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Abstract 

Leimer, h -G., Optimal decomposition by clique separators, Discrete Mathematics 113 (1993) 
99-123. 

Decompositions of a graph by clique separators are investigated which have the additional 
property that they do not generate new maximal prime subgraphs. Using such decompositions 
is preferable in many applications, since they lead to a minimal system of derived subgraphs. 
The methods used m the proofs are familiar from the investigations of chordal graphs and 
acyclic hypergraphs and some well-known results for these (hyper-) graphs are shown to be 
simple special cases of results for maximal prime subgraphs. 

Tarjan has described an O(nm)-time algorithm to decompose a graph with n vertices and m 

edges by means of clique separators. This algorithm is modified, so that no new maximal prime 
subgraphs are generated, i.e. so that a graph is decomposed exactly into its maximal prime 
subgraphs which is the unique minimal derived system of prime subgraphs. 

0. Notations 

Throughout this paper G = (V, E) is an undirected graph without loops or 
multiple edges, where V is called the vertex set and E the edge set of G. It is 
assumed that n := 1 VI is finite. Edges are denoted by { VJ, w } E E with vertices 
v, w E V, u # w. A path in G between vertices u, w E V is a sequence 

vo, Ul, . * . 9 V,,E V with {v, W} = {uo, v,) and {vi-,, Vi} EE for i= 1, . . . ,n. 

Let U denote a subset of vertices of a graph G. G(U) := (U, E(U)) is the 
sub-graph of G induced by U, where E(U) := { {v, W? E E: v, w E U}. All 
subgraphs in this paper are induced subgraphs. U is a clique, if any two different 
vertices v, w E U are adjacent, i.e. {v, w} E E. Especially the empty set 0 IS ‘1 
clique. A graph is d clique it‘ its vertex set is a ciique. t’ is c&ed a r~~ir~~! ci:c;zse, 
if U is maximal w.r.t. inclusion in the set of cliques of G. U c V is a separator fir 
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.A, B z V\ U, if every path in G between some a E A and h E B contains a vertex 
in U. U Is a separator for G, if there are non-empty sets A, B E V \ U such that U 
is a separator for A and B. Separators that are cliques are called clique separators. 

A graph G is reducible if its vertex set contains a clique separator, otherwise G 
is said to be prime. E.g. G is prime if G is a clique while G is reducible if G is a 
disconnected graph. A subgraph G(U) is a maximal prime (mp-) subgraph of G, 
if G(U) is prime and G(X) is reducible for all X with U c X c V. 

Let A, B, C be a vertex partition with A and B non-empty such that C is a 
clique and separates A and B. Then the triple (A, C, B) defines a decomposition 
of G into the subgrsphs G’ = G(A U C) and G” = G(B U C). If furthermore the 
mp-subgraphs of G’ and G” are pairwise different and if they are all mp- 
subgraphs of G. then (A, C. B) is called a P-decomposition and C is cal1e.l a 
P-separator. A decomposition (A, C, B) is a P-decomposition if and only if the 
set of mp-subgraphs of G is equal to the disjoint union of the set of mp-subgraphs 
of G(A U C) and G(B U C) (see Lemma 2.1(i)). If G is reducible, i.e. if there is a 
decomposition for G, then there also exists a P-decomposition for G (see 
Corollary 2.7). 

The notions of a D-ordered sequence of sets, where ‘D’ stands for decomposi- 
tion (Corollary 2.7) or decomposable graph (Theorem 3.3), and of a D- 
tzumberirzg of the vertices of a graph (see Definitions 2.3 and 3.1) are also 
essential for this paper. 

1. Introduction 

If G is a reducible graph, then there is a decomposition (A, C, B) of G into the 
subgraphs G’ = G(A U C) and G”= G(B U C). Similarly G’ and G” can be 
decomposed until all derived subgraphs are prime. Tarjan [24] has given four 
examples. where such decompositions can be used to solve graph problems for G 
efficiently. He considered minimizing the fill-in caused by Gaussian elimination, 
finding a maximum clique, graph coloring, and finding a maximum independent 
set. The requirement for a decnmposition (A, C, B) that C separates A and B 
guarantees that no structure of the graph is lost when passing from G to G’ and 
G” and since C is a clique it is possible to combine the solutions of the respective 
graph problems for G’ and G” to a solution of the graph problem for G. Further 
applica?ions of such decompositions were described by Diestel [6]. 

Decompositions of a graph are of similar importance in a statistical context. 
Darroch. Lauritzen and Speed [4] defined graphical models for contingency 
tables. where every vertex of a graph is associated with a discrete (qualitative) 
random variable ;md a missing edge {u, w} in the graph corresponds to the 
cilnditional independence of the variables associated with u and w. If M(G) is a 
graphical model for a contingency table and (A, C, B) is a decomposition of G 
into G’ and G”, then the maximum-likelihood estimates for the parameters of the 
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model M(G) can easily be derived from the simpler, lower-dimensional models 
M(G’) and M(C”). Similar results hold for continuous (quantitative) random 
variables and mixtures of discrete and continuous variables ([16, 181, see also 
Section 6). 

Tarjan has pointed out that the derived system of prime subgraphs, when 
decomposing a graph recursively, is far from being unique. The aims of this paper 

are 
l to show that every graph G can successively be decomposed such that a 

unique minimal system of prime subgraphs is derived which is the system of 
mp-subgraphs of G, 

l to characterize the decompositions involved in that process, 
l and to describe an O(nm)-time algorithm to decompose an tz-vertex, m-edge 

graph irito its mp-subgraphs. 
The described algorithm is a modification of the algorithm described by Tarjan 
[24]. Two further aspects are emphasized in this paper 

l the generalization of wel!-known results and techniques for decomposable 
(ckordal) graphs and decomposable (acyclic) hypergraphs to arbitrary graphs and 
collectio:;> of prime graphs, respectively, and 

* the investigation of an a rbitrary graph using a close!y re!ated decomposable 
graph which is easier to investigate. 

Some uniqueness results for decomposing graphs were previously given by 
Diestel ([5, 7-91). Throughout this paper we shall use a result that is equivalent 
to the existence of a reduced simplicial decomposition of a graph into primes [27]. 
A slightly more general form is proved in Section 2 (Theorem 2.5). Conversely, 
systems of prime graphs G,, . . . , CT are characterized which are the mp- 
subgraphs of their union-graph G : = G, U - - - U CT (Theorem 2.10). 

In Section 3 some previousl,p known results for decomposable (hyper-)graphs 
are derived as simple special cases of the general results of Section 2 concerning 
mp-subgraphs. Decomposable (hyper-)graphs are called like that in [15] and they 
are also known as chordal, triangulated, or rigid circuit graphs and acyclic 
hypergraphs, respectively (see e.g. [3] and [lo]). 

When decomposing a reducible graph recursively into prime subgraphs, the 
derived system is minimal if and oniy if aii decompositions invoived are 
P-decompositions (see (2.2)). In Section 4 we charactsZ. ~r;ze P-separators in severai 
ways. For the proof, a technique used by Tarjan 1241 is further developed; instead 
of a given nondecomposable graph G, a closely related decomposable graph G* 

(see (3.8)) is investigated. 
Tarjan’s algorithm [24] to decompose a graph G = (V, E) recursively into 

prime subgraphs consists of two steps: 

Step 1: Derive a minimal decomposable graph G, = (V, E U En). 

Step 2: Apply a ‘decompositiorz step’ (involving G and G,) to all vertices in V. 
We shall show in Section 5 that this algorithm can be modified to decompose a 

graph into its mp-subgraphs. The modification is as follows: In Step 2, the 
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decomposition step is only applied to certain vertices u E V which have been 
(simply) marked in Step 1. The rest of the algorithm remains the same. 

2. Orderings of maximal prime subgraphs 

Assume that a reducible graph G is decomposed by some decomposition 
(A, C, B) into subgraphs G’ = G(A U C) and G”= G(B U C) and that G’ and G” 
are decomposed further until all derived subgraphs are prime. A system of prime 
subgraphs of G which can be derived in that way, will be called a derived system 

for short. The elements of derived systems were called atoms by Tarjan [24] and 
components by; Whittaker [28], who derived results similar to those in [27, 141 for 
components of statistical model formulae. 

