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Abstract Despite the continuous developments in the Cone Penetration Test (CPT), the Standard

Penetration Test (SPT) is still used extensively in site investigations. Hence, there is a constant need

to update the CPT–SPT correlations to make use of the growing experience with the CPT. Many

CPT–SPT correlations have been proposed based on case histories of predominantly quartzitic/

non-crushable sands; yet, more efforts are needed to enhance their reliability. Additionally, recent

studies were carried out on calcareous/crushable sands have shown that the common CPT–SPT

correlations for these sands are even less reliable than they are for quartzitic sands. In this study,

a proposed approach is presented to define the related soil compressibility parameters of the

CPT–SPT correlations. The presented methodology enhances the reliability of the CPT–SPT corre-

lations and provides a unified approach encompassing both crushable and non-crushable sands.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
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1. Introduction

Although there have been recent advances in the CPT and
other contemporary in situ testing methods, the SPT continues
to be a site investigation tool of choice in many parts of the
world, because of its low cost and extensive past experience

database. As such, there is a continuous need to develop reli-
able CPT–SPT correlations in order to make best use of the
growing, more reliable CPT experience.

Many empirical correlations have been proposed to corre-
late the static cone tip resistance (qc), to SPT N-value in
siliceous soils. These correlations are often expressed as the ra-

tio of (qc/N), or equivalently as the dimensionless ratio ((qc/pa)/
N). The CPT–SPT correlations are presented as a function of
the fines content (fines%), the friction ratio (FR%), mean

diameter (D50) or the Soil Behavior Index (Ic) [1–8].
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mailto:sayed.m.ahmed@outlook.com
mailto:swissa@dargroup.com
mailto:ahosny66@hotmail.com
http://dx.doi.org/10.1016/j.asej.2013.09.009
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2013.09.009


Nomenclature

Cage correlation factor for sand aging in accordance

with Kulhawy and Mayne [4]
Cn correction factor for the overburden pressure;

Cn ¼ ðpa=r0mÞ
0:5ðdimensionlessÞ

CPT Cone Penetration Test

D50 mean soil grain diameter; the diameter at 50%
passing in the gradation curve (mm)

Dr relative density = (emax � e)/emax � emin) (decimal

number)
e void ratio = volume of voids/void of solids

(dimensionless)

emax maximum void ratio (dimensionless)
emin minimum void ratio (dimensionless)
f(Ic) regression function; f(Ic) = 305 Qc

fines% fines content; percentage of the soil with size less

than 0.074 mm
Fr normalized friction ratio; Fr = 100 fs/(qc � r)

(dimensionless)

FR% friction ratio = 100 fs/qc (percentage%)
fs CPT sleeve friction (in kPa or bar)
Ic soil behavior index; Ic ¼ ½ð3:47� logQtnÞ

2

þð1:22þ logFrÞ2�0:5 (dimensionless)
ML Low Plastic Silt
N number of blows of SPT at 60% energy efficiency

(dimensionless)
N1 normalized SPT blows; N1 = N Cn (dimension-

less)
N1,c normalized SPT blows considering soil compress-

ibility (dimensionless)
OCR overconsolidation ratio (dimensionless)
pa atmospheric pressure = 1 bar � 100 kPa

qc CPT tip resistance (in kPa or bar)
qc1 normalized CPT tip resistance (aka, qc1N);

qc1 ¼ ðqc=paÞ=ðr0m=paÞ
0:5ðdimensionlessÞ

Qt net CPT tip resistance ratio;

Qt ¼ ðqc � rmÞ=ðr0mÞðdimensionlessÞ
Qtn normalized net CPT tip resistance; Qtn = Qt Cn

(dimensionless)
Qtn,c normalized net CPT tip resistance considering soil

compressibility (dimensionless)
SPT Standard Penetration Test
R2 Coefficient of determination; R2 = 1 – sum of the

squares of the residuals of the correlation/sum of
the square of the residuals around the average va-
lue

r0m effective vertical stress (in kPa)
r total vertical stress (in kPa)
I behavior classification zone I: sensitive, fine

grained soils

II behavior classification zone II: organic soils – clay
III behavior classification zone III: clay – silty clay to

clay

IV behavior classification zone IV: silt mixtures –
clayey silt to silty clay

V behavior classification zone V: sand mixtures –

silty sand to sandy silt
VI behavior classification zone VI: sands – clean sand

to silty sand

VII behavior classification zone VII: gravelly sand to
dense sand

VIII behavior classification zone VIII: very stiff sand to
clayey sand

IX behavior classification zone IX: very stiff fine –
grained soils

Figure 1 The CPT–SPT relationship as a function of D50

(Robertson et al. [1]).
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1.1. Common CPT–SPT correlations

