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Abstract

This paper summarizes the historical background of the notion of the classical adjoint as
outlined by Muir, and provides applications of the adjoint to various studies of generalized in-
vertibility of matrices over commutative rings. Specifically, in this setting, the classical adjoint
is used to provide a novel proof of von Neumann’s 1936 observation that every matrix over
a regular ring is regular, and to provide a necessary and sufficient condition for the existence
of the Moore–Penrose inverse of a given matrix. In particular, a representation of the Moore–
Penrose inverse is given that leads to an immediate proof of Moore’s 1920 formula specifying
the entries of his “reciprocal” in terms of determinants.
© 2003 Elsevier Inc. All rights reserved.

Given a square matrix A, the transposed matrix of cofactors of A is called the
classical adjoint Aad of A. Specifically, the (i, j) entry of the adjoint of an n× n
matrix A is

(Aad)ij = (−1)i+j |A
ĵî
|,

where |A
ĵî
| is the determinent of the (n− 1)× (n− 1) submatrix of A obtained by

the deletion of row j and column i. (See, for example, [9, p. 20] or [10, p. 16].)
If n = 1, then Aad is the 1× 1 identity matrix. The classical adjoint is sometimes
called the adjugate of A and is often denoted by adj A.
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The most familiar property of the adjoint is that

AadA = |A|I = AAad,

which is obtained by use of the Laplace expansion of the determinant |A| of A. In
particular, A is invertible iff |A| is invertible, and in this case,

A−1 = |A|−1Aad.

The purpose of this paper is to provide some insight into the historical back-
ground and extended role of the adjoint. In particular, we offer some applications of
the adjoint that are not standard fare, yet many are accessible to students of linear
algebra. Many of the results are not new, but the use of the classical adjoint in some
of the proofs offers a different perspective.

1. Historical sketch

Information about the early history of the classical adjoint is provided by Muir.
Specifically, Muir’s first reference to the idea is given in pages 64–65 of [13], where
he reviews some observations about quadratic forms from the fifth chapter of Gauss’
1801 Disquisitiones Arithmeticae. In particular, Gauss considered the ternary qua-
dratic form

axx + a′x′x′ + a′′x′′x′′ + 2bx′x′′ + 2b′xx′′ + 2b′′xx′

in the variables x, x′, x′′. He denoted this form by

f =
(
a a′ a′′
b b′ b′′

)
,

and then introduced another form

F =
(
A A′ A′′
B B ′ B ′′

)
,

which he called the adjunctam of f , by defining

A = bb − a′a′′ A′ = b′b′ − aa′′ A′′ = b′′b′′ − aa′
B = ab − b′b′′ B ′ = a′b′ − bb′′ B ′′ = a′′b′′ − bb′.

Moreover, he defined what he termed the determinantem of the form f as

D = abb + a′b′b′ + a′′b′′b′′ − aa′a′′ − 2bb′b′′.

He also observed that the determinantem of F is the square of D, and that the ad-
junctam of F is D times the form f .

Today we would usually represent the quadratic form f by the symmetric matrix

A =

 a b′′ b′
b′′ a′ b

b′ b a′′


 ,

and note that
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Aad =




∣∣∣∣a′ b

b a′′
∣∣∣∣ −

∣∣∣∣b′′ b′
b a′′

∣∣∣∣
∣∣∣∣b′′ b′
a′ b

∣∣∣∣
−
∣∣∣∣b′′ b

b′ a′′
∣∣∣∣

∣∣∣∣a b′
b′ a′′

∣∣∣∣ −
∣∣∣∣ a b′
b′′ b

∣∣∣∣
∣∣∣∣b′′ a′
b′ b

∣∣∣∣ −
∣∣∣∣a b′′
b′ b

∣∣∣∣
∣∣∣∣ a b′′
b′′ a′

∣∣∣∣



.

Consequently, |A| and Aad are, respectively, the negatives of the determinanten and
adjunctam of Gauss.

A few years later, on 30 November 1812, both Binet and Cauchy read before
the Institut de France their respective memoirs on the subject of determinants [13,
p. 80 and 92]. Both are credited with a useful result, now called the Binet–Cauchy
theorem, for evaluating the determinant of a k × k submatrix of the product P = AB
in terms of determinants of k × k submatrices of A and B. Specifically, in today’s
notation,

|Pαβ | =
∑
γ∈Qk,n

|Aαγ | |Bγβ |.

(See, for example, [9, p. 22] or [10, p. 14].) Here, Qk,n is the totality of lists γ =
(γ (1), . . . , γ (k)) of integers with 1 � γ (1) < · · · < γ (k) � n; and, for A an m× n
matrix, α ∈ Qk,m, and γ ∈ Qk,n, Aαγ is the k × k submatrix of A determined by the
entries in rows α(1), . . . , α(k) and columns γ (1), . . . , γ (k).

Alternatively, suppose that A is m× n, B is n× p and Qk,m,Qk,n, and Qk,p are
each ordered, say, lexiographically. Then by defining the kth compound of A to be
the

(
m
k

)× (n
k

)
matrix Ck(A) with (α, β) entry |Aαβ |, the Binet–Cauchy theorem may

be expressed as

Ck(AB) = Ck(A)Ck(B).
(See [9, p. 20] or [10, p. 17].)

Cauchy also included in his paper a formula that is presently viewed as an evalu-
ation of the determinant of a matrix via the elements of a row and a column. Specifi-
cally, in today’s notation, ifA = (aij ) is n× n, b = (b1, . . . , bn)

T, c = (c1, . . . , cn),
and d is a scalar, he showed that∣∣∣∣

(
A b

c d

)∣∣∣∣ = |A|d −
n∑
i=1

n∑
j=1

ci

(
(−1)i+j |A

ĵî
|
)
bj .

He called the system ((−1)i+j |A
ĵî
|) adjoint to the system (aij ) [13, pp. 104–105].

Since his definition of adjoint agrees with current usage, Cauchy’s result may be
stated simply as∣∣∣∣A b

c d

∣∣∣∣ = |A|d − cAadb.
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The determinantal rank of a matrix is defined to be the size of a largest nonzero
minor of the matrix ([9, p. 13] or [10, p. 27]). Thus, if A is r × r and(

A B

C D

)

is of determinantal rank at most r , since Cauchy’s result applies to every (r + 1)×
(r + 1) submatrix that includes A,

0 = |A|D − CAadB.

In particular, if A is invertible, then D = CA−1B.
Cauchy also noted, again in more modern notation, that if A is an n× n matrix,

then |Aad| = |A|n−1 and (Aad)ad = |A|n−2A [13, p. 110]. These two results gener-
alize the above-mentioned observations of Gauss for the case n = 3.

