sT

+XsA) and (2.2), we deduce by substituting Λs, Λ+

s and C = BΛsB′ into the follows that

(LXsA − QXA)CA′X ′

sΛ
+

s Λsr = (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+ΛsT+XsA(A′X ′

sT
+XsA)−A′X ′

sΛ
+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+(T − XsAA′ X ′

s)T
+XsA(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+TT+XsA(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr

− (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+XsAA′X ′

sT
+XsA(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−(A′X ′

sT
+XsA)(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr

− (LXsA − QXA)(A′X ′

sT
+XsA)−(A′X ′

sT
+XsA)(A′X ′

sT
+XsA)(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+TΛ+

s Λsr − (LXsA − QXA)A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+(Λs + XsAA′X ′

s)Λ
+

s Λsr − (LXsA − QXA)A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+ΛsΛ

+

s Λsr + (LXsA − QXA)(A′X ′

sT
+XsA)−(A′X ′

sT
+XsA)A′X ′

sΛ
+

s Λsr

− (LXsA − QXA)A′X ′

sT
+TΛ+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+Λsr + (LXsA − QXA)A′X ′

sΛ
+

s Λsr − (LXsA − QXA)A′X ′

sΛ
+

s Λsr

= (LXsA − QXA)(A′X ′

sT
+XsA)−A′X ′

sT
+Λsr .

Thus the condition (ii) in 2° is equivalent to the condition (ii) in 3◦. The proof is completed.
For the model (1.1), in the case ofW = 0, i.e., β and e are uncorrelated, from (1.3) we have

Cov(y) =


XsUX ′

s + Vs XsUX ′

r + Vsr

XrUX ′

s + Vrs XrUX ′

r + Vr


,


∆s ∆sr
∆rs ∆r


.

Therefore we have the following corollary. �
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Corollary 2.1. Under the model (1.1), let β and e be uncorrelated, and Qy be a linearly predictable variable. Then the following
statements 1°, 2°, and 3° are equivalent:

1° Lys is an admissible predictor of Qy in the class L H under loss function (1.4);
2° L satisfies

(i) L∆s = LXsAB1∆s + (Qs + Qr∆rs∆
+

s )(I − XsAB1)∆s (equivalentlyM (∆sL′
− (∆s

...∆sr)Q ′) ⊂ M (XsA)),
(ii) LXsA = QXA; or b(LXsA − QXA)C1(LXsA − QXA)′ + (L − Qs)XsAC1 × A′X ′

s(L − Qs)
′
− QrXrAC1A′X ′

rQ
′
r −

Qr∆rs∆
+

s XsAC1(LXsA−QXA)′−(LXsA−QXA)C1A′X ′
s∆

+

s ∆srQ ′
r ⩾ 0 does not hold for all b ∈ (0, 1)when LXsA ≠ QXA;

3° L satisfies

(i) L∆s = LXsAB1∆s + (Qs + Qr∆rsT+

1 )(I − XsAB1)∆s(equivalently M (∆sL′
− (∆s

...∆sr)Q ′) ⊂ M (XsA)),
(ii) LXsA = QXA; or f1(b, L) , b(LXsA − QXA)C1(LXsA − QXA)′ + (L − Qs)XsAC1A′X ′

s(L − Qs)
′
− QrXrAC1A′X ′

rQ
′
r −

Qr∆rsT+

1 XsA(A′X ′
sT

+

1 XsA)−(LXsA − QXA)′ − (LXsA − QXA)(A′X ′
sT

+

1 XsA)−A′X ′
sT

+

1 ∆srQ ′
r ⩾ 0 does not hold for all b ∈

(0, 1) when LXsA ≠ QXA,

hereafter T1 = ∆s + XsAA′X ′
s , B1 = (A′X ′

sT
+

1 XsA)−A′X ′
sT

+

1 and C1 = B1∆sB′

1.
For the model (1.1), when β is a fixed effects vector, and hence U = 0, from (1.3) we have

Cov(y) =


Vs Vsr
Vrs Vr


.

Therefore we have the following corollary.