Some of the commonly accepted CPT–SPT correlations are
presented by Eqs. (1)–(5) and Fig. 1:

1.1.1. Correlations with behavior index (Ic)

ðqc=paÞ=N ¼ 8:5ð1� Ic=4:6Þ ð1Þ

(Lunne et al. [5])

ðqc=paÞ=N ¼ 10ð1:1268�0:2817IcÞ ð2Þ

(Robertson [7])

1.1.2. Correlations with fines content (fines%)

ðqc=paÞ=N ¼ 4:25� ðfines%Þ=41:3 ð3Þ

(Kulhawy and Mayne [4])

ðqc=paÞ=N ¼ 4:7� ðfines%Þ=20 ð4Þ

(Chin et al. [2])
ðqc=paÞ=N ¼ 5:44ðD50Þ0:26 ð5Þ

(Kulhawy and Mayne [4])
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1.1.3. Correlations with mean diameter (D50)

Comparing the CPT–SPT measurements in siliceous soils with

the above common correlations, as presented later in this
study, reveals that more efforts are still need to enhance the
reliability of the CPT–SPT correlation in siliceous soils. Addi-

tionally, some studies showed that the common CPT–SPT cor-
relations have poorer performance in calcareous soils than
their performance in siliceous soils [9,10]. Akca [10] showed

that the commonly applied CPT–SPT correlations give poor
results in the calcareous soils. Elkateb and Ali [10] concluded
that none of the existing correlations are applicable to calcar-
eous sands. The performances of the common CPT–SPT cor-

relations are investigated in calcareous soils. Similar
conclusions to the work of Akca [9], and Elkateb and Ali
[10] regarding the poor performance of the common CPT–

SPT correlations are reached in the current study.
Figure 2 Classification of the calcareous soils.
1.2. The need for unified CPT–SPT correlations

There is an existing need for unified and reliable CPT–SPT
correlations, encompassing both calcareous and siliceous soils.
This need arises from the necessity to achieve reliable and con-

sistent geotechnical analyses (i.e., settlement and bearing
capacity analyses for shallow and deep foundation) using
SPT and/or CPT in both calcareous soils and siliceous soils.

Moreover, a reliable unified CPT–SPT correlation helps to

avert specifying inconsistent SPT and CPT target values for
the quality control in soil improvement projects. Such incon-
sistencies may result in unwarranted disputes between consul-

tants and contractors especially if the soils to be improved
have substantial variability in their crushability due to their
variability in chemical composition, or due to the presence of

both calcareous and siliceous soils with variable percentages.
There is also an increasing need for envisaging such corre-

lations in liquefaction analyses. SPT has been used effectively

in liquefaction triggering analyses since 1970s [11]. The cur-
rently available world-wide huge SPT databases for liquefac-
tion triggering criteria in siliceous soils give impetus to
continue using SPT as a standard test in liquefaction analyses

[12]. Liquefaction analyses using CPT, provided reliable CPT
liquefaction criteria are determined and adopted, would give
nearly continuous profiles for the liquefaction susceptibility

independent of the operator. These aspects would relieve much
of concerns related to SPT that delivers discrete profiles having
strong operator influence as well as substantial uncertainties

regarding the energy efficiency in SPT tests [4].
Many studies tried to make use of the SPT database in liq-

uefaction susceptibility to attain equivalent CPT liquefaction
criteria by employing the common CPT–SPT correlations for

siliceous soils (e.g., [13–16]). Nevertheless, the measured CPT
data in liquefied siliceous soils after some recent earthquakes
contradict with the common CPT liquefaction criteria that

were inferred from the SPT liquefaction criteria combined with
the common CPT–SPT correlations [17–19]. The observed
constrictions shed some doubts regarding the common CPT–

SPT correlations in siliceous soils.
Mejia and Yeung [20] investigated the liquefaction of cal-

careous soils during the 1993 Guam Earthquake; they con-

cluded that the SPT criteria (formulated based on siliceous
sands data) could also be used for calcareous sands. However,
this observed equivalence of SPT data in both calcareous and
siliceous soils contradicts with the observed low cone tip resis-
tances in calcareous compared with siliceous soils under the
same effective stress and for the relative densities [21–24].