2. Left/right invertibility

Throughout this paper, R is understood to be a commutative ring with 1 /= 0. An
m× n matrix over R is said to be right invertible if there exists an n×m matrix
B over R such that AB = Im. In this case, B is called a right inverse of A. Left
invertibility is analogously defined. If m /= n, then A cannot be both right and left
invertible. In particular, if m < n, then BA = In implies n = rankBA � rankA �
m < n, which is impossible; that is, A cannot be left invertible. However, A may be
right invertible.

Several characterizations of right invertibility are available. (See, for example,
[8]; compare also [7, p. 141] and [18, p. 932].) By use of the classical adjoint, we
provide below a condition that is both necessary and sufficient for the existence of a
right inverse. We also show that every right inverse of an m× n matrix A over R is
expressible as a linear combination of

(
n
m

)
matrices described by the adjoints of the

submatrices of A of order m.
Let A be m× n over R, m � n, and β ∈ Qm,n. LetQβ be the n×m matrix with

1 in positions (β(1), 1), . . . , (β(m),m) and 0 elsewhere, and let µ = (1, . . . , m) be
the sole list of Qm,m. Then AQβ = Aµ,β .

Lemma 2.1. Let A be an m× n matrix over R with m � n. Then A is right invert-
ible iff 1 is in the ideal generated by the determinants of the m×m submatrices
of A.

Proof. Let AB = Im. By the Binet–Cauchy theorem,

1 = |Im| = |AB| = |(AB)µµ| =
∑
β∈Qm,n

|Aµβ | |Bβµ|

and 1 is in the ideal generated by the elements |Aµβ |, β ∈ Qm,n.
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Conversely, suppose that

1 =
∑
β∈Qm,n

bβ |Aµβ |

for some bβ ∈ R. Then

A

( ∑
β∈Qm,n

bβQβA
ad
µβ

)
=

∑
β∈Qm,n

bβAQβA
ad
µβ =

∑
β∈Qm,n

bβAµβA
ad
µβ

=
∑
β∈Qm,n

bβ |Aµβ |Im =
( ∑
β∈Qm,n

bβ |Aµβ |
)
Im

= 1Im = Im,
and

∑
β∈Qm,n bβQβA

ad
µβ is a right inverse of A. �

(For alternative proofs of Lemma 2.1, see [8; 17, pp. 21–22].)

Example 2.1. Let R be the ring Z of integers and let

A =
(

2 1 0 1
4 3 1 3

)
∈ Z2×4.

With respect to the notation associated with Lemma 2.1, m = 2, n = 4, µ = (1, 2),
Q2,4 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, and

Aµβ :
(

2 1
4 3

)
,

(
2 0
4 1

)
,

(
2 1
4 3

)
,(

1 0
3 1

)
,

(
1 1
3 3

)
,

(
0 1
1 3

)
|Aµβ | : 2, 2, 2,

1, 0, −1

QβA
ad
µβ :




3 −1
−4 2
0 0
0 0


 ,




1 0
0 0
−4 2
0 0


 ,




3 −1
0 0
0 0
−4 2


 ,




0 0
1 0
−3 1
0 0


 ,




0 0
3 −1
0 0
−3 1


 ,




0 0
0 0
3 −1
−1 0


 .

The choice
bβ : 1, 1, 1,

−6, 2, −1
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is such that∑
β∈Q2,4

bβ |Aµβ | = 1 · 2+ 1 · 2+ 1 · 2+ (−6) · 1+ 2 · 0+ (−1)(−1) = 1.

Consequently, 1 is in the ideal generated by the |Aµβ |’s, and

B =
∑
β∈Q2,4

bβQβA
ad
µβ =




7 −2
−4 0
11 −3
−9 4




is a right inverse of A. �

The choice of the bβ ’s in Example 2.1 is clearly not unique. The interested reader
may wish to select other appropriate lists, and use them to construct other right
inverses of A.

A continuation of Example 2.1 provides an illustration of the next lemma. Spe-
cifically, the right inverse B of the example is such that

|Bβµ| : −8, 1, 10, 12, −16, 17.

Direct calculation gives∑
β∈Q2,4

|Aµβ ||Bβµ| = 1 and B =
∑
β∈Q2,4

|Bβµ|QβAad
µβ.

That is, the right inverse B is expressible as a linear combination of the matrices
QβA

ad
µβ with coefficients |Bβµ|. This observation is now shown to hold in general.

Lemma 2.2. Let A be m× n, B be n×m, 1 < m � n, and AB = Im. Then

B =
∑
β∈Qm,n

|Bβµ|QβAad
µβ.

Proof. For convenience, let
∑
β∈Qm,n be abbreviated as simply

∑
β . Also, let i ∈ β

mean that i = β(k) for some index k; in that case, let this unique index be denoted
by k = i(β). Finally, let β\i denote the list of Qm−1,n obtained by the deletion of i
from the list β ∈ Qm,n.

Let B = (bij ), 1 � i � n, 1 � j � m. Since (QβAad
µβ)ij is 0 if i /∈ β and is

(Aad
µβ)i(β),j if i ∈ β, the (i, j) entry of the right-hand side of the desired equality is(∑

β

|Bβµ|QβAad
µβ

)
ij

=
∑
β
i ∈ β

|Bβµ|(Aad
µβ)i(β),j

=
∑
β
i ∈ β

(
m∑
k=1

(−1)i(β)+kbik|Bβ\i,k̂|
)

× (−1)i(β)+j |(Aµβ)ĵ ,β\i |.
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Also, since there is a natural bijection between the β ∈ Qm,n with i ∈ β and the
β ′ ∈ Qm−1,n with i /∈ β, and since (Aµβ)ĵβ ′ = Aĵβ ′ whenever β corresponds to β ′
under this bijection, the preceding sum is

∑
β′
i /∈β ′

(
m∑
k=1

(−1)kbik|Bβ ′,k̂|
)
(−1)j |A

ĵβ ′ |.