Corollary 2.2. Under the model (1.1), let β be a fixed effects vector, and Qy be a linearly predictable variable. Then the following
statements 1°, 2°, and 3◦ are equivalent:

1° Lys is an admissible predictor of Qy in the class L H under loss function (1.4);
2° L satisfies

(i) LVs = LXsB2Vs + (Qs + QrVrsV+
s )(I − XsB2)Vs (equivalently M (VsL′

− (Vs
...Vsr)Q ′) ⊂ M (Xs)),

(ii) LXs = QX; or b(LXs − QX)C2(LXs − QX)′ + (L − Qs)XsC2X ′
s(L − Qs)

′
− QrXrC2X ′

rQ
′
r − QrVrsV+

s XsC2(LXs − QX)′

− (LXs − QX)C2X ′
sV

+
s VsrQ ′

r ⩾ 0 does not hold for all b ∈ (0, 1) when LXs ≠ QX ;
3° L satisfies

(i) LVs = LXsB2Vs + (Qs + QrVrsT2
+)(I − XsB2)Vs (equivalently M (VsL′

− (Vs
...Vsr)Q ′) ⊂ M (Xs)),

(ii) LXs = QX; or f2(b, L) , b(LXs − QX)C2(LXs − QX)′ + (L − Qs)XsC2X ′
s × (L − Qs)

′
− QrXrC2X ′

rQ
′
r −

QrVrsT+

2 Xs(X ′
sT

+

2 Xs)
−(LXs −QX)′ − (LXs −QX)(X ′

sT
+

2 Xs)
−X ′

sT
+

2 VsrQ ′
r ⩾ 0 does not hold for all b ∈ (0, 1)when LXs ≠

QX ,

hereafter T2 = Vs + XsX ′
s , B2 = (X ′

sT
+

2 Xs)
−X ′

sT
+

2 , and C2 = B2VsB′

2.

Remark 2.1. Theorem 1 in [31] is a special case of the above Corollary 2.2.

Remark 2.2. Each condition in Theorem 2.1, Corollaries 2.1 and 2.2 is invariant with respect to the choice of the involved
generalized inverse.

We now discuss admissibility of a linear predictor Lys + a to be admissible in the class L I .

Lemma 2.2. Under the assumptions of the model (2.1), if Sα is linearly estimable under the model (2.1), then, under the loss
function (d − Sα)(d − Sα)′, Lys + a is admissible estimator for Sα in L H if and only if

1° the condition (i) in Lemma 2.1 holds,
2° LXsA = S, a = 0; or b(LXsA− S)C(LXsA− S)′ + LXsACA′X ′

sL
′
− SCS ′ ⩾ 0 does not hold for all b ∈ (0, 1) when LXsA ≠ S,

where C is defined as in Lemma 2.1.

Similar to the method of proving the Theorem 2.1, we get

Theorem 2.2. Under the model (1.1), let Qy be a linearly predictable variable. Then Lys + a is an admissible predictor of Qy in
the class L I under loss function (1.4) if and only if L and a satisfy

1° the condition (i) of the statement 3° in Theorem 2.1 holds,
2° LXsA = QXA, a = 0; or f (b, L) ⩾ 0 does not hold for all b ∈ (0, 1) when LXsA ≠ QXA,

where f (b, L) is defined as in Theorem 2.1.

Corollary 2.3. Under the model (1.1), let β and e be uncorrelated, and Qy be a linearly predictable variable. Then Lys + a is an
admissible predictor of Qy in the class L I under loss function (1.4) if and only if L and a satisfy
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1° the condition (i) of the statement 2° or 3° in Corollary 2.1 holds,
2° LXsA = QXA, a = 0; or f1(b, L) ⩾ 0 does not hold for all b ∈ (0, 1) when LXsA ≠ QXA,

where f1(b, L) is defined as in Corollary 2.1.

Corollary 2.4. Under the model (1.1), let β be a fixed effects vector, and Qy be a linearly predictable variable. Then Lys + a is an
admissible predictor of Qy in the class L I under loss function (1.4) if and only if L and a satisfy
1° the condition (i) of the statement 2° or 3° in Corollary 2.2 holds,
2° LXs = QX, a = 0; or f2(b, L) ⩾ 0 does not hold for all b ∈ (0, 1) when LXs ≠ QX,

where f2(b, L) is defined as in Corollary 2.2.

Remark 2.3. The above Corollary 2.4 is Theorem 3 in [31].

3. Admissibility of a linear predictor in the class of all predictors

In this section, we shall investigate the conditions of for a linear predictor to be admissible in the class of all predictors.
Unless otherwise stated, to say a predictor to be admissible means that it is admissible in the class of all predictors in the
following.

Lemma 3.1 below is quoted from Theorem 2.3 in [8].