Based on the above elaborations, a unified reliable CPT–
SPT correlation, encompassing both crushable/calcareous soils
and siliceous soils, may reduce the current uncertainties in liq-

uefaction analysis in both calcareous and siliceous soils by reli-
ably utilizing the abundant SPT liquefaction triggering
database in siliceous soils.

In this study, a proposed approach is presented to enhance
the reliability of the CPT–SPT correlations in both soils. This
approach provides a unified methodology that encompasses
both siliceous and calcareous soils through unified determina-

tion and quantification of the cohesionless soil compressibility.

2. Soil databases and performance of common correlations

2.1. Calcareous soil data

The analysis for crushable/calcareous soils utilized high quality
CPT–SPT data (142 CPT–SPT data points) obtained from
testing newly placed calcareous soil reclamations in the Ara-

bian Gulf after improvement works [25]. The CPT tip resis-
tance (qc) and the sleeve resistance (fs) were presented by
averaging the test data within the same 30 cm of the SPT test.

The percentage of carbonates, expressed as (CaCO3), ranges
between 63% and 93% (average of about 80%). The following
geotechnical ranges characterize the database:

� The fines content (fines%) ranges between 3% and 25%.
� The mean diameter (D50) ranges between 0.04 mm and

10 mm.

� The data are located within soil behavior zones (VI)
through (VII) in the Soil Behavior Chart developed by
Robertson [12] as shown in Fig. 2. Most of the data

points lie in zones (VI) and (VII).
� Most of the data are for medium dense to very dense

non-cohesive soils/sands as interfered from the CPT

and SPT penetration tests.



Figure 4 Performance of the common CPT–SPT relationships as

a function of (Ic).
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� The presented data have a maximum Soil Behavior

Index (Ic) value of about 2.6, indicating that the soil is
draining according to Robertson and Cabal [8].

The normalized parameters used in the classifications and
in the analyses (viz., Qt, Qtn, Fr and Ic) are as defined in accor-
dance with Robertson [26], and Jefferies and Davies [27].

2.2. Siliceous soil data

The analysis for non-crushable/siliceous soils utilized CPT–
SPT (294 CPT–SPT data points) obtained from two different

case studies that were reported by Chin et al. [2] for a case
study in Taiwan, and Ozan [28] for another case study in Tur-
key. Part of the data presented by Chin et al. [2] was for recent

reclamation and the other part was for Holocene sands. All the
data presented by Ozan [28] are for Holocene sands and silts.
The following geotechnical ranges characterize the database:

� The fines content (fines%) ranges between 2% and 100%.
� The mean diameter (D50) ranges between 0.004 mm and
7.9 mm.

� The data points lie within soil behavior zones (III–VII) in
the Soil Behavior Chart presented by Robertson [26] as
shown in Fig. 3.

� Most of the data are for loose to dense sands as interfered
from the CPT and SPT penetration tests.
� The presented data have a maximum Soil Behavior Index

(Ic), value of about 3.23.

It is to be noted that the siliceous soil database is generally
finer than the calcareous soil database (as interfered from the

fines% and Ic ranges above). Nevertheless, most of the data
have an index value (Ic) less than 2.6 indicating that the soils
are mostly draining. The data with (Ic) greater than 2.6 were

mostly classified as Low Plastic Silt (ML) indicating the ab-
sence of plastic fines in the databases; this indicates that both
siliceous and calcareous databases represent non-cohesive

soils.
Figure 3 Classification of the siliceous soils.
2.3. Performances of the common CPT–SPT correlations

The CPT–SPT measurements in siliceous and calcareous soils
are compared with the common CPT–SPT correlations. The
results of comparisons are shown in Figs. 4–6. Table 1 presents

the coefficient of determination (R2) for the different correla-
tions for the siliceous and calcareous sands.

It is noted from Figs. 4–6 and Table 1 that the CPT–SPT

correlations poorly simulate the qc–N relationship in siliceous
soil databases. The maximum coefficient of determination
(R2) has a maximum value of (0.221) for the correlation that
was presented by Robertson [7], Eq. (2), using the behavior in-

dex (Ic). The rest of the correlations have lower coefficients of
determination in siliceous soils.

It is also noted that Chin et al. [2] correlation, Eq. (4),

gives negative value of the ratio ((qc/pa)/N) for (fines%) high-
er than 94%. Additionally, Chin et al. [2] correlation seems
to be substantially deviated from the databases if

(fines%> 40%) which indicate that this correlation should
not be used for silts. The CPT–SPT correlation presented
by Kulhawy and Mayne [4] adopting (fines%), Eq. (3), is

close to Chin et al. [2] correlation in soils with low fines
(fines%< 40%). Kulhawy and Mayne [4] correlation has rel-
atively better performance than Chin et al. [2] correlation for
(fines%> 40%).