But, for every γ ∈ Qm−1,n, if i ∈ γ , then
∑m
k=1(−1)kbik|Bγ k̂| = 0. Thus, the pre-

ceding sum is

∑
γ∈Qm−1,n

(
m∑
k=1

(−1)kbik|Bγ k̂|
)
(−1)j |A

ĵγ
|

=
m∑
k=1

bik(−1)j+k
( ∑
γ∈Qm−1,n

|A
ĵγ
| |B

γ k̂
|
)

=
m∑
k=1

bik(−1)j+k|(AB)
ĵ k̂
| =

m∑
k=1

bik(−1)j+k|(Im)ĵ k̂|

=
m∑
k=1

bik(I
ad
m )kj =

m∑
k=1

bik(Im)kj = bij . �

If m = n, then the statement of Lemma 2.1 reduces to the familiar result that A
is right invertible iff |A| is invertible. Moreover, in that case, if AB = Im, then
|A||B| = 1 and B = A−1 = |A|−1Aad = |B|Aad. This latter observation may be
viewed as a special case of Lemma 2.2.

We conclude this section by combining the preceding two lemmas into a single
theorem. (Compare [17, pp. 22–23].)

Theorem 2.1. Let A be m× n, B be n×m, m � n, and µ = (1, . . . , m) ∈ Qm,m.
Then AB = Im iff

|AB| = 1 and B =
∑
β∈Qm,n

|Bβµ|QβAad
µβ.

Proof. If AB = Im, then |AB| = |Im| = 1 and, for m > 1, by Lemma 2.2, B is as
expressed. Also, if m = 1, since Q1,n = {(1), . . . , (n)},Q(s) is the n× 1 column
with 1 in position s and 0 elsewhere, µ = (1), and the adjoint of a 1× 1 matrix is
the 1× 1 identity, then

∑
β∈Q1,n

|Bβ(1)|QβAad
µβ =

n∑
s=1

|B(s)(1)|Q(s) =
n∑
s=1

bs1Q(s) = B.
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Conversely, if the conditions are satisfied, then

AB = A
(∑

β

|Bβµ|QβAad
µβ

)

=
∑
β

|Bβµ|(AQβ)Aad
µβ =

∑
β

|Bβµ|AµβAad
µβ

=
∑
β

|Bβµ|(|Aµβ |Im) =
(∑

β

|Aµβ | |Bβµ|
)
Im

= |(AB)µµ|Im = |AB|Im = 1Im = Im. �

The results of this section have emphasized the consideration of right inverses.
Analogous results hold for left inverses. In particular, for α ∈ Qm,n, if Pα is the
m× n matrix with 1 in positions (1, α(1)), . . . , (m, α(m)) and 0 elsewhere, then by
arguments similar to the preceding, AB = Im iff

|AB| = 1 and A =
∑
α∈Qm,n

|Aµα|Bad
αµPα.

3. Regular matrices

An element a of a ring is said to be regular in the sense of von Neumann if there
is an element b of the ring such that aba = a. More generally, a matrix A is said to
be regular in the sense of von Neumann if there is a matrix G such that AGA = A.
In that case, G is said to be an inner inverse of A. Extensive studies have been made
of this notion. In particular, von Neumann noted in 1936 that a (square) matrix over
a ring in which every element is regular must also be regular ([14, p. 713]; see also
[6; 17, p.19]). In this section we prove this result for matrices over a commmutative
ring by use of the classical adjoint.

Lemma 3.1. Let A be m× n of determinantal rank r � 1. If α ∈ Qr,m, β ∈ Qr,n
with Pα,Qβ described as above, then

AQβ(A
ad
αβ)PαA = |Aαβ |A.

Proof. Since A is of rank r ,(
PαAQβ PαA

AQβ A

)
=
(
Pα 0
0 Im

)(
A A

A A

)(
Qβ 0
0 In

)
is of rank at most r . Since Aαβ = PαAQβ , the conclusion is a consequence of the
application of Cauchy’s result discussed in Section 1 with B = PαA, C = AQβ , and
D = A. �
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A ring R is said to be regular if every element of R is regular. It is known that
every finitely generated ideal of a regular ring is principal and generated by an idem-
potent. (See, for example, [5, Corollary 1, p. 213].) For the sake of completeness, we
establish this fact here for commutative rings.

Lemma 3.2. Let I be a finitely generated ideal in a regular commutative ring R.
Then I = eR for some idempotent e ∈ R.

Proof. The proof is by induction on the number of generators of I. First, if I =
aR, since aba = a for some b ∈ R, then aR = abR with ab idempotent. Second,
suppose that the conclusion is valid for all ideals generated by fewer than n > 1
elements, and let I = a1R+ · · · + anR. By the induction hypothesis, a1R+ · · · +
an−1R = eR for some idempotent e, and anR = fR for some idempotent f . Let
g = e + f − ef . Since e2 = e, f 2 = f , and R is commutative, ge = e, gf = f ,
and g is idempotent. Since g ∈ I, then gR ⊆ I, and since both e and f are gener-
ated by g, I ⊆ gR. Consequently, I = gR for an idempotent g. �

For A m× n and 1 � s � min{m, n}, let Is(A) be the ideal of R generated by
the determinants of the s × s submatrices of A. By Lemma 3.2, if R is regular, then
Is(A) = eR for some idempotent e; in particular, e is the identity element of Is(A).

Theorem 3.1. Let R be a regular commutative ring with 1. Then every matrix over
R is regular.

Proof. The proof is by induction on the determinantal rank of the matrices over R.
First, zero matrices are clearly regular. Second, let r � 1 be an integer and suppose
that all matrices over R of rank less than r are regular. Let A be an m× n matrix
over R of rank r .

Since R is regular, Ir (A) = eR for some idempotent e. In particular, since e ∈
Ir (A),

e =
∑
α∈Qr,m

∑
β∈Qr,n

bβα|Aαβ |

for some bβα ∈ R. For convenience, let B = (bβα) ∈ R(
n
r)×(mr ) and define

AB =
∑
α∈Qr,m

∑
β∈Qr,n

bβα(QβA
ad
αβPα).