Lemma 3.1. Consider the following model

ys = XsAα + es, es ∼ N (0, Λs), (3.1)

where es is an s× 1 unobservable random vector, Xs, A and Λs are known s× p, p× k and s× s matrices, respectively, and α is a
k×1 unknown parameter vector. If Sα is linearly estimable under themodel (3.1), then, under the loss function (d−Sα)(d−Sα)′,
Lys + a is an admissible estimator for Sα in the class of all estimators if and only if
(i) LΛs = LXsABΛs(equivalently M (ΛsL′) ⊂ M (XsA)),
(ii) LXsA = S, a = 0; or b(LXsA− S)C(LXsA− S)′ + LXsACA′X ′

sL
′
− SCS ′ ⩾ 0 does not hold for all b ∈ (0, 1) when LXsA ≠ S ,

where B and C are defined as in Lemma 2.1.

Lemma 3.2. Under the model (1.2) and the loss function (1.4), if each element of the risk function of predictor δ(ys) of Qy is finite
everywhere, then δ(ys) is an admissible predictor of Qy if and only if δ(ys) − (Qs + QrΛrsΛ

+

s )ys is an admissible estimator of
(QrXr −QrΛrsΛ

+

s Xs)Aα under the model (3.1) and loss function [d − (QrXr −QrΛrsΛ
+

s Xs)Aα][d − (QrXr −QrΛrsΛ
+

s Xs)Aα]
′

in the class of all estimators.

Proof. From (1.3), we have

Cov

yr
ys


=


Λr Λrs
Λsr Λs


.

Thus it follows from Theorems 1.8 and 2.1 of Chapter 2 in Wang [21] that

E(yr |ys) = XrAα + ΛrsΛ
+

s (ys − XsAα), a.e. (3.2)

Cov(yr |ys) = Λr − ΛrsΛ
+

s Λsr . (3.3)

Since each element of the risk function of predictor δ(ys) of Qy is finite everywhere, we obtain

E[δ(ys) − Qsys − QrE(yr |ys)][Qryr − QrE(yr |ys)]′ = E{E[δ(ys) − Qsys − QrE(yr |ys)][Qryr − QrE(yr |ys)]′|ys}
= E[δ(ys) − Qsys − QrE(yr |ys)][QrE(yr |ys) − QrE(yr |ys)]′

= 0.

Combining it with (3.2) and (3.3), we derive

E[δ(ys) − Qy][δ(ys) − Qy]′ = E[δ(ys) − Qsys − QrE(yr |ys)][δ(ys) − Qsys − QrE(yr |ys)]′

+ E [Qryr − QrE(yr |ys)][Qryr − QrE(yr |ys)]′

= E{[δ(ys) − (Qs + QrΛrsΛ
+

s )ys − (QrXr − QrΛrsΛ
+

s Xs)Aα]

[δ(ys) − (Qs + QrΛrsΛ
+

s )ys − (QrXr − QrΛrsΛ
+

s Xs)Aα]
′
}

+Qr(Λr − ΛrsΛ
+

s Λsr)Q ′

r . (3.4)

Noting that the second term on the right-hand side of the equality (3.4) does not affect our discussion on the admissibility
of the predictor, and hence the results in Lemma 3.2 follow.

From Lemmas 3.1 and 3.2, we immediately obtain the following. �
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Theorem 3.1. Under the model (1.2), let Qy be a linearly predictable variable. Then Lys + a is an admissible predictor of Qy
under loss function (1.4) if and only if L and a satisfy the conditions 1° and 2° in Theorem 2.2.

Corollary 3.1. Under the model (1.2), let β and e be uncorrelated, Qy be a linearly predictable variable. Then Lys + a is an
admissible predictor of Qy under loss function (1.4) if and only if L and a satisfy the conditions 1° and 2° in Corollary 2.3.

Corollary 3.2. Under the model (1.2), let β be a fixed effects vector, Qy be a linearly predictable variable. Then Lys + a is an
admissible predictor of Qy under loss function (1.4) if and only if L and a satisfy the conditions 1° and 2° in Corollary 2.4.

4. Admissibility of the best linear unbiased predictors

In Sections 2 and 3, we have considered admissibility of linear predictors in the superpopulation models (1.1) and (1.2)
under the matrix loss function. The necessary and sufficient conditions for a linear predictor to be admissible in the classes
of homogeneous and all linear predictors and the class of all predictors are obtained, respectively. The class of admissible
predictors is generally big. Therefore, what is of much practical interest is: are commonly used decision rules such as the
best linear unbiased predictor (BLUP) (cf. [3]) admissible? In the following, we will answer this question with a theorem
and two examples.