Figure 6 Performance of the CPT–SPT relationships as a

function of (D50).

Figure 5 Performance of the common CPT–SPT relationships as

a function of (fines%).
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The values of the coefficient of determination (R2) that are
presented in Table 1 for siliceous soils indicate that these com-

mon correlations are not much better than presenting the ratio
((qc/pa)/N) as an average value independent of the parameters
that are assumed to control the CPT–SPT correlation.

The performance of the common correlation in calcareous
soils is even poorer than their performance in siliceous soils.
The maximum coefficient of determination (R2) is only 0.096
for the correlation presented by Robertson [7]. The coefficient

of determination is negative for the correlations based on the
mean diameter (D50) which indicate these correlations are less
accurate than assuming an average value independent of the

controlling parameter. The correlations based on the (fines%)
have a determination factor (R2) of almost zero indicating that
they are not better than assuming an average value of ((qc/pa)/

N) regardless of the controlling parameter (i.e., fines%).
The above discussion substantiates the needs for new en-

hanced CPT–SPT correlations that can accurately present

the relationship between these two common penetration tests.
Such reliable correlations are required for both crushable/cal-
careous and non-crushable/siliceous soils.

3. The proposed approach

In the following the proposed approach, is developed based
on the equivalence of the relative density SPT and CPT
correlations. This approach addresses the effect of soil com-
pressibility on the penetration resistance and the selection of

the representative soil compressibility factors. It is calibrated
using the soil databases that were previously presented and
utilized to verify the performance of the common CPT–SPT

correlations.

3.1. Soil compressibility and the controlling factors of the CPT–
SPT correlations

Schmertmann [29], Robertson and Campanella [30], and Kul-
hawy and Mayne [4] acknowledged that some cohesionless
soils tend to have lower resistance than other soils even if both

soils have the same relative density and they are tested under
the same stresses. Soils that tend to have low tip resistances,
such as calcareous soils, are known to have high compressibil-

ity; conversely, other soils with low compressibility, such as
siliceous soils, tend to have high tip resistances.

The parameters anticipated to control the CPT–SPT corre-

lations (viz., D50, fines%, FR% and Ic) may be considered as
an indications of the soil compressibility. Generally, compress-
ibility is anticipated to increase with the increase in the fines

content (fines%), the increase in the friction ratio (FR%), the
decrease in the mean diameter (D50) and the increase in behav-
ior index (Ic). It is anticipated that the poor performance of the
common correlation in calcareous soils, as illustrated from



Table 1 Coefficient of determination (R2) for the common correlations.

Controlling parameter Correlation;

defining

equation/figure

(R2) for

calcareous

soils

(R2) for

siliceous

soils

Behavior index (Ic) Lunne et al. [5];

Eq. (1)

0.068 0.193

Robertson [7];

Eq. (2)

0.096 0.221

Fines% Kulhawy and

Mayne [4]; Eq.

(3)

0.002 0.076

Chin et al. [2];

Eq. (4)

0.005 N/Ab

Mean diameter (D50) Robertson et al.

[1]; Fig. 1

�0.026a 0.104

Kulhawy and

Mayne [4]; Eq.

(5)

�0.029a 0.077

a The negative value for the coefficient (R2) indicates that an average value would be more representative of ((qc/pa)/N) than the investigated

correlation.
b Not available as Chin et al. [2] predicted negative values of ((qc/pa)/N) for (fines%) higher than 94%.
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Figs. 4–6 and Table 1, results mainly from the lack of determi-
nation of the related compressibility factors that are to be

adopted to define the compressibility of this crushable soils.
The common relationships between the CPT and CPT

adopt one measure of the compressibility assuming that this

parameter can be used to quantify the soil compressibility
for both SPT and CPT. This approach may not be representa-
tive for crushable soils, which are known to have finer grada-

tion after CPT and SPT probing. Bellotti et al. [31]
demonstrated the effect of the CPT on the gradation of some
crushable soils.