Every derived system of a graph G contains the mp-subgraphs of G (see (2.2)) 
and it follows from Corollary 2.7 below that the system of mp-subgraphs of G 
always is a derived system. Hence it is the unique minimal derived system. The 
derived system is minimal if and only if all decompositions used are P- 
decompositions (see (2.2)). 

The following lemma contains some useful relations between (maximal) prime 

subgraphs and decompositions. 

Lemma 2.1. Let G be a reducible graph and let (A, C, B) be a decomposition of 

G. 

(i) !f G(U) is an (m)p-subgr aph of G, then UcAUC or UEBUC and 

G(V) is an (m)p-subgraph of G(A U C) or G(B U C), respectively. 

(ii) Every mp-subgraph G(U) of G(A U C) or G(B U C) with U f C is an 

mp-subgraph of G. 

(iii) If G(Q) and G(Q) are diflerent mp-subgraphs of G, then U, n U, is a 

ckoue. . 

Proof. (i)AssumethatAnU#0andBnU#O_Then(AnU,Ci7U,Bnli)is 
a decomposition of G(U) which contradicts G(U) prime. The second part of (i) is 
obvious. 

(ii) Let G(U) be an mp-subgraph of G(A U C) with U f C (and similarly for 
G(B U C)). We cannot have U c C since G(C) is prime, hence U n A # 0. There 
is an mp-subgraph G(X) of G with c/ E X, i.e. X n A # 0. It follows from part (i) 
of the lemma that G(X) is an mp-subgraph of G(A U C), hence U = X. 

(iii) U:= U, U Cl*. G(lI) is reducible since G(U,) and G(U,) are different 
mp-subgr&phs of G. Let (A’, C’, B’) be a decomposition of G(U). Then G(U,) 
and G(&) are also maximal prime subgraphs of G( Cl) and part (i) of the lemma 
implies U, c A’ U C’ and Uz E B’ U C’ or vice-versa. Mence U, n & c C’ which is 
a clique by definition. 0 



Optimal decotnposition 103 

kg. la. The graph G‘ of Example 1. 

The following example will be used throughout in this paper. 

Example 1. Let G = (V, E) be the graph shown in Fig. la, i.e. V = { 1,2,3,4,5} 
and E= {{1,3}, {1,4}, {2,3}, {3,4}, {4,5}}. The mp-subgraphs of G are the 
graphs Gi := G(V), i=l,2,3, with V,:={1,3,4}, V,:={2,3} and VA:={4,5}. 

Fig. lb shows a successive decomposition of G into its mp-subgraphs, i.e. into the 
minimal derived system. First G is decomposed by the triple ({ 1,2,3}, {4}, (5)) 
into G({1,2, 3, 4)) and G((4, 5)) = GJ. In a second step G({l, 2,3,4}) is 
decomposed by ({‘;,4), (3) {2)) into .G, and G,_ Roth decompositions are 
P-decompositions since G, and G2 are the mp-subgraphs of G( { 1,2,3,4}). 

Alternatively, the graph G may successively be decomposed as follows: 
l decompose G by (A,, C,, B,):=({2, 5}, (3, 4}, (1)) into G’:= 

G((2, 3,4, 5)) and the prime graph G1 = G( ( 1, 3.4}), 
l decompose G ‘:=({2,3,4, 5)) by (&, G!, &):=({4,5}, {3}, (2)) into 

G”:=G({3, 4, 5)) and the prime graph G2= G(<2, 3}), 
l decompose G” := G({3,4,5}) by (&, G, &):=({3}, {4}, (5)) into the 

prime graphs G({3,4}) and G3 = G({4,5)). 
This decomposition sequence decomposes the graph G into its mp-subgraphs 

G1, G2, and GJ and the additional prime subgraph C( {3,4}) which is a subgraph 
of G1. The graph G((3, 4)) is an mp-subgraph of cr but not of G. Hence, the 

({ 1 ,WWW) 

G (14951) 

({1,4hW2H 

G1 = G ({1,3,41) G2 = G ({f&W 

Fig. lb. Successive decomposition of C; into its maximal prime subgraphs. 
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2 3 4 5 

Fig. 2. The graph G of Example 2. 

decomposition (A, , Cii B!) of G into G’ := G((2, 3,4, 5)) and G1 = G({ 1, 3,4}) 

is not a P-decomposition. 

In the example above all mp-subgraphs of G are cliques. Graphs with this 

property will be further investigated in Section 3 below. 

Example 2. Replacing the clique G( { 1.3.4)) in the graph G of Example 1 by a 

chordless 4-cycle with vertices { 1,3,4,6} we get the graph G- shown in Fig. 2. 

The :np-subgraphs of G- are the cliques G-((2.3)) and G-({4,5}) and the 

chordless 4-cycle G-( { 1, 3, 4, 6)) which is not a clique of course. All results 

derived for G in this section hold for G _ as well if vertex 6 is added to sets 

containing vertex 1. Therefore further details are omitted. 
It follows from the lemma that a decomposition (A, C, B) is a P-decomposition 

if and only if G(C) is not an mp-subgraph of any of the graphs G(A U C) and 

G(B U C). Lemma 2.1(i) also implies that every derived system of a graph G 

contains at least the mp-subgraphs of G. 

If a graph G is recursively decomposed by P-decompositions, then it follows 

from the definition of P-decompositions that the resulting derived system consists 

of the pairwisc different mp-subgraphs of G. Conversely, assume that a 

decomposition (A, C, B) of G into G’ = G(A U C) and G”= G(B U C) (or 

similarly any subsequent decomposition) is not a P-decomposition, i.e. G(C) is an 

mp-subgraph of G’ or G” but not of G (or G(C) is an mp-subgraph of G’ and 

G”). According to Lemma 2.1(i) G(C) is contained in the derived system (or 

occurs twice in the derived system). Hence we can summarize the following. 

(2.2) A deriued system of a graph C’ l M: w the tnp-subgmphs of G; it cotltaitzs 

exactly these subgruphs (and is :> :t- -5 :. e ntitknal) if aud only if ail decompositions 

itwolued are P-decompositkw- 

We are now going to dcL:lrne a D-ordered sequence of sets which is a central 

notion in this section. The letter ‘D’ stands for decomposition (see Corollary 2.7) 

or for decomposable graph (see Theorem 3.3). Let V,, . . . , V, be a sequence of 

sets, e.g. subsets of the vertex set of 2 given graph. For t = !, . . . , T define 

R,:=V;rl(V,lJ--- U V,_, j, ik Xi Of ClCiTiCfitS of I/ ‘, contained in the remaining 

sequence VI, . . . , &-l, and S,:=V\R,, the set of elements specific for V, w.r.t. 

v,,.... V, (especially R, = 0 and S, = V,), i.e. the sequence V,, . . . , V, is scanned 

from right to left for this definition. 
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Below, the symbols R, and St will always have this meaning. The collection of 
setsR,, . . . , RT is called the R-system of VI, . . . , Vr. The order of the sets in the 
R-system shall not be fixed. 

Definition 2.3. The sequence V, , . . . , I’$ is said to be D-ordered, if for all 
t-2,..., T there is a p <t with R, c VP. 

The sequence V,, . . . , Vr is also said to have the running intersection property 

([2, 3]), if it satisfies the above condition. 

Example tr (cont.). Consider the sequence of sets V, , V2, V3 defined above, i.e. 
the sequence 

(1, 3,4}, (2, 3}, (4,s). 

Then R, =0, RZ= {3}, and R3 = (4). This sequence is D-ordered since R2 c V, 

and R3 c V, . The sets S, = { 1, 3,4}, S2 = (2)) and SJ = (5) are non-empty, 
pairwise disjoint and they define a partition of V = V, U V2 U v3 = { 1, . . . , 5). 

Now consider the sequence V2, VJ, V, , i.e. 

{2,3), (4, q, {1,3,4}. 

Then RI = R2 = 0 and R3 = {3,4}. This sequence is not D-ordered since { 3,4} $ 
{2,3} and { 3,4} $ {4,5}. Similarly the sequence y3, V,, V, is not D-ordered as 
well. 