Theorem 4.1. Consider the superpopulation models (1.1) and (1.2), where β is a fixed effects vector. Let Qy be a linearly
predictable variable. Denote

L0ys = Qsys + QrXrβs + QrVrsT+

2 (ys − Xsβs),

which is the best linear unbiased predictor (BLUP) of Qy (see Theorem 2.2 in [34]), whereβs = (X ′

sT
+

2 Xs)
−X ′

sT
+

2 ys,
L0 = Qs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 + QrVrsT+

2 (I − XsB2),

and T2 = Vs + XsX ′
s and B2 = (X ′

sT
+

2 Xs)
−X ′

sT
+

2 are defined as in Corollary 2.2. Then the following statements 1° and 2° hold:

1° For the model (1.1) with a fixed effects vector β, L0ys is an admissible predictor of Qys in L I under the loss function (1.4);
2° For the model (1.2) with a fixed effects vector β, L0ys is an admissible predictor of Qys in the class of all predictors under the

loss function (1.4).

Proof. First, since L0ys is the best linear unbiased predictor of Qy, we obtain L0Xs = QX . Let L0ys = L0ys + 0. Then it is easy
to verify that L0ys satisfies condition 2° in Corollary 2.4.

In the following,we shall verify that L0 also satisfies the condition 1° in Corollary 2.4, i.e., the condition (i) of the statement
2° or 3◦ in Corollary 2.2.

Applying the method of proving Theorem 2.1 and using the definitions of L0, and T2 and B2, we deduce that

L0Vs = [Qs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 + QrVrsT+

2 (I − XsB2)]Vs

= [Qs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 ]Vs + QrVrsT+

2 (I − XsB2)Vs

= QsVs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 Vs + QrVrsV+

s (I − XsB2)Vs,

and

L0XsB2Vs + (Qs + QrVrsV+

s )(I − XsB2)Vs = [Qs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 + QrVrsT+

2 (I − XsB2)]XsB2Vs

+Qs(I − XsB2)Vs + QrVrsV+

s (I − XsB2)Vs

= QsXsB2Vs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 XsB2Vs

+Qs(I − XsB2)Vs + QrVrsV+

s (I − XsB2)Vs

= QsVs + QrXr(X ′

sT
+

2 Xs)
−X ′

sT
+

2 Vs + QrVrsV+

s (I − XsB2)Vs

= L0Vs.

Thus the condition (i) of the statement 2° (equivalently 3◦) in Corollary 2.2 holds, and hence L0 satisfies the condition 1° in
Corollary 2.4. According to Corollaries 2.4 and 3.2, Theorem 4.1 holds. �

Example 4.1. Consider the superpopulation models

y = 1Nβ + e, E(e) = 0, Cov(e) = I (4.1)

and

y = 1Nβ + e, e ∼ N (0, I), (4.2)



L.-W. Xu, S.-H. Yu / Journal of Multivariate Analysis 103 (2012) 68–76 75

where β is a fixed effects scalar. It is obvious that the population total TN = 1′

Ny is linearly predictable. Denote T̂N =
N
s 1

′
sys.

Then T̂N is the best linear unbiased predictor (BLUP) of TN (cf. Example 2.2 in [29]). T̂N is an admissible predictor of TN under
loss function (1.4). Then, from Theorem 4.1, the following statements 1° and 2° hold:

1° For the model (4.1), T̂N is an admissible predictor of TN in the class of all linear predictors under loss function (1.4);

2° For the model (4.2), T̂N is an admissible predictor of TN in the class of all predictors under loss function (1.4).

Example 4.2. Consider the superpopulation models

y = Xβ + e, E(e) = 0, Cov(e) = V (4.3)

and

y = Xβ + e, e ∼ N (0,V ), (4.4)

where β is a fixed effects vector, V is a positive definite matrix, and Xs, Xr and X are all of full column rank. Let

β̂N = (X ′

sV
−1
s Xs)

−1X ′

sV
−1
s ys

be the weighted least squares estimator of β. Then β̂N is the best linear unbiased predictor (BLUP) of the finite population
regression coefficient βN = (X ′V−1X)−1X ′V−1y (e.g., cf. [34,4]). We conclude that the following statements 1° and 2° hold:

1° For the model (4.3), β̂N is an admissible predictor of βN in the class of all linear predictors under loss function (1.4);

2° For the model (4.4), β̂N is an admissible predictor of βN in the class of all predictors under loss function (1.4).