The crushability associated with SPT probing in calcareous

soil is not similarly addressed so far; nevertheless, the samples
extracted by SPT may be considered representative to the
crushed gradation due to SPT probing. Conversely, SPT sam-

ples may not represent the gradation after the CPT probing
due to the difference between the two probing methods (i.e.,
static CPT probing versus Dynamic SPT probing; solid cone

probing in CPT versus open pipe probing in SPT). Thus, a
need arises to adopt two parameters to describe the correla-
tions between the CPT and SPT due to the anticipated differ-
ence in soil crushability/compressibility between the CPT and

the SPT. This difference, in turn, causes subsequent differences
in the CPT and SPT measurements.

While the mean diameter (D50) (or alternatively fines%) ob-

tained from the SPT samples in crushable/calcareous soils, can
describe the soil compressibility related to SPT, these parame-
ters cannot be used for the CPT since it does not represent the

crushability/compressibility associated the CPT probing. It is
anticipated that the material index (Ic) (or alternatively the
FR%) may be considered more representative parameter of

the soil compressibility affecting the CPT resistance. Agaiby
et al. [25] concluded that adopting two compressibility param-
eters (i.e. D50 and Ic) enhances the CPT–SPT correlations in
calcareous soils. Remarkably, Salehzadeh et al. [6] presented

a similar trend in siliceous soils. They optimally adopted three
parameters (viz., D50, FR% and fines%) in addition to the ex-
cess pore water pressure associated with CPT probing to reach
a coefficient of determination (R2) of 0.597 in siliceous soils.
Although Salehzadeh et al. [6] did not present the correlations

in an equation form yet the improvement using multi-com-
pressibility parameters in siliceous soils is much related to
the current discussion.

Based on the above discussion, it is anticipated that
employing two selected compressibility parameters may en-
hance the CPT–SPT correlations. This approach is justified

by the difference between the two probing methods that gener-
ally affect the soil compressibility and hence the probing
resistance.

In this study, an attempt is made to reach an enhanced and

unified CPT–SPT correlation using two compressibility
parameters (i.e., D50 and Ic) to define unified compressibility
factors that can describe the compressibility of the siliceous

as well as the calcareous soils. It is anticipated that the mean
diameter (D50) may represent the effect of the soil compress-
ibility in SPT probing while the behavior index (Ic) may be

considered as the compressibility parameter related to CPT
probing.
3.2. Development of the proposed CPT–SPT correlation

Kulhawy and Mayne [4] presented expressions for the relative
density of sands using both CPT and SPT as follows:

D2
r ¼ ðN � CnÞ=½ð60þ 25 logD50ÞOCR0:18Cage� ð6Þ

D2
r ¼ ððqc=paÞ � CnÞ=ð305QcOCR0:18CageÞ ð7Þ

where (Qc) is a factor that expresses the compressibility of
sands. Kulhawy and Mayne [4] empirically estimated this fac-
tor based on the results of calibration chambers for some clean

sands as follows:

� Qc= 0.91 for highly compressible clean sands.

� Qc= 1.0 for medium clean compressible sands.
� Qc= 1.09 for low compressible clean sands.
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To date, there is no quantitative estimate of (Qc) factor
without resorting to extensive calibration chamber tests. In this
study, an assessment of this factor is determined utilizing the

calcareous and siliceous databases.
From Eqs. (6) and (7), the following correlations between

CPT and SPT can be deduced as follows:

ðqc1=paÞ=½N1=ð60þ 25 logD50Þ�
¼ ðqc=paÞ=½N=ð60þ 25 logD50Þ� ¼ 305Qc ð8Þ

Thus, for the sands with a (D50) range that is between 0.1 and
1.0 mm, the ratio ((qc/pa)/N) for medium compressible sands is

expected to be between 5.5 and 8.3. These values are in line
with some reported typical values for sands (e.g., 5–6 for sand
and 8–10 for gravel by Schmertmann [29]; 5.7 by Danziger

et al. [32]; and 7.7 by Akca [9]).
It is to be noted that the main uncertainty in Eq. (8) is the

compressibility factor associated with the CPT testing (Qc). In

order to have a representative unified CPT–SPT correlation,
this factor has to be quantified. Agaiby et al. [25] presented
CPT–SPT correlations for recently deposited calcareous soils
by replacing the term (qc1) by (Qtn) as follows:

Qtn=½N1=ð60þ 25 logD50Þ� ¼ Qt=½N=ð60þ 25 logD50Þ�
¼ fðIcÞ ð9Þ

where the function f(Ic) is a function that is to be determined

by regression analysis using soil databases.
The regression function (f(Ic)) in Eq. (9) depends on the

behavior index (Ic) based on the assumption that soil com-
pressibility associated with CPT can be described as a function

of the Soil Behavior Index. This is in line with the previous dis-
cussions of the related soil compressibility factors. Addition-
ally, the regression function (f(Ic)) is expected to be an

exponential function based on the observed relative better per-
formance of the correlation of Robertson [7] (Eq. (2)) com-
pared with the other common CPT–SPT correlation.