Cn the other hand the sequences V,, V,, V, and r/s, V, : y3 and yJ, V, , V, are 
D-ordered and they all have the same R-system as V, , V,, Vi, i.e. the 
corresponding sets R, , R2, and RJ are permutations of the sets 0, (3)) and (4). 
Note that there are D-orderings with VI, V’ and yJ, respectively, as the first set. 
These properties generalize (see Proposition 2.4(ii) and (iii)). 

The following proposition summarizes some useful properties of D-ordered 

sets. 

Proposition 2.4. Let V1, . . . , VT be a D-ordered sequence of sets. 

(i) Let t, 1 d t s T, be Jixed. If there is an s Z t, s minimal, such that V, c V,, 

then : 

(i.1) VI, . . . , V,-,, V,+,, . . . , VT is D-ordered ifs <t; 

(i-2) V,, . . . , VI_,, V,, I(+,, . . . , K-,, &+,, . . . , V, is D-ordered ifs >t. 

(ii) Every p ermutation of V,, . . . , VT which is also D-ordered, has the same 

R-system. 

(iii) For every tE{l,..., T) there is a permutation o: (1, . . . , T} --j 

(1, - - - 9 T} with a(l) = t such that V(v(,I, . . . , Vcr(?., is D-ordered. 

Proof: (i) (i.1) is obvious. (i.2) The minimality of s and the D-crdering of 
V, , . . . , Vr imply (V’,\ v) fl 4 = 0 for i <s. (i.2) follows directly from this 

property. 
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(ii) The proof is by induction on T. The case T = 1 is trivial. For the general 

caseT32let VI,..., Vr be D-ordered and let Va(I), . . . , V,,,, be a D-ordered 

permutation of that sequence. Define R,:=V,n(V,U-UV,_,) for I= 

1 --, T, V:= Va(Tl, R:= VO(Tj n (Va(,, U l - - U Vtr(T-l)), and S:= V\R. Let 

t Ii a(T) denote the position of V in V,, . . . , VT. SnK,=0forq#tand there is 

a p # t, p minimal, such that R c VP. We have to distinguish two cases. 
Case 1: pet. 

Then we have 

with R,= R. The subsequence V!. . . . , V,__, , V, , , , . . . p vT is D-ordered and 
V o(l)* - - - * Vo(T_Il is a D-ordered permutation of this subsequence. The R- 
systems of the subsequences are the same as for the full sequences, except that 
the set R is omitted once, and they are identical by the induction hypothesis. 
Hence the R-systems of the full sequences are also identical in this case. 

Ca.be 2: p > t. 

Defining W : = VP \ R we get 

v,, - - - . t:(=R US), . . . , V,(=R u W), . . . , VT-, 

where t’/ n S = 0 and R c R,,. Using the minimality of p and the D-ordering of 
Vi, - - - ) VT we get RP = R. Interchanging V, and l$ in V,, . . . , V, does not violate 
the D-ordering of the sequence and its does not affect the R-system of the 
sequence. But then we are m Case 1 and the proof of (ii) is completed. 

(iii) We can assume without loss of generality I = T, since otherwise we can 
consider the subsequence V,, . . . , V, first and define a(s) : = s for s > 1. So assume 
that r= 7’. The proof is by induction on 7’. The case T = 1 is trivial. Let 

v,,..., V7 be D-ordered for some T 3 2. There is a p < T such that R7. G VP. 
Using the induction hypothesis there is a permutation 0’ : { 1, . _ . , T - I) * 

(1,. . . , T- l} with a’( 1) = p such that V,., ,), . . . , Vr7ttT-lj is D-ordered. 
Defining a( 1) := T and a(s) := a’(s - 1) for s > 1 we get the desired 
permutation 1 0 

In Example 1 we considered a graph G with mp-subgraphs G(V,), - . . , G(V-,), 
T = 3. -We have seen that for every t E { 1, . . . , T} there is a D-ordering of the 
sets i’ ‘1, - * - 9 V, containing V, as the first set in the sequence. Theorem 2.5 shows 
that this property generalizes. 

Theorem 2.5. For every mp-subgraph G(U) of G, there is UH ordering of the 

different mp-subgraphs G(V,), . . . , GrV,) of G, such that: 

(i) &, . . . , V,- is D-ordered and 

(ii) V, = U. 



Optimal ciecotnposi;iott 107 

Part (i) of the theorem is almost equivalent to the existence of a so-called reduced 
simplicial decomposition of a graph, proved by Wagner and Halin [27], while the 
property of a simplicial decomposition corresponding to (ii) was stated in [ 111. 
Our proof of Theorem 2.5 copies a proof of Haberman ([13], Lemma 5.10; see 
also Theorem 3 in Andersen [ 11) and we think that the proof given here is more 
direct than that in [27]. Haberman proved what we might call the existence of a 
D-ordering of the maximal cliques (hyperedges) of a decomposable (hyper-)graph 
(see Theorem 3.3 and 3.6 of the following section). It is surprising that 
Haberman’s proof works exactly the same way for the mp-subgraphs of an 
arbitrary graph. 

Proof of Theorem 2.5. The existence of a D-ordering is proved by in&;ction on 
fz = IVl. Then the existence of a D-ordering satisfying (ii) follows from Proposi- 
tion 2.4(iii). The case n = 1 is trivial. Let G = (V, E) with n 2 2 and assume that 
the theorem is true for all graphs with less than I! vertices. If G is prime, there is 
nothing to prove. Otherwise let (A, Cy B j be a decomposition of G. By the 
induction hypothesis there is a D-ordering A,, . . . , A, of the vertex sets of the 
mp-subgraphs of G(A U C). Using Proposition 2.4(iii), there is also a D-ordering 

B,,..., BI, of the vertex sets of the mp-subgraphs of G(B U C) with C E B,, 
since G(C) is prime. It is easy to see that the joint sequence 

A,, . . . , A,, B,, . . . , 4, (2.6) 

is also D-ordered. If (A, C, B) is a P-decomposition, then (2.6) is the desired 
D-ordering. Otht, . . __ -*lrric;e G(C) is an mp-subgraph of G(A U C) or/and G(B U C), 
i.e.: 

((x) C occurs exactly once in the sequence (2.6j and it is strictly contained in . 

another set of the sequence or 
(p) C occurs exactly twice in the sequence (2.6). 

In both cases, we get the desired sequence after omitting C once in the sequence 

(2.6) according to Proposition 2.4(i). q 

0~oI!zry 2.7. (i) If V, , . . . , VT are the D-ordered vertex sets of the mp-subgraphs 

of a reducible graph, then 

(A, C, B):z(~~’ V,\RT, RT, ST) 
I=1 

is a P-decomposition of G into 

G’ = G(A U C) = G(;; &) 

and the prime graph G”=G(B UC)= G(VT). G(V,), . . . , G(Vr_,) are the 
mp-subgraphs of G’ and the sequence V,, . . . , VT_, is D-ordered. 



108 H.-G. Leimer 

(ii) If there exists a decomposition for G, then there also exists a P- 

decomposition for G. 

Proof. (ii) follows directly from (i). (i) C = RT is a clique by Lemma 2.1 (iii). 
Using Lemma 2.1(i), (ii) it remains to show that (A, C, B) is a decomposition of 
G and that G(C) is not an mp-subgraph of G ’ : I$ $ y for i # j implies A # 0 and 
B # 0. If {b, v) E E for some b E B, v E V\ B, then there is an mp-subgraph 
G(U) of G with {b, v} E U, and we have U = V-r = B U C by the definition of B, 
hence u E C. This shows that (A, C, B) is a decomposition of G. Furthermore, 
C = RT c VP for some p < T, hence G(C) is not maximal prime w.r.t. G’. Cl 

Corollary 2.7(i) can be applied recursively: Since the sequence V, , . . . , VT-., is 
D-ordered, G ’ can be decomposed in the same way as G (if T > 2) and so on, 
until finally G( V, U Vz) is decomposed into G( V,) and G( V2). The desired system 
then consists of exactly one copy of each of the mp-subgraphs of G. Hence, 

with every D-ordering of the vertex sets of the mp-subgraphs of a graph 
associated a recursive decomposition of G into its mp-subgraphs. 