Proof. To begin, recall that

(A + CBD)−1
= A−1

− A−1C(B−1
+ DA−1C)−1DA−1,

for matrices A, B, C,Dwith appropriate orders. Thus we obtain that

T+

2 = T−1
2 = V−1

s − V−1
s Xs(I + X ′

sV
−1
s Xs)

−1X ′

sV
−1
s ,

X ′

sV
−1
s Xs(I + X ′

sV
−1
s Xs)

−1
= I − (I + X ′

sV
−1
s Xs)

−1.

Thus

X ′

sT
+

2 = X ′

sT
−1
2 = X ′

sV
−1
s − X ′

sV
−1
s Xs(I + X ′

sV
−1
s Xs)

−1X ′

sV
−1
s

= X ′

sV
−1
s − [I − (I + X ′

sV
−1
s Xs)

−1
]X ′

sV
−1
s

= (I + X ′

sV
−1
s Xs)

−1X ′

sV
−1
s . (4.5)

Since Xs is of full column rank, it follows from (4.5) that

Xs(X ′

sT
+

2 Xs)
−X ′

sT
+

2 = Xs(X ′

sT
−1
2 Xs)

−1X ′

sT
−1
2

= Xs[(I + X ′

sV
−1
s Xs)

−1X ′

sV
−1
s Xs]

−1(I + X ′

sV
−1
s Xs)

−1X ′

sV
−1
s

= Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s . (4.6)

Denote L1 = (X ′
sV

−1
s Xs)

−1X ′
sV

−1
s and Q ∗

= (X ′V−1X)−1X ′V−1, then β̂N = L1ys and βN = Q ∗y. Hereafter partition Q ∗

into Q ∗
= (Q ∗

s

...Q ∗
r ). Because L1ys = β̂N is the best linear unbiased predictor, we easily obtain L1Xs = Q ∗X . Noting that

L1ys = L1ys + 0, it follows that L1 and a1 = 0 satisfy condition 2° in Corollary 2.4. In the following, we shall verify that L1
also satisfies the condition 1° in Corollary 2.4, i.e., the condition (i) of the statement 2° or 3◦ in Corollary 2.2. By an approach
similar to that of in Theorem 4.1, we deduce from (4.6) that

L1Vs = (X ′

sV
−1
s Xs)

−1X ′

sV
−1
s Vs

= (X ′

sV
−1
s Xs)

−1X ′

s,

and

L1B2Vs + (Q ∗

s + Q ∗

r VrsV+

s )(I − B2)Vs = L1Xs(X ′

sT
+

2 Xs)
−X ′

sT
+

2 Vs + (Q ∗

s + Q ∗

r VrsV+

s )(I − Xs(X ′

sT
+

2 Xs)
−X ′

sT
+

2 )Vs

= L1Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s Vs + (Q ∗

s + Q ∗

r VrsV−1
s )(I − Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s )Vs

= (X ′

sV
−1
s Xs)

−1X ′

s + (Q ∗

s Vs + Q ∗

r Vrs)V−1
s (I − Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s )Vs

= (X ′

sV
−1
s Xs)

−1X ′

s + (Q ∗

s

...Q ∗

r )


Vs
Vrs


V−1
s (I − Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s )Vs
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= (X ′

sV
−1
s Xs)

−1X ′

s + (X ′V−1X)−1X ′V−1

Vs
Vrs


V−1
s (I − Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s )Vs

= (X ′

sV
−1
s Xs)

−1X ′

s + (X ′V−1X)−1X ′


Is
0


V−1
s (I − Xs(X ′

sV
−1
s Xs)

−1X ′

sV
−1
s )Vs

= (X ′

sV
−1
s Xs)

−1X ′

s + (X ′V−1X)−1X ′

sV
−1
s (I − Xs(X ′

sV
−1
s Xs)

−1X ′

sVs
−1)Vs

= (X ′

sVs
−1Xs)

−1X ′

s

= L1Vs.

Thus the condition (i) of the statement 2° (equivalently 3°) in Corollary 2.2 holds, and hence L1 satisfies the condition 1° in
Corollary 2.4. According to Corollaries 2.4 and 3.2, the proof is completed. �

Remark 4.1. For the model (1.1) (or (1.2)), in the case of Σ = σ 2Σ0, we may obtain the same conclusions as before, where
Σ0 is a known matrix, and σ 2 > 0 is also a superparameter.
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[5] H. Bolfarine, S. Zacks, M.C. Sandoval, On predicting the population total under regression models with measurement errors, J. Statist. Plann. Inference

55 (1996) 63–76.
[6] C.M. Cassel, C.E. Sarndal, J.H. Wretman, Foundations of Inference in Survey Sampling, Weily, New York, 1977.
[7] X.R. Chen, G.J. Chen, Q.G. Wu, et al., The Theory of Estimation of Parameters in Linear Models, Science Press, Beijing (1985) (in Chinese).
[8] J.B. Chen, J.L. Zhan, Admissibility of linear estimators of regression coefficient in the class of all estimators under matrix loss function, Systems Sci.