By Lemma 3.1,

AABA=
∑
α∈Qr,m

∑
β∈Qr,n

bβα(AQβA
ad
αβPαA)

=
∑
α∈Qr,m

∑
β∈Qr,n

bβα|Aαβ |A = eA.
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Since e is the identity element of Ir (A), e|Aαβ | = |Aαβ | = 1|Aαβ | for every α ∈
Qr,m, β ∈ Qr,n. Also, since e is idempotent, 1− e is idempotent. Therefore

|((1− e)A)αβ | = (1− e)r |Aαβ | = (1− e)|Aαβ | = 0

and (1− e)A is of determinantal rank less than r . By the induction hypothesis,
(1− e)A is regular; that is, ((1− e)A)H((1− e)A) = (1− e)A for some n×mH .
Consequently,

A(eAB + (1− e)H)A= (eA+ (1− e)A)(eAB + (1− e)H)(eA+ (1− e)A)
= e(AABA)+ ((1− e)A)H((1− e)A)
= e(eA)+ (1− e)A = eA+ (1− e)A = A

and A is regular. (See also [17, pp. 118–119].) �

For A ∈ Rm×n of determinantal rank r , the mapping

R(
n
r)×(mr )→ Rn×m; B �→ AB =

∑
α∈Qr,m

∑
β∈Qr,n

bβαQβA
ad
αβPα

with B = (bβα), is a linear transformation called the adjoint mapping of A. (See [20,
p. 144].) Conceptually, QβAad

αβPα is the n×m matrix with all zero entries except
for the distribution of the entries of the classical adjoint of Aαβ in its β rows and α
columns. AB is the linear combination of these matrices with coefficients given by
the entries of B. In particular, in case r = 1, since the adjoint of a 1× 1 matrix is the
1× 1 identity matrix, then AB = B. Also, the expressions for right and left inverses
given above in Section 2 may be viewed as special cases of adjoint mappings where
eitherm = r or n = r and part of the mapping is rendered vacuous. Later, in Section
4 below, the concept is used to express Moore–Penrose inverses of matrices. More
immediately, we now use the adjoint mapping to provide a characterization of regular
matrices over a commutative ring.

Lemma 3.3. If A is s × s, D is r × r, and

(
A B

C D

)
is of determinantal rank � r,

then

∣∣∣∣
(

0 B

C D

)∣∣∣∣ = | − A||D|. In particular, if s = r, then |B||C| = |A||D|.

Proof. Let Ai and Bs−i denote the matrices consisting of the first i rows of A and

the last s − i rows of B, respectively. LetM0 =
(

0 B

C D

)
,Ms =

(−A 0
C D

)
, and,

for 0 < i < s, let

Mi =

−Ai 0

0 Bs−i
C D


 .
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If ai and bi are the ith rows of A and B, respectively, then

Mi =



−Ai−1 0
−ai 0

0 Bs−i
C D


 , Mi−1 =



−Ai−1 0

0 bi
0 Bs−i
C D


 ,

and, since (ai, bi) = −(−ai, 0)+ (0, bi),∣∣∣∣∣∣∣∣



−Ai−1 0
ai bi
0 Bs−i
C D



∣∣∣∣∣∣∣∣
= −|Mi | + |Mi−1|.

Since the rows i, s + 1, . . . , s + r of the matrix on the left are r + 1 rows of the
given matrix of rank at most r , then, by the Laplace expansion by these rows, the
determinant on the left is zero. That is, |Mi | = |Mi−1| for i = 1, . . . , s and∣∣∣∣

(
0 B

C D

)∣∣∣∣ = |M0| = |Ms | =
∣∣∣∣
(−A 0
C D

)∣∣∣∣ = | − A| |D|.
In particular, if s = r , then

|B| |C| =
∣∣∣∣
(
B 0
D C

)∣∣∣∣ = (−1)r
∣∣∣∣
(

0 B

C D

)∣∣∣∣
= (−1)r | − A| |D| = |A| |D|. �

Lemma 3.4. Let A ∈ Rm×n be of determinantal rank r � 1. If A is regular, then
Ir (A) = eR for some idempotent e. Specifically, if AGA = A, then trCr(GA) is
the identity element of Ir (A).

Proof. Let A be of rank r � 1, and let AGA = A. For every α, γ ∈ Qr,m, β, δ ∈
Qr,n, (

Aαβ Aαδ
Aγβ Aγδ

)
is of rank at most r . Thus, by Lemma 3.3, |Aαβ ||Aγδ| = |Aαδ||Aγβ |. By the Binet–
Cauchy theorem,

|Aαβ | = |(AGA)αβ | =
∑
γ,δ

|Aαδ||Gδγ ||Aγβ |

=
∑
γ,δ

|Gδγ ||Aγδ||Aαβ | =
(∑
γ,δ

|Gδγ ||Aγδ|
)
|Aαβ |.

Therefore, the element e =∑γ,δ |Gδγ ||Aγδ| = trCr(GA) is the identity element of
Ir (A); in particular, e is idempotent and Ir (A) = eR. �

Theorem 3.2. Let R be a commutative ring with 1, and let A be a matrix over R.
Then A is regular iff there exists a list (e1, . . . , et ) of idempotents of R such that
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1◦ e1 + · · · + et = 1,
2◦ eiej = 0 whenever i /= j,
3◦ if ri = rank(eiA) /= 0, then Iri (eiA) = eiR.

Proof. The necessity of the idempotents is established by induction on rank. First,
for matrices of rank 0, the conditions are satisfied by t = 1 and e1 = 1. Second,
assume the existence of such a list of idempotents for each regular matrix of rank
less than r > 0, and let A be regular of rank r . Since A is regular, by Lemma 3.4,
Ir (A) = eR for an idempotent e. For α ∈ Qr,m, β ∈ Qr,n,

|(eA)αβ | = er |Aαβ | = e|Aαβ | = |Aαβ |
and Ir (eA) = Ir (A). Also, as in the proof of Theorem 3.1, rank eA = r >
rank((1− e)A). SinceA is regular, (1− e)A is regular, and by the induction hypoth-
esis, there is a list (f1, . . . , fs) of idempotents satisfying 1◦, 2◦, and 3◦ with A
replaced by (1− e)A. Then

(e, f1(1− e), . . . , fs(1− e))
is a list of idempotents, whose pairwise products are zero,

e + f1(1− e)+ · · · + fs(1− e) = e + 1(1− e) = 1

with Ir (eA) = eR. Finally, let rj = rank((fj (1− e))A) /= 0. Since every element
of Irj (fj (1− e)A)) is a multiple of the idempotent 1− e and fj = fj1 ∈ fjR =
Irj (fj ((1− e)A)), then fj = gj (1− e) for some gj and fj (1− e) = gj (1−
e)2 = gj (1− e) = fj . Consequently, Irj ((fj (1− e))A) = Irj (fj ((1− e)A) =
fjR = (fj (1− e))R. That is, the above list of s + 1 idempotents satisfy the three
conditions for A.

Conversely, suppose that idempotents exist satisfying conditions 1◦, 2◦, and 3◦
for the matrix A. Let ri = rank(eiA). If ri = 0, then eiA = 0. So

A = 1A = (e1 + · · · + et )A =
∑
ri /=0

eiA+ 0.