G there is 

In Example 1 the sequence V,, V,, V3, i.e. the sequence { 1,3,4}, {2,3}, (4,s)) 
is a D-ordering of the vertex sets of the mp-subgraphs of G. The recursive 
decomposition of G into its mp-subgraphs shown in Fig. lb corresponds to that 
sequence: G is first decomposed by ((VI U Vz)\R3, R3, S3) = ((1, 2, 3}, {4}, (5)) 
into G( { 1,2,3,4}) = G( V, U V2) and the prime graph G( (4, 5)) = G( V& The 
graphs G( VI) and G(V2) are the mp-subgraphs of G( V, U K) and the sequence 
VI, Vz is D-ordered with R2 = { 1,3,4} n {2,3} = (3) and Sz = (2). According to 
Corollary 2.7(i) (V,\R,, R2, &) = ((1, 4}, {3}, (2)) is a P-decomposition of 
G(V, U IQ into G( V,) and G( VJ 

The algorithm described in Section 5 which decomposes a graph into its 
mp-subgraphs , generates a D-ordering of the vertex sets of these subgraphs as 
well. 

Generalizing a notation used in [15] and [26] we define the following. 

Definition 2.8. An mp-subgraph G(U) of a reducible graph G is called extremal, 
if there is an mp-subgraph G( U*) with U* # U, such that for every mp-subgraph 
G(V) with U’ f Uwehave U’nUcU*nU. 

In the graph shown in Fig. la there are two extremal mp-subgraphs, namely 
Gz = G((2, 3)) and G3 = G( (4, 5)) while G, = G( { 1, 3,4}) is not extremal. 

Corollary 2.9. For every reducible graph G there exist at least two extremal 
mp-subgraphs. 

Proof, Let v,, . . . , Vr be a D-ordering of the vertex sets of the mp-subgraphs of 
G, then T > 1 and G(Vr) is extremal (see Theorem 2.5). There also exists a 
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permutation o such that VacIl, . . . , VafTj is D-ordered and a( 1) = T, hence 
a(T) f T. Then G( Vt,c7.,) is an extremal mp-subgraph of G which is different 
from G(V,). Cl 

Corollary 2.9 generalizes Dirac’s result [lo] that for every rigid circuit graph, 
there exist at least two non-adjacent simplicial vizrtices (see Proposition 3.5.). It 
also generalizes a related result for hypergraphs (see fl5] and [26]) that for every 
decomposable hypergraph there exist at least two extremal hyperedges (see 
Corollary 3.7). 

The following Theorem 2.10 reverses the result of Theorem 2.5. It is equivalent 
to the uniqueness of a simplicial decomposition proved in [27]. Assunic that 

G, = (V,, E,), . . . , CT = (VT, ET) are prime graphs with the following nropertics; 
(CY) v$yfori#j, i,i=l,..., T; 
(p j K fl l$ is a clique of Gi and Gj for i # j, i, j = 1, . . . , T; 
(y) there is a D-ordering of the sets V,, . . . , V,. 

Define 

G:=lj G,:=(lj v,, ,II;, E,) 
r=l r=l 

as the union of the G,‘s. 

Theorem 2.10. C, , . . . 

Proof. The proof is by 
satisfy (a)-(y), assume 

G:=G G,, 
1=l 

, CT are the different mp-subgraphs of G. 

induction on T. The case T = 1 is trivial. Let G,, . . . , CT 
!,i , . . . , V, is D-ordered, and 

T-i 

A:= U V,\RT, B:=&, and C:=RT, 
r=l 

where RT and ST are defined as usual. (p) implies RT is a clique. As in the above 
proof of Corollary 2.7(i) (A, C, B) is a decomposition for G. (p) implies 
G(AUC)=GIu-- U CT-1 and G(B U C) = CT. Using the induction hypothesis 
G,=G(V,), t=l,..., T - 1, and CT are the mp-subgraphs of G(A U C) and 

G(B U C), respectively. It follows from Lemma 2.1(i) and (ii) that they are the 
mp-subgraphs of G, since V, # C for all c = 1, . . . , T. Cl 

Note that the conditions (a)-(y) are also necessary for Theorem 2.10 by 
Lemma 2.I(iii) and Theorem 2.5. In Theorem 3.6 we shall derive a well-known 
characterization of decomposable hypergraphs as a simple special case of 
Theorem 2.10. 

Remark 2.11. Let S be a set of arbitrary graphs and 

S* := 
{ 

6 G,: T E N, G, E S for all t and G, , . . 
r=l 

. , CT satisfy (U)-(Y)}. 

Then (S*)* = S. The proof of this relation is similar to the proof of Theorem 2.5. 
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3. Decomposable graphs and hypergraphs 

In this section we are going to define decc:r?Fdsable (hyper-)graphs and to 
summarize some of their properties. We also show that for every graph G with 
mp-subgraphs G(V,), . . . , G(V,), there is a decomposable graph G*, such that 

VI, - . - , VT are the maximal cliques of G*. These properties will be important for 
the following sections. 

Following [15] a graph G is called decomposable if and only if G i3 a clique or 
there exists a decomposition (A, C, B) of G into decomposable subgraphs 
G(A U C) and G(B U C). This recursive definition makes sense, since the number 
of vertices in A U C and B U C is less than in V. Dirac [lo] has shown that a graph 
G is decomposable in the above sense if and only if G contains no chordless 
n-cycle for n 3 4. Graphs with this property are called triangulated, r@$d circuit, 
or chordal graphs. 

We need some more notation for a graph G = (V, E): 

Adj,(U):= {w E V\U: there is an u E U with {u, w} E E} 

is called the adjacency set of U c V w.r.t. G. We write Adj,(u) for skrort if 
U = {v} and omit the index G if there is no confusion possible. A vertex v E V is 
called simplicial if Adj(v) is a clique. 

Amapn:V+{l,..., n} is called a numbering of the vertices. n is perfect for 
G if the monotone adjacency sets MAdj(v):=Adj(v) n (w: n(w) > X(V)} are 
cliques for all v E V. The numberings of the vertices of a graph characterized in 
the following definition are important for the remaining sections, especially for 
the algorithm described in Section 5. 

Definition 3.1. A numbering x of the vertices of a graph G is called a 
D-numbering if there is a D-ordering C,, . . . , CT of the maximal cliques of G 
such that 

n(S,) = {n, n - 1, . . . , n - IS,1 + l}, . . . , 3r(ST) = {I&-I, . . . , 2, l}, 

where SI = C,\(C, U - - - U C+,) as usual. 
It would be more natural and often more convenient to require n(S,) = 

(1, - - - , I&I} etc., but we would then have to reverse the inequality in the 
definition of a perfect numbering (such a numbering is called reducible by some 
authors) to get (3.2). We have not done so in consideration of [23] and [24], since 
we use their results in the following sections. With the above definition we get the 
following. 

(3.2) Every D-numbering is per$ect. 

This follows since for every v E V, we have v E S, for some (unique) I and 
MAdj(v) c V,. The following example shows that the converse of (3.2) is not 
true. 
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Example 1 (cont.). Again we consider the graph G shown in Fig. la. The graph 
G is decomposable since G can successively be decomposed into cliques (see Fig. 

lb). 

The sequence ( 1,3,4}, { 2,3}, { 4,s) is a D-ordering of the maximal cliques of 
G with S, = { 1, 3,4}, SL = (2) and SJ = (5). A corresponding D-numbering is 
defined by n(l) = 5, n(3) = 3, n(4) = 4, n(2) = 2, and n(5) = 1. It follows from 
(3.2) that this numbering is perfect for G. 

Now consider the numbering defined by the identity map id: V* V and the 
corresponding monotone adjacency sets: 

MAdj( 1) = { 3,4} fl{2,3,4,5) = {3,4} 

MAdj(2) = (3) n {3,4,5) = (3) 

MAdj(3)= {1,2,4} n {4,5} = (41 

MAdj(4)= {1,3,5} n (5) = 151 

MAdj(5) = (4) n 0 = 0 

Hence n = id is another perfect numbering for G but this is not a D-numbering. 
Hence the converse of (3.2) is not true. To see that the identity map is not a 
D-numbering note that for every D-ordering of the maximal cliques of G we get 
S3 = (2) or S3 = (5). This implies that either vertex 2 or vertex 5 is numbered as 1 
by a D-numbering but not vertex 1. 