Based on Eqs. (8) and (9), the soil compressibility (Qc) can
be defined as follows:

Qc ¼ ðQtn=½N1=ð60þ 25 logD50Þ�Þ=305 ¼ fðIcÞ=305 ð10Þ

Using the presented databases, regression analyses were car-

ried out for on the databases to quantify the regression func-
tion (f(Ic)) and hence the soil compressibility (Qc) with the
range if draining soils, i.e., with (Ic < 2.6).

3.3. Quantification of the compressibility factor (Qc) for
calcareous soils

The regression analyses carried out on the calcareous soils for

(f(Ic)) are presented by the below equation:

ðfðIcÞÞCalcareous ¼ 7524:1 expð�1:784IcÞ ð11Þ

Fig. 7 shows the regression analysis for calcareous soils, Eq.
(11), plotted with the data of both calcareous and siliceous soils.

It is noted from Fig. 7 that the abovementioned correlation for
calcareous soils alsomatches with the trend of the siliceous soils.
As shown later in this study, a unified form of the presented cor-

relation may present via a regression analysis for the data of
both soil types; this unified regression is shown in Fig. 8.

The relationship presented by Eq. (11) has a coefficient of

determination (R2) of 0.614 (based on 142 data points). It is
to be noted that the coefficient of determination (R2) in the
above analyses is much higher than the coefficients of determi-
nations in listed in Table 1 for calcareous soils. The improved

performance indicates the suitability of the selected compress-
ibility factors attempted in this study. Based on that, the soil
compressibility factor (Qc) for calcareous soils can be de-

scribed as below:

ðQcÞCalcareous ¼ 24:67 expð�1:784IcÞ ð12Þ
3.4. Quantification of the compressibility factor (Qc) for
siliceous soils

The same approach above is also attempted in siliceous soils.
The regression function (f(Ic)) is presented by Eq. (13) with a

coefficient of determination (R2) of 0.566 (based on 294 data
points):

ðfðIcÞÞSiliceous ¼ 15502 expð�2:291IcÞ ð13Þ

Fig. 7 shows the proposed correlation for siliceous soils, Eq.

(13), plotted with the data of both calcareous and siliceous
soils. It is noted that the correlation presented for siliceous
soils in Eq. (13) also matches with the trend of the calcareous

soils. A unified form is presented for both types of soils in
Fig. 8 as elaborated later in this study.

The coefficient of determination (R2) of the relationship

presented by Eq. (13) is slightly less than the coefficient of
determination of the calcareous soil; yet, it is higher than the
coefficient of determination of the common correlations listed

in Table 1. Eq. (13) also implies that the compressibility factor
(Qc) for siliceous soils can be expressed as:

ðQcÞSiliceous ¼ 50:83 expð�2:291IcÞ ð14Þ
3.5. Unified quantification of the compressibility factor (Qc)

The correlations for calcareous and siliceous soils are plotted
together in Fig. 7 in order to check if the expressions of the

regression functions (f(Ic)) (or alternatively the expressions of
Qc) can be unified to represent a unified quantification of the
compressibility associated with CPT probing. It is noted from
Fig. 7 that the differences between the two separate correla-

tions for the calcareous and siliceous soils are small for the
range of the presented data. This implies that both sets can
be described by a uniform compressibility factor (Qc) without

jeopardizing the accuracy within the presented range.
The above conclusion is expected since the main difference

between the calcareous soils and the siliceous soils is the differ-

ence in the compressibility. Hence, once a unified account of
the soil compressibility is reached, a unified CPT–SPT correla-
tion encompassing both siliceous and calcareous soils can sub-

sequently be reached.
A unified correlation for both siliceous and calcareous dat-

abases is attempted. The results of the unified regression anal-
ysis are shown in Eq. (19) and in Fig. 8.

fðIcÞ ¼ 14115 expð�2:248IcÞ ð15Þ

The compressibility factor (Qc) for the both siliceous and
calcareous soils is described by the below equation:

Qc ¼ 46:28 expð�2:248IcÞ � 46:3 expð�2:25IcÞ ð16Þ



Figure 7 CPT–SPT correlations for calcareous and siliceous

soils as two distinct correlations.
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The above analysis shows a unified CPT–SPT relationship for
both calcareous and siliceous soils with a slightly better coeffi-
cient of determination (R2) of 0.634 (based on 436 data points)

than the two distinct CPT–SPT correlations.
The slight improvement in the coefficient of determina-

tion, in the unified analysis, indicates the both calcareous

and siliceous databases complement each other. This unified
trend is also graphically demonstrated in Figs. 7 and 8. It
also implies that the unified expression of (Qc), Eq. (16), rep-

resents a general expression that quantify the compressibility
associated with CPT testing irrespective of the soil geological
origin.