Whenever ri /= 0, by 3◦, ei = ei · 1 ∈ eiR = Iri (eiA) and we can express

ei =
∑

α∈Qri ,m

∑
β∈Qri ,n

b
(i)
βα|(eiA)αβ |

with b(i)βα ∈ R. Let (eiA)Bi be the image of the adjoint mapping of eiA under Bi =
(b
(i)
βα). By Lemma 3.1, (eiA)(eiA)Bi (eiA) = ei(eiA) = eiA. Consequently, by prop-

erties 1◦ and 2◦,
∑
ri /=0(eiA)Bi + 0 is an inner inverse of

∑
ri /=0 eiA+ 0, and A is

regular. �

Theorem 3.2 may be extended to provide a unique decomposition of a regular
matrix A into components eiA with Iri (eiA) = eiR whenever ri > 0. (See [17,
pp. 114–117; 19, p. 85].)
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4. The Moore–Penrose inverse

In this section we assume that R possesses an involution .̄ That is, ¯ is a mapping
a �→ ā on R such that for every a and b in R,

a + b = ā + b̄, ab = b̄ā, ¯̄a = a.
In particular, 0̄ = 0 and 1̄ = 1. Since R is commutative, one possible involution is
the identity mapping with ā = a. Also, the category of matrices over R is assumed
to have the involution (aij ) �→ (aij )

∗ = (āj i) induced by .̄ In particular,

(A+ B)∗ = A∗ + B∗, (AB)∗ = B∗A∗, A∗∗ = A,
whenever the compatibility conditions on the sizes of the matrices are satisfied.

Given an m× n matrix A of determinantal rank r over such an R, the expression∑
α∈Qr,m

∑
β∈Qr,n

|Aαβ | |Aαβ |,

where |Aαβ | is the involution in R of the determinant of Aαβ , is called the square
of the volume of A, and is denoted by vol2A. Equivalently, since |Aαβ | = |A∗βα|,
whereA∗βα = (A∗)βα , vol2A = trCr(AA∗) = trCr(A∗A). (See, for example, [2, pp.
89–90].)

A matrix A over R is said to have a Moore–Penrose inverse provided that there is
a matrix A† over R such that

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

If such an A† exists, then it is unique, and is called the Moore–Penrose inverse of A.
The four equations defining A† were first given for complex matrices in 1955 by

Penrose [15]. In 1956, Rado [16] noted that an equivalent notion had actually been
introduced in 1920 by Moore [12]. A recent review of Moore’s life and mathematical
contributions, including detailed comments on Refs. [11,12], is given in [3].

If R is the ring of complex numbers, then there are several methods available to
investigate the Moore–Penrose inverse of a matrix A. For example, by use of the sin-
gular value decomposition of A, it is a simple exercise to establish the existence and
uniqueness of A† [9, p. 421]. Alternatively, a construction of A†, which is generally
credited to MacDuffee, may be easily obtained by use of a full rank factorization
of A [4, pp. 23–24]. Unfortunately, these techniques are not generally available for
matrices over an arbitrary commutative ring. However, whenever a given matrix A
possesses a full rank factorization, by the results of Section 2, we may show the
following.

Lemma 4.1. Suppose that A ∈ Rm×n of determinantal rank r � 1 possesses a full
rank factorization. If vol2A is invertible in R, then A possesses a Moore–Penrose
inverse and

A† = (vol2A)−1
∑
α∈Qr,m

∑
β∈Qr,n

|Aαβ |QβAad
αβPα.
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Proof. Let A ∈ Rm×n be of determinantal rank r � 1 with vol2A invertible. By
hypothesis, suppose thatA = MN withM ∈ Rm×r ,N ∈ Rr×n. SinceM∗MNN∗ is
r× r , its rth compound is the scalar |M∗M||NN∗| = |M∗MNN∗| =Cr(M∗MNN∗)
= trCr(M∗MNN∗) = trCr(MNN∗M∗) = trCr(AA∗) = vol2A. Since vol2A is
invertible, then both |M∗M| and |NN∗| are invertible in R. Consequently, both
M∗M,NN∗ ∈ Rr×r are invertible. A straightforward exercise shows that

A† = N∗(NN∗)−1(M∗M)−1M∗

satisfies the Penrose equations.
Also, since N∗(NN∗)−1 is a right inverse of N , by Theorem 2.1 above with

ρ = (1, . . . , r) ∈ Qr,r ,

N∗(NN∗)−1 =
∑
β∈Qr,n

|(N∗(NN∗)−1)βρ |QβNad
ρβ

=
∑
β∈Qr,n

|N∗βρ(NN∗)−1|QβNad
ρβ = |(NN∗)−1|

∑
β∈Qr,n

|N∗βρ |QβNad
ρβ.

Similarly,

(M∗M)−1M∗ = |(M∗M)−1|
∑
α∈Qr,m

|M∗ρα|Mad
αρPα.

Consequently,

A† = |(NN∗)−1||(M∗M)−1|
∑
α∈Qr,m

∑
β∈Qr,n

|N∗βρ ||M∗ρα|QβNad
ρβM

ad
αρPα.

Clearly, |(NN∗)−1||(M∗M)−1| = |M∗MNN∗|−1 = (vol2A)−1. Also, since the
adjoint of the product of two square matrices is the product of their adjoints in re-
verse order and MαρNρβ = (MN)αβ = Aαβ , then Nad

ρβM
ad
αρ = Aad

αβ ; and since

(N∗βρ)(M∗ρα) = (N∗M∗)βα = (MN)∗βα = A∗βα , then |N∗βρ ||M∗ρα| = |A∗βα| = |Aαβ |.
That is,

A† = (vol2A)−1
∑
α∈Qr,m

∑
β∈Qr,n

|Aαβ |QβAad
αβPα. �

Lemma 4.1 provides a formula for the Moore–Penrose inverse of a matrix that
consists of a linear combination of matrices described in terms of adjoints. We illus-
trate this formulation with an example.

Example 4.1. Let R be the ring Z5 of integers modulo 5 with the identity involution
a �→ ā = a, and let

A =




1 4 3
1 3 2
1 1 0
0 4 4


 ∈ Z4×3

5 .
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A is of rank 2, vol2A = 1, and

M =




1 4
1 1
1 0
0 2


 , N =

(
1 1 0
0 2 2

)

provides a full rank factorizationMN of A. Since vol2A = 1,

A† =

4 2 3 3

3 0 4 2
4 3 1 4




is the sum of the eighteen matrices displayed in Table 1.
The formula for A† given in Lemma 4.1 may be expressed as an image of the

adjoint mapping of A, which was defined in Section 3. Specifically, since the entries
of Cr(A∗) are |A∗βα| = |Aαβ |,

A† = (vol2A)−1ACr(A∗).