If Ed is a D-numbering of the vertices of a graph G, then the D-ordering 

Cl,..., CT of the maximal cliques of G in Definition 3.1 is unique (it will be 
called the D-ordering associated with n): If n is a D-numbering and n(w) = 
X(V) + 1, then r~ and w are contained in a joint set S, if and only if 
MAdj(v) = MAdj(w) U {w}. Hence the partition of V = S1 U - - - U ST is deter- 
mined by n. Furthermore C, = MAdj(s,) U {s,}, if s_, E S, satisfies n(s,) = 
min{jt(s): s E St}. This proves the uniqueness of the D-ordering associated with 

Jr. 

Theorem 3.3. The following properties are equivalent: 

(9 
(ii) 

(iii) 

(iv) 

The 

G is decomposable; 
every mp-subgraph of G is a clique; 
there is a D-ordering C, , . . . , CT of the maximal cliques of G; 
there is a perfect numbering 31: of the vertices of G. 

equivalence of (i)-(iv) is more or lesss standard, see e.g. [lo, 12, 15, 17- 
19,22-24,2P] for th ese and other characterizations. The implications (i) + (ii) 

and (iv) 3 (i) can be proved by a simple induction on n = 1 VI, (iii) + (iv) follows 
from (3.2) and (ii) 3 (iii) is now an immediate consequence of the general result 
in Theorem 2.5 concerning mp-subgraphs of an arbitrary graph. Using Proposi- 

tion 2.4(iii), (3.2) and Theorem 3.3 we also get: 



(3.4 If G is decomposable, then every maximal clique C cau be chosen as C, for 

(a D-ordering C, , . . . , C7. of the mnrimal cliques of G arld there is a perfect 

(D-)mtmbering n: with rt(C) = {n. n - 1, . . . , n - lC( + 1). 

Finally we derive an important property of decomposable graphs from the general 
results of the previous section. Proposition 3.5 was first proved in [IO]. see also 

PI- 

Proposition 3.5. lf G is decomposable and not a clique, then there exist at least 

two non-adjacent simpliciab vertices of G. 

Proof. Usmg Corollary 2.9 and Theorem 3.3 we get: G is reducible since G is not 
a clique, there exist at least two different extremal mp-subgraphs G(U,) and 
G( CL) of G. U, and Ur are cliques, UI \ Ur # 0, and U,\ U, # 0. Then any two 
vertices v E C, \ U_ and w E Uz\ U, are simplicial and non-adjacent. Cl 

The simplicial vertices of the graph G shown in Fig. la are the vertices 1,2 and 

5. They are pairwise non-adjacent. 

A hypergraph H is a pair H = (V, {V,, . . . , VT}), where V is a (here finite) set 

of vertices and V,, . . . , V, are subsets of V, called the edges or hyperedges of H. 

H is reduced if & $ t$ for i f j. For convenience we consider only reduced 

tjpergraphs, but the following results do not depend on this restriction since 

subsets in a D-ordering can always be eliminated using Proposition 2.4(i). 

The graph G(H):=(V, E(H)) is called the (2-section) graph of the hypergra_ph 

H=(V,{V ,,...r VT}). where an edge {e, f } belongs to E(H) if and only if e #f 

and {e, f} G V, for some t. Note that G(H) = G, U - - . U CT, where G, is the 

clique graph with vertex set V,. H = (V, {V,, . . . , VT}) is conformal, if 
v,, . . . , VT are the maximal cliques of G(H). A hyperedge C< E {V,, _ . . , VT} is 

called extremal, if there is ;i hyperedge V* f & such that every hyperedge V’ # V, 

vre have V’n V, c V* n &. 

Theorem 3.6. For a hypergraoh H = (V, { V, , . . . , V, > ) the followirzg properties 

are equivalent: 

(i) There is a D-ordering of the sets V,, . . . , I/T; 

(ii) H is a conformal hypergraph and G(H) is a decomposable graph. 

H is said to be a decomposable hypergruph. if it satisfies the above properties 
(i). (ii). This definition is equivalent to the recursive definition given in [15] (see 
their Theorem 1). The equivalence of (i) and (ii), together with some ten other 
CharacterLations (e.g. H is acyclic) can be found in (31, see also [2]. But Theorem 
3.6 is also a special case of Theorem 2.10: If (i) is satisfied, then the clique graphs 

G,, - - -. CT are the mp-subgraphs of G(H) = G, U - - - U CT by Theorem 2.10. 
Hence V,,..., V, are the maximal cliques of G(H) and G(H) is decomposable 



tj* Theorem 3.3. The implication (ii) 3 (i) follows from the definition of a 
conformal hypergraph and Theorem 3.3. 

We get the following corollary (see also [ 151 and 1261): 

Corollary 3.7. If H = (V, { V, , . . . , VI.)) is a decomposable hypergraph and 
T > 1, then there exist at least two eA trema hyperedges of H. 

Proof. Using Theorem 3.6 we can assume that V,, . . . , V, is D-ordered. 
Prcposi?i*?n 2.4(iii) implies the existence of a permutation CJ with a( 1) = T, i.e. 
a(T)#T, such &hat Vo,,), . . . , ?/trcTI is D-ordered. Then VT and VncTl are two 
different extremal hyperedges of H. Cl 

Theorems 2.5 and 3.6 nave a useful corol!ary: Let G(V,), . . . , G(Vr) be the 
mp-subgraphs of a graph G = (V, E) and H : = (V, { V, , . . . , VT;). Then: 

(3.8) G*:= ( V, E *) : = G(H) is a decomposable graph and V, , . . . , VT are the 
maximal cliques of G *. 

G* = (V, E*) may be constructed from G = (V, E) by adding all edges 
{e, f} $ E with eff and {e, f} c V, for some t; especially E r= L*. 

Decomposable graphs are usually mlich easier to investigate than arbitrary 
graphs. Especially the existence of a perfect numbering of the vertices of a 
decomposable graph (see Theorem 3.3) is essential for many algorithms (see e.g. 
[24, 25]). A s f ar as clique separators of a graph G are concerned, the following 
lemma allows to investigate the (simpler) decomposable graph G* of (3.8) instead 
of G. This technique is illustrated in the following two sections. 

Lemma 3.9. Let G, G* be as in (3.8) and let C be a clique, of G. Then : 
C is a (P-)separator for G = (V, E) if and only if 
C is a (P-)separator for G* = (V, E*). 

Proof. If C is a separator for G, there is a decomposition (A, C, B) for G. 
Assume {a, b} is an edge of G* for some a E A and b E B. Then there is a 
maximal clique V, of G* containing a and 6, but G(V,) is an mp-subgraph of G 
which contradicts Lemma 2.1(i). This proves that every separator for G is also a 

separator for G*. The converse is trivial since E s E*. The equivalence for 
P-decompositions is also obvious, since the vertex sets of the mp-subgraphs of G 
and G * are identical. Cl 

Example 2 (cont.). To simplify notation let us now denote the graph shown in 
Fig. 2 by G instead of GA-. The mp-subgraphs of G are the cliques G({ 2, 3)) and 
G((4, 5)) and the chordless 4-cycle G( { 1, 3, 4, 6}). The graph G* is derived from 
G by adding the chords of the 4-cycle, i.e. the edges { 1,4} and { 3,6}. The 



maximal cliques of G* are { i, 3,4,6}, {2,3}, and (4,s) and this sequence is 

D-ordered. Hence G* is decomposable (Theorem 3.3(iii)) as asserted in (3.8). 

The sets (3) and (4) are P-separators for G and G*, while e.g. {3,4} or { 1,3} 
are separators but not P-separators for G and G*. The set C = ( 1,3, 6) is a 
separator for G* but not for G. Since C is not a clique of G this does not 
contradict Lemma 3.9. 

The above Lemma 3.9 remains true if G* = (V, E*) is replaced by any other 
graph G’ = (V. E U F) with F c E*\ E, while it becomes false for every F $ E*\ 

E. Especially every minimal fill-in graph Gn = (V, E U Fn) for G (see Section 5) 
satisfies I$ c E*\ E. These considerations generalize Lemma 1 of [24] (see also 
Lemma S.l(ii) below). 

4. Characterizations of P-separators 

P-separators are characterized in several ways in this section. The equivalence 
of the characterizations (iii) and (iv) in Theorem 4.1 is essential for the 
correctness of the algorithm described in the following section. 