Comparing the obtained coefficient of determination (R2)

for the unified correlation with the latest works pertaining
to the CPT–SPT relationships for non-calcareous soils (e.g.,
Kara and Gündüz [33], Salehzadeh et al. [6]), it can be con-

cluded that different models with different controlling factors
of the CPT–SPT correlations generally do not have correla-
tion coefficients (R2) much greater than 0.6. As such, the

presented unified correlation may be considered as represen-
tative general form for soils with different geological
conditions.
Figure 8 Unified CPT–SPT correlations for both calcareous and

siliceous soils.
3.6. Unified CPT–SPT correlation

The unified CPT–SPT correlation is given by substituting the
compressibility parameters (Qc), defined in Eq. (16), into Eq.
(10). It is described by the below equation:

Qtn=N1 ¼ 14115 expð�2:25IcÞ=ð60þ 25 logD50Þ ð17Þ

The above correlation represents the relationship between the
CPT and the SPT different soils with different geological ori-
gins. This unified form is based on having two compressibility
parameters: (D50) for SPT and (Ic) for CPT. The function form

of both parameters (i.e., the function of D50 and the exponen-
tial function for Ic) is considered suitable forms based on the
previous discussions and the presented regression analyses.

The parameters in Eq. (17) are obtained from different tests
(i.e., Qtn and Ic from CPT; N and D50 from SPT and gradation
tests on the SPT samples). As such, the unified correlation is

better to be rewritten by relocating the parameters of CPT in
one side of the relationship, and the parameters related to
SPT to the other side. A more appropriate form of the unified

correlation may be presented as follows:

Qtn;c ¼ 5:08 N1;c ð18Þ

where (Qtn,c) represents the CPT to resistance normalized to
1 bar overburden pressure as well as the effect of soil com-
pressibility; it is given as follows:

Qtn;c ¼ Qtn;c=Qc ¼ Qtn;c=½46:3 expð�2:25IcÞ� ð19Þ

(N1,c) represents the SPT number of blows at 60% energy effi-

ciency normalized to 1 bar overburden pressure as well as the
effect of soil compressibility; it is given as follows:

N1;c ¼ N1=ð1þ 0:42 logD50Þ ð20Þ

The unified correlation, presented by Eqs. (18)–(20), allows to
separate the CPT and SPT measurements and compressibility
measures. Hence, the transformation from one test (e.g., CPT)

to the other test (e.g., SPT) can be straightforwardly per-
formed. It is also to noted that the consistency of the penetra-
tion resistances normalized for compressibility (viz., Qtn,c and

N1,c) stems from being both related to the relative density. It
is foreseen that the proposed normalization for the compress-
ibility will allow the SPT databases to be simply transformed
into equivalent CPT databases, which may enhance the CPT

correlations related to the foundation and liquefaction
analyses.
4. Applicability, advantages and disadvantages of the proposed

unified correlation

As presented above, the proposed approach is based on quan-

tification of the compressibility factor related to CPT (i.e., Qc)
in terms of the behavior index (Ic) and adopting the mean
diameter (D50) as the compressibility factor for SPT. Con-

versely, the previous common approaches adopt a single com-
pressibility parameter (i.e., D50, fines%, FR% or Ic) to describe
the CPT–SPT relationship. A database of non-cohesive soils

having different locations (Arabian Gulf, Taiwan, and Tur-
key), different geological origins (calcareous, and siliceous),
and different aging conditions (recent reclamations, and Holo-
cene formations), was utilized to test the previous common

CPT–SPT correlation and to develop and calibrate the pro-



Figure 9 Micaceous soil data versus the proposed unified CPT–

SPT correlation.
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posed relationship. The utilized soil databases comprising cal-
careous and siliceous soils cover a wide range of compressibil-
ity as siliceous non-cohesive soils are considered of low to

medium compressibility while calcareous non-cohesive soils
are considered of high compressibility due to the difference
in the geological origin of the two soils (Schmertmann [29];

Robertson and Campanella [30]; Kulhawy and Mayne [4]).
The proposed approach was found to provide more repre-

sentable CPT–SPT relationship than the common correlation.