In case r = 1, since AC1(A
∗) = C1(A

∗) = A∗, then A† = (vol2A)−1A∗.
The formula forA† given in Lemma 4.1 may be viewed as a natural generalization

of the adjoint representation of the inverse of an invertible matrix. Specifically, ifA ∈
Rm×n of rank r is invertible in the usual sense, thenm = n = r , vol2A = |A||A|, and

A−1 = |A|−1Aad = (|A||A|)−1|A|Aad = (vol2A)−1|A|Aad.

Even though the proof of Lemma 4.1 depends upon the existence of a full rank factor-
ization of the given matrix, the resulting formula for A† depends only on the entries
of A. This observation suggests the possibility of a stronger result. Indeed, as we
now show, the conclusion of Lemma 4.1 is valid without the full rank factorization
hypothesis.

Theorem 4.1. Let A ∈ Rm×n be of determinantal rank r � 1. If vol2A is invertible
in R, then A possesses a Moore–Penrose inverse and

A† = (vol2A)−1
∑
α∈Qr,m

∑
β∈Qr,n

|Aαβ |QβAad
αβPα.

Proof. If r = 1, then the formula reduces to A† = (vol2A)−1A∗. In this case, since
A = (aij ) is of rank 1, then for all possible subscripts, aikahj = aij ahk . Therefore,

(AA∗A)ij =
n∑
k=1

m∑
h=1

aikāhkahj =
m∑
h=1

n∑
k=1

ahkāhkaij = (trAA∗)aij

and AA∗A = (vol2A)A. Since vol2A = vol2A, the Penrose equations are clearly
satisfied by (vol2A)−1A∗. Thus, we assume that r > 1, and proceed to argue that
(vol2A)−1ACr(A∗) satisfies the Penrose equations.
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Table 1 The matrices |Aαβ |QβAad
αβPα , α ∈ Q2,4, β ∈ Q2,3 associated

with the A of Example 4.1

4


3 1 0 0

4 1 0 0
0 0 0 0


 4


2 2 0 0

0 0 0 0
4 1 0 0


 4


0 0 0 0

2 2 0 0
2 4 0 0




2


1 0 1 0

4 0 1 0
0 0 0 0


 2


0 0 2 0

0 0 0 0
4 0 1 0


 2


0 0 0 0

0 0 2 0
4 0 4 0




4


4 0 0 1

0 0 0 1
0 0 0 0


 4


4 0 0 2

0 0 0 0
0 0 0 1


 4


0 0 0 0

4 0 0 2
1 0 0 4




3


0 1 2 0

0 4 1 0
0 0 0 0


 3


0 0 3 0

0 0 0 0
0 4 1 0


 3


0 0 0 0

0 0 3 0
0 4 3 0




4


0 4 0 2

0 0 0 1
0 0 0 0


 4


0 4 0 3

0 0 0 0
0 0 0 1


 4


0 0 0 0

0 4 0 3
0 1 0 3




4


0 0 4 4

0 0 0 1
0 0 0 0


 4


0 0 4 0

0 0 0 0
0 0 0 1


 4


0 0 0 0

0 0 4 0
0 0 1 1




First, by Lemma 3.1, with α ∈ Qr,m, β ∈ Qr,n,

AACr(A∗)A= A
(∑

α

∑
β

|Aαβ |QβAad
αβPα

)
A

=
∑
α

∑
β

|Aαβ ||Aαβ |A = (vol2A)A.

Second, let v ∈ γ ∈ Qr,m and u ∈ δ ∈ Qr,n. Since the ((r − 1)+ r)× ((r − 1)+
r) matrix(

Aγ \v,δ\u Aγ \v,β
Aα,δ\u Aαβ

)
is of rank at most r , by Lemma 3.3,

(−1)r−1|Aγ \v,δ\u||Aαβ | = | − Aγ \v,δ\u||Aαβ | =
∣∣∣∣
(

0 Aγ \v,β
Aα,δ\u Aαβ

)∣∣∣∣ .
The Laplace expansion of the latter determinant by its first r − 1 rows gives
r∑
j=1

(−1)1+2+···+(r−1)+r+(r+1)+···+(r+(r−1))−(r+(j−1))|Aγ \v,β\β(j)||Aγ,δ\u, Aαβ(j)|,
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where Aαβ(j) is the j th column of Aαβ . (See, for example [10, p. 14].) By an expan-
sion on the last column of |Aγ,δ\u, Aαβ(j)|, the preceding sum becomes

r∑
j=1

(−1)2r
2−r+(r−1+j)|Aγ \v,β\β(j)|

r∑
i=1

(−1)r+iaα(i),β(j)|Aα\α(i),δ\u|

= (−1)r−1
r∑

i,j=1

(−1)i+j |Aα\α(i),δ\u|(Aαβ)ij |Aγ \v,β\β(j)|.

Therefore, if u = δ(s) and v = γ (t), then

|Aαβ |(Aad
γ δ)st = |Aαβ |(−1)s+t |Aγ \v,δ\u|

=
r∑

i,j=1

(−1)i+s |Aα\α(i),δ\u|(Aαβ)ij (−1)j+t |Aγ \v,β\β(j)|

=
r∑

i,j=1

(Aad
αδ)si(Aαβ)ij (A

ad
γβ)jt ,

and |Aαβ |Aad
γ δ = Aad

αδAαβA
ad
γβ . By Lemma 3.3, |Aαβ ||Aγδ| = |Aαδ||Aγβ |. Thus,

ACr(A∗)AACr(A∗) =
(∑

α

∑
β

|Aαβ |QβAad
αβPα

)
A

(∑
γ

∑
δ

|Aγδ|QδAad
γ δPγ

)

=
∑
α

∑
β

∑
γ

∑
δ

|Aαβ ||Aγδ|QβAad
αβAαδA

ad
γ δPγ

=
∑
α

∑
β

∑
γ

∑
δ

|Aαδ||Aγβ ||Aαδ|QβAad
γβPγ

=
∑
β

∑
γ

(∑
α

∑
δ

|Aαδ||Aαδ|
)
|Aγβ |QβAad

γβPγ

= (vol2A)ACr(A∗).