Similar as in [27], a clique separator C s V is called admissible for G = (V, E) if 
there are at least two different connected components X and Y of G(V \C) with 
Adj(_X) = C = Adj( Y). C s V is a minimal separator for v, w E V, if C, but no 
proper subset of C, separates {v} and (w} in G. C is a relative minimal separator 

for G, if there are vertices u, w E V such that C is a minimal separator for ‘L! and 
W. 

Let G = (C’, E) be a graph with the mp-subgraphs G( V,), . . . , G( VT). We may 
assume (Theorem 2.5) that the sequence V, , . . . , VT is D-ordered and R, := V, n 

(V,U--- U V,_,) as usual. Note that the R-system of V,, . . . , VT is the same for 
every D-ordered permutation of this sequence (see Proposition 2.4(ii)). 

Theorem 4.1. The following properties are equivalent ior C E V: 

(i) C is a clique and a relative minimal separator for G; 

(ii) C is an admissible separator for G; 

(iii) C is a P-separator for G; 

(iv) C E {R,, . _ . , RT). 

Proof. We show (ij + (ii) 3 (iii) 3 (iv) 3 (i). 
(i) 3 (ii): is obvious. 
(ii) 3 (iii): Assume first that G is decomposable. Let X, Y be two different 

connected components of G(V\C) with Adj(X) = C = Adj(Y) and let (A, C, B) 

be a decomposition of G with X E A and Y E B. To show that (A, C, B) is a 
P-decomposition of G it is sufficient to prove (see Lemma 2.l(ii) and Theorem 
M(ii)) that C is not a maximal clique of G(X U C) or G( Y U C). 
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C(X UC) (and similarly G(Y U C)) is decomposable and C is a clique, hence 
(see (3.4)) the re is a perfect numbering Ed of the vertices of G(X U C) with 
n(C) = {k, k - 1,. . . , k - ICI + l}, where k:= IX U Cl. Let x be the vertex with 
n(x) = k - ICI. The facts that G(X) is connected, z is perfect for G(X U C), and 
Adj(X) = C imply C s Adj(x) (see also [22], Theorem 3, or [24], Proof of Lemma 
2) and hence C U {x} is a clique. This proves (ii) Zs (iii), if G is decomposable. 

If C is an admissible separator for an arbitrary graph G then C is a separator 
for the decomposable Graph G”, defined in (3.8) (see Lemma 3.9) and C is 
admissible w.r.t. G* too, since G G G*. Hence C is a P-separator for G*, as we 
have just proved. This implies that C is also a P-separator for G (Lemma 3.9). 

(Note that we could have also used (3.1) of [ 141 which is proved in a different 

manner.) 
(iii) +(iv): Let (A, C, B) be a P-decomposition of G, G(A,), . . . , G(A,) and 

G(&), . . . , G(B,) the mp-subgraphs of G(A U C) and G(B U C), respectively, 
and assume that A,, . . . , A, and B,, . . . , Bh are D-ordered with Cc B, (see 
Theorem 2.5). Since (A, C, B) is a P-decomposition A 1, . . . , A,, B, , . . . , Bh are 
the vertex sets of the mp-subgraphs of G and this sequence is obviously 
D-ordered with B, fl (A, U - - - U A,) = C, hence R,+i = C for this D-ordering. 
Using Proposition 2.4(ii) we get the desired result. 

(iv)*(i); Let V,, . . . , VT be the D-ordered vertex sets of the mp-subgraphs of 
G and C = R, for some I 3 2. There is a p < c with R, = VP n V, and R, is a clique 
by Lemma 2.l(iii). Let A c V denote the connected component of G(V\C) 
containing V,\ C and B : = V \(A U C). It follows by an induction on T - t that 

(V,\C)U* - U(V,_,\C) s B, similar as (1.1) in [14]. So (A, C, B) is a decom- 
position of G and it is also a P-decomposition by Lemma 2.1(i) and (ii), since 
C c VP s B U C and C c V, E A U C. Hence we have shown the following. 

(4.2) (A C B) is a P-decomposition of G with I&\ v, \C E: B, V, \ C E A, and 
C = R,. 

G(V,), G( Vt) are prime and C a clique, hence VP \ C, V, \ C are connected and 
C s Adj(V, \C), C c Adj(V,\C). Therefore C is a minimal separator for every 
vEV,,\CandwEV,\CandCisaclique. Kl 

Example 1 (cont.). In the graph G of Fig. la every separator C for the vertices 1 
and 5 contains vertex and C = (4) is a separator for these vertices. Hence C = (4) 
is the (unique) minimal separator tor vertices 1 and 5 and it is a relative minimal 
separator for G. The connected components of G( V\ C) = G( { 1,2, 3,5}) are 
X = {l, 2,3} and Y = (5) with Adj(X) = Adj(Y) = (4) = C. 

We have already shown that C = (4) is a P-separator for G (see Fig. lb) and 
that the R-system corresponding to the vertex sets of the mp-subgraphs of G 
consists of @, {3}, and (4). Hence C = (3) satisfies conditions (i)-(iv) of Theorem 
4.1. On the other hand, the set {3,4} e.g. is a separator for G which does not 
satisfy any of these conditions. 
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Theorem 4.1(i) shows that P-separators have a minimality property. In 
contrast, Tarjan [24] considered maximal clique separators. Especially, if G is 
decomposable then no P-separator is a maximal clique separator. 

5. An algorithm for optimal decomposition by clique separators 

We are going to describe an O(nm)-time algorithm to decompose an n-vertex, 
m-edge (m 2 1) graph G optimally, i.e. such that the derived system of prime 
subgraphs consists of exactly one copy of each mp-subgraph of G. It was shown in 
Section 2 that this is the unique minimal derived system. Our algorithm will be a 
modification of an algorithm described by Tarjan [24]. 

The algorithm uses a minimal numbering of the vertices of a graph G = (V, 15): 
for every numbering n of the vertices of G, there is a unique minimal set F, of 
edges, such that JG is a perfect numbering for Gn := (V, E U F,). The graph Gn is 
called the fiff-in graph of IC and GX is decomposable by Theorem 3.3 (see e.g. 
[21,23,24]). Th e numbering n is called minimal, if there is no numbering o with 
F, c l$ and GX is then called a minimal fill-in graph. Our modification of Tarjan’s 
algorithm uses the fact that for every minimal numbering Ed, there exists a 
numbering JC’ with l$ = F,., such that JG’ is a D-numbering (see Definition 3.1 j 
w.r.t. the decomposable graph Gs,, = G,. This follows from Theorem 3.3 and 
(3.2). 

If Ed is a D-numbering w.r.t. GX, then the D-ordering C,, . . . , CT of the 
maximal cliques of G, associated with n is unique (see Section 3). Hence we can 
define F(n):=(f,, . . . , fT), where ft E S, = C,\ (C, U - - - U C,-,) is determined by 
n(A)= max{n(s):s ES~} for f =2,. . . , T. (If the vertices are numbered back- 
wardsasn,n-l,..., 1, then fi is the first vertex of S, which is numbered.) The 
vector F(x) is important for the algorithm below, since MAdj(f,) = R, = C,\S, 
and a set C is P-separator for G, if and only if C E { RZ, . . . , RT} (see Theorem 
4.1). 

Example 2 (cont.). Let G = (V, E) denote the graph shown in Fig. 2 and lei n 
denote the numbering of G defined by n(4) = 6, n(6) = 4, and n(i) = i otherwise. 
Then G, = (V, E U {3,6}), while e.g. Gid = (V, E U { (3, 6}, (5, 6))). Since G 
itself is not decomposable, we get that Ed (but not id) is a minimal numbering for 
G. 

The cliques of GX are {4,5}, {3,4,6}, {2,3}, { 1,3,6}. This sequence is 
D-ordered with S, = (4, S}, S2 = (3, 6}, S3 = { 2)) and S4 = {l} and this is the 
D-ordering associated with n. It follows that F(z) = (f2, f3, fi) = (6, 2, 1) since 
max{ n(s): s E S?} = 4 = n(6). 

Our algorithm to decompose a graph G = (V, E) into i:s mp-subgraphs consists 
of the following two steps. 
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Step 1: Find a minimal numbering n for G such that n is a D-numbering w.r.t. 