The coefficient of determination (R2) was found to be 0.634
compared with much lower values of the coefficient of determi-
nation for the previous correlation (viz., �0.029 to 0.221). It is
believed that the lower coefficient of determinations for the

common correlation, as revealed by the analyses, is due to
the incomplete incorporation of the soil compressibility, par-
ticularly for CPT. The adopted approach of employing two

compressibility parameters adopted in the proposed correla-
tion enhanced the inclusion of the compressibility effects into
the CPT–SPT relationship.

The coefficient of determination (R2) for the unified analy-
sis is higher than the coefficient of determinations of the anal-
ysis for each of the soil types. This note may imply that both

databases (siliceous and calcareous) complement each other.
It may ensure that the proposed unified approach can gener-
ally be considered as representative for cohesionless soils with-
in the range of the analysis (i.e., Ic < 2.6). The generality of the

proposed correlation is the anticipated based on adequate
quantification of the soil compressibility factor associated with
CPT-relative density relationship (Qc) and the inclusion of

compressibility factor related to the standard penetration test
in terms of the mean diameter (D50).

Moreover and to ensure the validity of the proposed corre-

lation, it is tested using micaceous sands. This sand type was
not included among the databases utilized in developing the
proposed approach. Micaceous sands (siliceous sands with

mica plates) are known to have higher compressibility than
normal siliceous cohesionless sands that does not contain mica
even if the parentage of mica is small [34,4,35]. The CPT–SPT
data of the case study of medium dense micaceous sands

(mica% = 10%), which was presented by Robertson [36] at
McDonalds Farm site, are plotted versus the proposed corre-
lation in Fig. 9. A good agreement was observed between the

proposed unified correlation and the reported data despite
the fact that micaceous sands were not included among the
databases used in developing the unified correlation.

The observed good performance of the proposed correla-
tion for a soil type that was not included as well as the ob-
tained high coefficient of determination, compared with the
common correlations, ensures that the proposed correlation

can be considered as representative of cohesionless soils irre-
spective of its origin. Additionally, as the databases cover wide
range of reclaimed and aged sands, it is anticipated that the

proposed correlation performs well and considered applicable
over the wide range of cohesionless soils.

The main disadvantage of the proposed correlation is it

needs more parameters than the previous correlations. Yet, it
is suggested to use the form of the correlation presented by
Eqs. (18)–(20), since it collects the data of SPT in one side of

the equation and the data related to CPT in the other side.
In this regard, it is suggested to consider utilizing the com-
pressibility normalized penetrations (Qtn,c) and (N1,c) in lieu
of (Qtn) and (N1,c) in CPT and SPT correlations. It is also
foreseen that further enhancement could be obtained in the

proposed CPT–SPT correlation by calibrating the proposed
expression of the CPT compressibility factor (Qc) using cali-
bration chambers to identify the effect of the lateral stress

and the relative density on the soil compressibility.

5. Conclusions and recommendations

In this study, a proposed unified approach, correlating CPT
and SPT readings for both crushable/calcareous and
non-crushable/siliceous sands, is presented. The presented

approach incorporates quantifying the soil compressibility
related to CPT in terms of the behavior index (Ic), and the com-
pressibility related to SPT in terms of the mean diameter (D50).

The correlation is calibrated using data encompassing both
siliceous and calcareous soils. A proposed normalization for
soil compressibility is also presented along with the unified cor-
relation, which allows straightforward conversion between

SPT and CPT data regardless of the geological origin of the
considered sands. The proposed unified correlation shows an
enhanced representation of CPT–SPT correlation for the pre-

sented siliceous and calcareous sands databases. Additionally,
a case study of CPT–SPT data in micaceous sands was
analyzed and found to be in good agreement of the proposed

unified correlation.
The presented methodology potentiates the reliability of the

CPT–SPT correlations in cohesionless soils by introducing a
unified expression of the soil compressibility affecting the

CPT and SPT measurements. The presented correlation may
be benefited in envisaging CPT analyses and correlations for
foundations and assessing liquefaction susceptibility for both

siliceous and calcareous soils.
More research addressing the effect of the cohesionless soil

compressibility is recommended to further enhance the pre-

sented approach. In this regard, the use of calibration chamber
to calibrate the proposed soil compressibility relationship, and
to determine the effect of the lateral stresses and the relative

density, is recommended.
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