(Compare [1, p. 99].)
Third, since (QβAad

αβPα)ij is zero whenever j /∈ α or i /∈ β and is (Aad
αβ)i(β),j (α)

whenever j ∈ α and i ∈ β,

(AACr(A∗))kj =
n∑
i=1

aki

(∑
α

j ∈ α

∑
β
i ∈ β

|Aαβ |(Aad
αβ)i(β),j (a)

)

=
∑
α

j ∈ α

∑
β

|Aαβ |
∑
i

i ∈ β

(−1)j (α)+i(β)aki |Aα\j,β\i |

=
∑
α

j ∈ α

∑
β

|Aαβ ||Aα(j←k),β |,
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where Aα(j←k),β is the same matrix as Aαβ except that the elements Ajβ(s) of
row j have been replaced by the corresponding elements Akβ(s). If k = j , then
Aα(j←k),β = Aαβ and

(AACr(A∗))jj =
∑
α

j ∈ α

∑
β

|Aαβ ||Aαβ | =
(
AACr(A∗)

)
jj
.

Thus, consider j /= k. Since, by duplication of rows, k ∈ α implies |Aα(j←k),β | = 0,
then

(AACr(A∗))kj =
∑
α

j ∈ α
k /∈ α

∑
β

|Aαβ ||Aα(j←k),β |.

For j ∈ α and k /∈ α, let αjk be the list of Qr,m obtained from α by the deletion of
j and the inclusion of k. In particular, α �→ αjk provides a bijection of the lists of
Qr,m which contain j but not k to the lists of Qr,m which contain k but not j , and

|Aα(j←k),β | = (−1)j (α)+k(αjk)|Aαjk,β |.
Therefore, by a change in the index of summation via γ = αjk and γkj = α,

(AACr(A∗))kj =
∑
α

j ∈ α
k /∈ α

∑
β

|Aαβ |(−1)j (α)+k(αjk)|Aαjk,β |

=
∑
γ

k ∈ γ
j /∈ γ

∑
β

|Aγkj ,β |(−1)j (γkj )+k(γ )|Aγβ |

=
∑
γ

k ∈ γ
j /∈ γ

∑
β

|Aγ,β ||Aγ(k←j),β | = (AACr(A∗))jk.

Since an analogous result also holds for the product in reverse order,

(AACr(A∗))
∗ = AACr(A∗), (ACr(A∗)A)

∗ = ACr(A∗)A.
Consequently, since vol2A = vol2A, under the assumption that vol2A is invertible,
then (vol2A)−1 ACr(A∗) satisfies the Penrose equations for A. �

Theorem 4.1 enables one to explicitly calculate the entries of A† in terms of the
entries of A. In particular, it provides an immediate proof of Moore’s 1920 formula
specifying the entries of A† in terms of determinants. Specifically, the following
corollary is a restatement of Moore’s formula in [12].

Corollary 4.1. LetA ∈ Rm×n be of determinantal rank r � 1. If vol2A is invertible,
then

(A†)ij = (vol2A)−1
∑

γ∈Qr−1,m

∑
δ∈Qr−1,n

|A(j,γ ),(i,δ)||Aγδ|,

where (j, γ ) = (j, γ (1), . . . , γ (r − 1)) and (i, δ) = (i, δ(1), . . . , δ(r − 1)).
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Proof. If r = 1, then A† = (vol2A)−1A∗ and (A†)ij = (vol2A)−1 · |Aji | · 1.
If r > 1, then

(A†)ij = (vol2A)−1
∑
α ∈ Qr,m
j ∈ α

∑
β ∈ Qr,n
i ∈ β

|Aαβ |(Aad
αβ)i(β),j (α)

= (vol2A)−1
∑
α ∈ Qr,m
j ∈ α

∑
β ∈ Qr,n
i ∈ β

|Aαβ |(−1)i(β)+j (α)|Aα\j,β\i |

= (vol2A)−1
∑

α′ ∈ Qr−1,m
j /∈ α′

∑
β′ ∈ Qr−1,n
i /∈ β′

|A(j,α′),(i,β ′)||Aα′,β ′ |,

where α′ corresponds to α under the natural bijection between the α′ ∈ Qr−1,m with
j /∈ α and the α ∈ Qr,m with j ∈ α; similarly for β ′. Finally, since |A(j,γ ),(i,δ)| = 0
whenever j ∈ γ ∈ Qr−1,m or i ∈ δ ∈ Qr−1,n, the preceding sum is as in the statement
of the corollary. �

Lemma 4.2. Let A be a matrix of rank r over a commutative ring with involution .̄
If A† satisfies the Penrose equations for A with respect to ∗ induced by ¯, then

Cr(A
∗) = (vol2A)Cr(A

†), trCr(A
†A) = (vol2A)(vol2A†).

Proof. By the Penrose equations,

A∗ = (AA†A)∗ = A∗A†∗A∗ = A∗(AA†)∗ = A∗AA†

= A∗AA†AA† = A∗A(A†A)∗A† = A∗AA∗A†∗A†.

Since A∗ is of rank r , by Lemma 3.3, Cr(A∗) is of rank 1. By an argument similar
to the one used in the first paragraph of the proof of Theorem 4.1,

Cr(A
∗)Cr(A)Cr(A∗) = (trCr(A∗)Cr(A))Cr(A∗).

Therefore,

Cr(A
∗)= Cr(A∗)Cr(A)Cr(A∗)Cr(A†∗A†)

= (trCr(A∗)Cr(A))Cr(A∗)Cr(A†∗A†)

= (trCr(A∗A))Cr(A∗A†∗A†)

= (vol2A)Cr((A
†A)∗A†)

= (vol2A)Cr(A
†AA†)

= (vol2A)Cr(A
†).

Also,

Cr(A
†A)= Cr((A†A)∗) = Cr(A∗A†∗) = Cr(A∗)Cr(A†∗)
= (vol2A)Cr(A

†)Cr(A
†∗) = (vol2A)Cr(A

†A†∗)
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and

trCr(A
†A) = (vol2A)trCr(A

†A†∗) = (vol2A)(vol2A†). �

Corollary 4.2. Let A be a matrix over R of determinantal rank r � 1. Suppose that
1 ∈ Ir (A). Then A† exists iff vol2A is invertible in R. In that case,

A† = (vol2A)−1ACr(A∗).

Proof. Suppose that A† exists. Since AA†A = A, by Lemma 3.4, trCr(A†A) is
the identity element of Ir (A). By assumption, 1 ∈ Ir (A). Thus, 1 = trCr(A†A) =
(vol2A)(vol2A†) and vol2A is invertible.

Conversely, if vol2A is invertible, then, by Theorem 4.1, A† exists and is equal to
(vol2A)−1ACr(A∗). �

Example 4.2. Let R be the ring Z6 of integers modulo 6 with the identity involution
a �→ ā = a. We consider three matrices in Z3×3

6 .