Gn, determine the vector F(n) = (h, . . . , fr), and compute C(J) := MAdj&f;) 
for f = 2, . . . , T. 

Srep2: Forr=T, T-l,..., 2 (in that order) apply the following decomposi- 
tion step: 

Decompositiorz step: Let A be the vertex set of the connected component of 

G(V\C(f,)) containing fi and B : = V \(A U C(A)). If C(J) is a clique of G we call 
the decomposition step successful and decompose G into G’ = G(A U C(J)) and 
G” = G(B U C(L)), separated by C(J). Replace G by G”. 

Hence our algorithm is the same as Tarjan’s ([24, pp. 224/225]), except that: 
l we require in Step 1 that Ed is a D-numbering w.r.t. G, and we have to 

determine F(n); 
0 ttze decompositiorz step is applied only for & fr-, , . . . , f2 instead of all 

VEV; 
l the case B = 0 cannot occur in a successful decompositiorz step of our 

algorithm (see the proof of (5.4)). 

Example 2 (cont.). Let G and n as before in this section. We showed that then 

F(x) = (5, J;, h) = (6, 2, I). 

C(h) = MAdj&j) = Adj&6) n { w. n(w) > z(6)) = { 1, 3, 4) n {4,5} = {4}, 

C$) = { 3)) and C(fa) = { 3,6}. Hence T = 4 and Step 2 is carried out in the 
following way: 

t = 4: C($,) = {3,6} is rzot a clique of G. Hence this decomposition step is not 
successful. 

c = 3: C(f;) = (3) is a clique of G and G is decomposed by the triple 
({2}, {3}, {1,4,5,6}) into the (prime) graph G((2, 3)) and G({l, 3,4,5,6)). 

t = 2: CC f2) = (4) is a clique of G ({ 1, 3, 4, 5, 6)) and this graph is decompoT.ed 
by the triple ({ 1,3,6}, {4}, (5)) into the (prime) graphs G({ 1, 3, 4, 6)) and 

G({4* 51). 
Hence G has been decomposed into its mp-subgraphs G((2, 3}), 

G({ 1,3,4,6}), and G({4,5}). 
Rose, Tarjan and Lueker [23] described an O(nm)-time algorithm to find a 

minimal numbering of an n-vertex, m-edge graph. We shall show in the 
Appendix that this algorithm always generates a numbering n which is a 
D-numbering w.r.t. GX, and that it is also easy to derive the vector F(n) = 

(f29 - * . ,fr) with that algorithm. It follows that the total time required for our 
algorithm is O(nm) as for Tarjan’s algorithm. (The algorithms to find a minimal 
numbering described in [20] and [21] do not produce a D-numbering in general.) 

The relations between G and G, listed in the following lemma will be useful in 
the proof of the correctness of our algorithm (Theorem 5.3). 
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Lemma 5.1. Let C be a clique of G and JC a minimal numbering for G. 

(i) The connected components of G( V \ C) and G,( V \ C) are the same. 

(ii) C is a (relative minimal) separator for G if and only if C is a (relative 

minimal) separator for G,. 
(iii) lf (A, C, B) is a P-decomposition of Gn, then (A, C, B) is a P- 

decomposition of G. 

Proof. (i) is just Lemma 1 in [24]. (ii) follows from (i) and from G c G,. (iii) is 
implied by the following property. 

(5.2) If U c V and I/ is a clique 91 G,, then there is an mp-subgraph G(U’) of G 

with U c U’. 

To prove (5.2) let I.,, . . . , V, be a D-ordering of the mp-subgraphs of G. 
There is a t, t minimal, such that U 5 V, U - - - U V,. If t = 1 set U’ := V,. 

Otherwise U c K follows from (4.2) and part (i) of this lemma. Cl 

Note that the inverse implication to that in Lemma S.l(iii) is also true and can 
be proved similarly as Theorem 4.l(ii) I$ (iii). 

Theorem 5.3. The decomposition algorithm consisting of Step 1 and Step 2 
described above is correct, i.e. the algorithm produces a decomposition of a given 

graph G into exactly one copy of each of the mp-subgraphs of G. 

Proof. Let n be a minimal numbering of a graph G = (V, E) which is associated 
with the D-ordering C,, . . . , CT of the maximal cliques of GX with C, = R, U St as 
usual and F(n) = (h, . . . , Jr). Then C(i) = R, for all t 3 2 and R, = 0. Define 

t*:=max{t: 1 s t s T and R, is a clique of G}, 

i.e. t* corresponds to the :Irst successful decomposition step or t* = 1. 
Define C -- .- RIO, A as the connected component of G( V \ C) containing fl-., B := 

V\(AUC), and I,:={t: lst<T and C , c B U C}. Theorem 5.3 is proved by 
showing the following. 

(5.4) The first successful decomposition step is correct, i.e. : If t* = 1, then G is 

prime. Otherwise (A, C, B) is a P-decomposizion of G with G(A U C) prime. 

(5.5) After the first successful decomposition step we have a situation as in the 

beginning, i.e. if t * > 1, then : 

(i) For t E I8 

f-l f-l 

w-wc,=c,n u CT, 
\=I s = 1 . \ E I,, 



i r , _. the purtitiorzs C, = R, U St (artd hertce the J‘s) are the same w.r.t. the 
subsequence (Cr: t E Ilr) as w.r.t. the orig.rzal sequence C,, . . . , CT; 

(ii) (C!: t E lr3) is a D-ordering of thz maximal cliques of G,(B u C); 
(iii) the restrictiorl of n to B U C is rnirzimnl for G(B U C) and a D-rzurnberiug 

w.r.t. G.*(b U C); 
(iv) 1,2,...,!* - 1 E If3 and t * $ I,{. 

Note that (i) implies that we do not have to apply the decomposition step again 
for any t E I,, with t 2 t” (but all t < t”) after the first successful decornpositiorz step 
(for t = P), since the sets R, = C(J) remain the same for t E f,,, t 3 t*, and it was 
already checked before (without success). whether they are cliques. 

To prove (5.4) and (5.5) assume G is reducible. Then there is a clique C which 
is a relative minima1 separating set for G. Lemma 5.l(ii) and Theorem 4.1 
(i) 3 (iv) applied to Gn imply t* 3 2. Hence G is prime if t” = 1. 

Assume t “: 3 2 from now on. The set A is the connected component of 
G( V\C) (by definition) and G=( V \C) (by Lemma 5.1(i)) which contains fr.. 
Applying (4.2) to G, we get: 

l (A, C, B) is a P-decomposition for G,; 
l C ,,... ,C,*_,~BUC~~~C,*EAUC, i.e. 1,2 ,... ,t*-lE!,jandt*$I,. 
(A, C, B) is a P-decomposition for G by Lemma 5.l(iii), especially B # 0. 

Before proving that G(A tJ C) is prime, we note that the remaining parts of (5.5) 
are rather obvious; we omit the details of the proofs. 

Nowlet1,,:={1,2 ,..., T}!m. Then t* E I,, c {t”, t’” + 1, . . . , T} and (C,: t E 

l,,) are the D-ordered maximal cliques of G,(A U C) etc., as in (5.5) for 
G(B u C). It follows from the definition of t” w.r.t. G that t” defined w.r.t. 
G\[I U C) corresponds to the case ‘t* = l’, i.e. G(A U C) is prime, as we have 

shown ai,?ye. Cl 

6. Generalizations 

The results of this paper can be directly generalized to so-called strong 
decompositions of graphs with marked vertices ([lx]). Strong decompositions are 
important e.g. in the context of graphical models for mixtures of discrete and 
continuous random variables ([ 16, 17j), where the two types of vertices (marked 
and unmarked) correspond to discrete and continuous randcn variables, 
respectively. 

Assume that G = (V, E) is a graph with two types of vertices, given by a 
partition V = f U A of the vertex set. A decomposition (A, C, B) of G is called 
strong, if any of the three conditions A c_ r, B c r or C c A holds. G is S-prime, 
if there is no strong decomposition (A, C, B) of G. 