Math. Sci. 4 (1991) 139–147.
[9] A. Cohen, All admissible linear estimates of the mean vector, Ann. Math. Statist. 37 (1966) 458–463.

[10] L.R. LaMotte, On admissibility and completeness of linear unbiased estimators in a general linear model, J. Amer. Statist. Assoc. 72 (1977) 438–441.
[11] L.R. LaMotte, Admissibility in linear estimation, Ann. Statist. 10 (1982) 245–255.
[12] X. Liu, J. Rong, Quadratic prediction problems in multivariate linear models, J. Multivariate Anal. 100 (2010) 291–300.
[13] X. Liu, D. Wang, J. Rong, Quadratic prediction problems in finite populations, Statist. Probab. Lett. 77 (2007) 483–489.
[14] A. Olsen, J. Seely, D. Birkes, Invariant quadratic estimation for two variance components, Ann. Statist. 4 (1976) 878–890.
[15] C.A.B. Pereira, J. Rodrigues, Robust linear prediction in finite populations, Internat. Statist. Rev. 51 (1983) 293–300.
[16] C.R. Rao, Estimation of parameters in linear models, Ann. Statist. 4 (1976) 1023–1037.
[17] R.M. Royall, On finite population sampling theory under certain linear regression models, Biometrika 57 (1970) 377–387.
[18] R.M. Royall, J. Herson, Robust estimation in finite populations I, J. Amer. Statist. Assoc. 68 (1973) 880–893.
[19] C. Stepniak, Admissible linear estimators in mixed linear models, J. Multivariate Anal. 31 (1988) 90–106.
[20] S.G. Wang, Adaptive ridge-type predictors in finite populations, Chinese Sci. Bull. 36 (1991) 814–818.
[21] S.G. Wang, The Theory of Linear Models and its Application, Anhui Education Press, China, 1987 (in Chinese).
[22] Q.G. Wu, Admissibility of linear estimators of regression coefficient under matrix loss function, Kexue Tongbao 28 (1983) 155–158.
[23] Q.G. Wu, Admissibility of linear estimators of regression coefficient under a general Gauss–Markov model, Acta Math. Appl. Sinica 9 (1986) 251–256.
[24] Q.G. Wu, Admissibility of inhomogeneous linear estimates of regression coefficient under matrix loss function, Acta Math. Appl. Sinica 10 (1987)

428–433.
[25] Q.G. Wu, Several results on admissibility of linear estimates of stochastic regression coefficient and parameters, Acta Math. Appl. Sinica 11 (1988)

95–106.
[26] Q.G. Wu, J.B. Chen, All admissible linear estimates of regression coefficient under matrix loss function, Systems Sci. Math. Sci. 2 (1989) 80–91.
[27] L.W. Xu, Admissible linear predictors in the superpopulationmodel with respect to inequality constraints, Commun. Statist. TheoryMethod 38 (2009)

2528–2540.
[28] L.W. Xu, S.G.Wang, Theminimax predictor in finite populationswith arbitrary rank in normal distribution, Chin. Ann.Math., Ser. A 27 (2006) 405–416.
[29] L.W. Xu, S.G. Wang, Robustness of optimal prediction in finite populations, Chinese J. Appl. Probab. Statist. 22 (2006) 27–34.
[30] L.W. Xu, S.G. Wang, General admissibility of linear predictor in multivariate random effects model, Acta Math. Appl. Sinica 29 (2006) 116–123.
[31] L.W. Xu, S.H. Yu, Admissibility of linear prediction under matrix loss, J. Math. Research Exposition 25 (2005) 161–168.
[32] S.H. Yu, The linear minimax predictor in finite populations with arbitrary rank under quadratic loss function, Chin. Ann. Math., Ser. A 25 (2004)

485–496.
[33] S.H. Yu, Admissibility of linear predictor in multivariate linear model with arbitrary ran, Sankhyā, Ser. B 66 (2004) 621–633.
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