(i) A =

3 2 0

1 4 3
2 4 3




implies rankA = 2,

C2(A) =

4 3 0

2 3 0
2 3 0


 ,

1 = 3+ 4 ∈ I2(A), and vol2A = 42 + 22 + 22 + 32 + 32 + 32 = 3. Since 1 ∈
I2(A) and vol2A is not invertible in R,A does not possess a Moore–Penrose inverse.

(ii) A =

5 3 4

0 3 5
4 0 2




implies rank A = 2,

C2(A) =

3 1 3

0 0 0
0 4 0


 ,

1 ∈ I2(A), and vol2A = 32 + 12 + 32 + 42 = 5, which is invertible with inverse 5.
Thus, A† exists and

A† = 5


3


3 3 0

0 5 0
0 0 0


+ 1


5 2 0

0 0 0
0 5 0


+ 3


0 0 0

5 2 0
3 3 0


+ 4


0 2 1

0 0 0
0 2 0






=

4 5 2

3 3 0
3 2 0


 .
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(iii) A =

3 5 3

2 3 3
2 0 3




implies rankA = 3, C3(A) = (3), and 1 /∈ I3(A). Thus, the hypothesis of Corollary
4.2 is not satisfied. However, by means of an appropriate additive decomposition
of A and by an application of Corollary 4.2 to each of the summands, we demon-
strate below that this A does possess a Moore–Penrose inverse. In particular, since
vol2A = 3 is not invertible in Z6, this example shows that the converse of Theorem
4.1 fails to hold. �

More generally, by a combination of Corollary 4.2 and an extension of Theorem
3.2, we now characterize the existence and structure of A† for any given matrix A
in terms of an additive decomposition of A, specified in terms of a decomposition of
the identity element 1 into a sum of idempotents.

Theorem 4.2. Let A ∈ Rm×n. Then A† exists iff there exists a list (e1, . . . , et ) of
idempotents in R satisfying

1◦ e1 + · · · + et = 1,
2◦ eiej = 0 whenever i /= j,
3◦′ if ri = rank (eiA) /= 0, then ei = ēi and vol2(eiA) is invertible in eiR.

In that case,

A† =
∑
ri /=0

(vol2eiA)
−1(eiA)Cri (eiA

∗) + 0,

where (vol2(eiA))−1 is the inverse of vol2(eiA) in eiR.

Proof. Let A be such that A† exists. If A = 0, then conditions 1◦, 2◦, and 3◦′ are
satisfied by t = 1 and et = 1.

Thus, suppose thatA /= 0. SinceAA†A = A, thenA is regular and e = tr(A†A) =
tr(A†A)∗ = ē. A slightly modified repeat of the induction proof of Theorem 3.2
provides a construction of a list (e1, . . . , et ) of idempotents that satisfy 1◦, 2◦, and
3◦ with ei = ēi for each i. In particular, if ri = rank(eiA) /= 0 then Iri (eiA) = eiR
with identity element ei . Since ei ∈ Iri (eiA) and (eiA)† = eiA† exists, by Corollary
4.2 with 1 replaced by ei andA by eiA, vol2(eiA) is invertible in eiR. Consequently,
conditions 1◦, 2◦, and 3◦′ are satisfied.

Conversely, let (e1, . . . , et ) be a list of idempotents satisfying 1◦, 2◦, and 3◦′ and
let ri = rank(eiA). Then

A = e1A+ · · · + etA =
∑
ri /=0

eiA+
∑
ri=0

eiA =
∑
ri /=0

eiA+ 0.



D.W. Robinson / Linear Algebra and its Applications 411 (2005) 254–276 275

If ri /= 0 for every i, then A = 0 and A† = 0 exists. Thus, we assume that ri /= 0 for
some i. For every such i, ei is clearly the identity element of eiR, and we show that
Iri (eiA) = eiR. First,

vol2(eiA) =
∑

α∈Qri ,m

∑
β∈Qri ,n

|(eiA)αβ ||(eiA)αβ | ∈ Iri (eiA).

By 3◦′ , ei is a multiple of vol2(eiA), which means that ei ∈ Iri (eiA). Hence, eiR ⊆
Iri (eiA). On the other hand, since every element of Iri (eiA) is a multiple of ei ,
then Iri (eiA) ⊆ eiR. Consequently, Iri (eiA) = eiR with identity element ei .

By Corollary 4.2, with 1 replaced by ei and A by eiA, since by 3◦′ vol2(eiA) is
invertible in eiR, (eiA)† exists. Furthermore, since (eiA)∗ = ēiA∗ = eiA∗,

(eiA)
† = (vol2(eiA))

−1(eiA)Cri ((eiA)
∗) = (vol2(eiA))

−1(eiA)Cri (eiA
∗).

Finally, since
∑
ri /=0(eiA)

† satisfies the Penrose equation for A =∑ri /=0 eiA, A†

exists and A† =∑ri /=0(eiA)
†. (Compare [17, p. 123].) �

Example 4.3. Consider again

(iii) A =

3 5 3

2 3 3
2 0 3




of Example 4.2. As noted above, the hypothesis of Corollary 4.2 is not satisfied.
However, 3 and 4 are idempotents in R = Z6 with 3+ 4 = 1, 3 · 4 = 0, and

3A =

3 3 3

0 3 3
0 0 3

,


 4A =


0 2 0

2 0 0
2 0 0


 .

First, rank(3A) = 3, vol2(3A) = |3A|2 = 3, which is invertible with inverse 3 in 3R,
and

3(3A)C3(3A∗) = 3(3(3A)ad) = (3A)ad =

3 3 0

0 3 3
0 0 3


 .

Second, rank(4A) = 2,

C2(4A) =

2 0 0

2 0 0
0 0 0


 ,

vol2(4A) = 22 + 22 = 2, which is invertible with inverse 2 in 4R, and

2(4A)C2(4A∗) = 2


2


0 4 0

4 0 0
0 0 0


+ 2


0 0 4

4 0 0
0 0 0




 =


0 4 4

2 0 0
0 0 0


 .
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By Theorem 4.2, A† exists and

A† =

3 3 0

0 3 3
0 0 3


+


0 4 4

2 0 0
0 0 0


 =


3 1 4

2 3 3
0 0 3


 . �

The image AB of the adjoint mapping may also be used to describe other gen-
eralized inverses of A besides the Moore–Penrose. (See, for example, [17,19–21].)
Thus, the classical adjoint has not only played, but continues to play, a significant
role in the study of generalized invertibility of matrices.
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