It is possible to show that every graph with two types of vertices can be 
recursively decomposed by strong decompositions into its maximal S-prime 
subgraphs. The algorithm of Section 5 can be modified for this purpose. 
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We are going to show that every minimal numbering n of the vertices of a 

graph G = (V, E) which is generated by the algorithm described in [23] 

(henceforth called the RTL-algorithm), is a D-numbering w.r.t. GJI = (V, E U F,) 

and we shall show how the vector F(n) = (f2, . . , fT) can be determined by the 
RTL-algorithm. A numbering n generated by the RTL-algorithm is called a 
lexicographic numbering. Assume that such a numbering JG is fixed and to simplify 
the notations, assume that the vertices in V are labeled as 1,2, . . . , r2 such that Ed 

is the identity map. 
The RTL-algorithm numbers the vertices in decreasing order from t2 to 1. 

Assume the vertices rr, 12 - 1, . . . , i + 1 are already numbered (for some i E 
(rz,n-I..... l}), then there is a label L;(j) associated with every unnumbered 
vertex j. The labels which are defined in terms of the graph G to carry out the 
algorithm, have the following property w.r.t. G, ([23, Lemma 71). 

ki( j) = MAdj,( j) n (tr, 12 - 1, . . . , i + l}, (A.0 

where MAdj, denotes the monotone adjacency set w.r.t. GX. The 11TL-algorithm 
is defined by the condition 

Li( j) c L,(i) for all j d i and i = II, 12 - 1, . . . , 2, (A-2) 

i.e. the vertex numbered next after n, 12 - 1, . . . , i + 1 has a maximal label, 
where the ordering ‘ < ‘, called lexicographic ordering, is defined as follows: for 
A=(a,,..., ai)cV. B={b,,...,bk}cVwitha,>.-.>aiandb,>--->bk 
define A < B if and only if 

0 thereisapsuchthata,=b,forq=l,...,p-1 andu,<b,,, or 
l j<kanda,=b(,forq=l ,..., j. 

To motivate some necessary definitions, assume that we have already shown that 
Ed is a D-numbering w.r.t. G,=. Let C, , . . . , CT be the D-ordering of the maximal 
cliques of GX which is associated with n, and S, := C, \ (C, U - - - U C,_ ,) as usual. 
NotethatforeveryiES,(t=l,...,T) 

L,(i) = MAdj,(i) = C, n (r2, n - 1, . . . , i + l}. (A.3 

Assume that i + 1 and i are two consecutive numbered vertices with i + 1 E S, and 
i E S,,. Then we have to distinguish two cases: 

Case 1: t’= t, i.e. i + I, i E S,. It follows from (A-1) and (A.3) that Li(j) = 
Li+l(i+ l)U{i+ 1). 

Case 2: t’ = t + 1 hence i $ C,. Then Li(i) # L,+,(i + 1) U {i + l}, since other- 
wise L ,+,(i + 1) U (i + 1) = C: ( see (A.3)) implies C”, U {i} is a clique which gives 
a contradiction, since Cl is a maximal clique. 

Since we assumed that n is a D-numbering which is associated with 

c,,..., CT. we can say that the vertices in S, (=C,) are numbered first (as 
n,r2-1,...,r2- IS,] + I), then the vertices in S, etc. 
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The above considerations show that we have just finished to number the 
vertices in some St and switch to Sr+l if and only if the vertex i to be numbered 
next satisfies 

Li(i) # Li+l(i + 1) U {i + 1). 

Therefore, the components of F(n) = (f2, . . . , fr) satisfy 

(A-4) 

f2>*- .>fTand{f2,...,fT}={i:n-l~i~landL,(i) 

+ Li+,(i + 1) U {i + l}, furthermore fi:=n. (A.3 

Using (A.2), the inequality (A.4) can equivalently be expressed as 

Li(i) < L,+,(i + 1). (A-6) 

Hence f2, . . . , fT can be simply derived from the RTL-algorithm as the first. 
second, etc. numbered vertex which has a label that is not strictly greater than the 
label of the previously-numbered vertex. 

While f2, . . . , fT are the vertices of &, . . . , ST which are numbered first by the 
RTL-algorithm, the vertices 

e,:=f,+,+l fort=l,2,. . . , T-l andeT:=l, (A-7) 

are the vertices numbered last by the algorithm in S,, . . . , SF Using (A.l) and 
(A.3) we get 

Ct = L,,(el) U {e,} for f = 1, . . . , T. (A-8) 

It remains to show that every lexicographic numbering x is a D-numbering 8w.r.t. 
GX. Let it be a lexicographic numbering and assume for convenience that it is the 
identity-map. 

Theorem A.9. If T, fi, e, and C[ are defined by (AS), (A.7) and (A.8) then: 

(i) Cl, . . . , CT are the maximal cliques of G,; 
(ii) rl’:s sequence Cl, . . . , CT is D-ordered; 

(iii) St = (i:fi 2 i 2 e,) for all t = 1, . . . , T (where St = C,\(C, U m . . U Ct-,) as 
usual), i.e. 3t is a D-numbering which is associated with Cl, . . . , CT, and 
fi = max{i: i E St}. 

Proof. Note that it satisfies (A.2) and is perfect for Gn by definition. Further- 
more, (A.l) is satisfied by Lemma 7 in [23]. Therefore Cr = MAdj,(e,) U {c,} is a 
clique of Gn. Assume that Ct U {jl is also a clique of GX for some j E V \ Cr. Then 
j < e, and we have 

L,,_,(j) = MAdj,(j) n (n, n - 1, . . . , et) 2 G = L,(et) U {et)- 

This together with (A.6) implies 

L&j) 3 L&J U {e,} > L,,(eJ 2 L,,-l(e~ - 1)~ 
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which contradicts (A-2). Hence C, , . . . , CT. are maximal cliques of G,. Next we 

show that St= {fi,J; - 1,. . . . et}: It follows from the definitions (AS), (A.7), 

and (A-8) that for s E St 

L,(s) u {s, s - 1, . . . 9 4 = L,(eA U (4 = C,. (A. 10) 

Using (A.10) for s =i we get {fi, fi - 1,. . . , e,} c Ct for all I and C, c {K iz - 1, 
. . . , et} by definition. Hence C, U - - - U C,-, = {n, tz - 1, . . . . e,_,} and S, = 

C,\(C, u - .*uc,_,)={f,&-l,.... e,} which proves (iii). Furthermore, S, U 
- - - U S-,- is a partition of V with C, U - - - 1J C, = S, U - - - U St for all r. 

Now let C be a clique of GX and c :=min{i: i E C}. As we have just shown, 

there is a I with c E S, and using (A-10) 

C c MAdj,(c) U {c) = L,.(c) U {c} c L,.,(e,) U {e,} = C,. 

Hence there are no other maximal cliques of G, than Cr. . . . , CT. 
It remains to show that C,, . . . , CT is D-tirdered. I,et t 2 2 be fixed and 

Ii I.---, ik) :=~,=c,n(c,~~~-~c,_,)~c,~~-~~c,_,=~,~~~-~~,_,. 
We have to show R, E C,, for some p < t. Assume i, > . - - > ik. There is a p < I 

with & E S,. The set R, is a clique of G, as a subset of C,. Using (A. 10) we get 

R, c MAdj(i,) U {&} = Li,(&) U {ik} E Cp. Cl 

As it was mentioned in Section 5, the algorithms described in [20] and [21] do 
not generally produce a minimal numbering n which is a D-numbering w.r.t. G,. 
But we could nevertheless use these algorithms as an alternative to the 
RTL-algorithm as follows: 

l First generate any minimal numbering n for G (e.g. using thr algorithms 
described in (201 or [21]) and compute G,T; 

l then apply maximum cardinality search (MCS) (see [25]) to the (decom- 

posable) graph G,. 
For decomposable graphs MCS works similarly as the RTL-algorithm but (A.2) 

is replaced by the simpler condition IL,(i)1 d IL;(i)1 i.e. the next vertex to be 
numbered (as i) is adjacent to the largest number of previously numbered 
vertices. 

It was shown in [ 171, Theorem 4.3-l that every numbering JG which is generated 
by MCS w.i.t. a decomposable graph is a D-numbering for this graph. The 
proof is similar to the above proof for the RTL-algorithm, we mainly have 
to replace the inequality L,(i)f L,+,(i + 1) U {i + l} in (AS) by I&(i)1 # 

IL,+,6 + HI + 1. 
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