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� Extracellular bone tissue mineralizes under closed thermodynamic conditions.

� Fibrillar and extrafibrillar masses are preserved during mineralization.
� Precipitation of mineral ions leads to volume shrinkage of mineralizing bone tissue.
� Neutron diffraction data provide experimental access to fibrillar volume shrinkage.
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a b s t r a c t

The fundamental mechanisms that govern bone mineralization have been fairly well evidenced by means
of experimental research. However, rules for the evolution of the volume and composition of the bone
tissue compartments (such as the mineralized collagen fibrils and the extrafibrillar space in between)
have not been provided yet. As an original contribution to this open question, we here test whether
mineralizing bone tissue can be represented as a thermodynamically closed system, where crystals
precipitate from an ionic solution, while the masses of the fibrillar and extrafibrillar bone tissue
compartments are preserved. When translating, based on various experimental and theoretical findings,
this mass conservation proposition into diffraction–mass density relations, the latter are remarkably well
confirmed by independent experimental data from various sources. Resulting shrinkage and composition
rules are deemed beneficial for further progress in bone materials science and biomedical engineering.

& 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Bone mineralization is a very complicated process where several
microns-sized osteoblastic cells release, through budding from their
membranes, so-called matrix vesicles (sized tens of nanometers) into
the extracellular space (Anderson et al., 2005; Anderson and Reynolds,
1973; Wiesmann et al., 2004). These vesicles carry all molecular
components for triggering a multistage process, binding mainly
calcium to phosphate ions, which finally results in the precipitation
of hydroxyapatite in the form of nanocrystals. The latter then
penetrate the vesicles' membranes, and continue to grow into the
(“extra-vesicle”) extracellular fluid; finally, the originally single vesicle-
related crystals fuse into larger crystal clusters of up to hundreds of
nanometers size (Cuisinier, 1996). In addition, the osteoblastic cells
Ltd.
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excrete organic matrix called osteoid (Parfitt, 1983; Skinner and Jahren,
2007), which is composed of 300 nm long and 1 nm thick strand-type
collagen molecules. These molecules self-assemble into higher orga-
nizational units called fibrils, with typical diameters of tens to
hundreds of nanometers, and lengths reaching even millimeters,
leaving some extrafibrillar space in between. Within the fibrils,
280 nm long overlap regions (with dense collagen packing), alternate
with 40 nm long gap regions (with loose collagen packing), forming a
staggered scheme discovered by Hodge and Petruska (1963). Collagen
deposition and hydroxyapatite mineralization are separated in time
and space (Parfitt, 1983), such that the organic matrix, some ten to
twenty days after the deposition, starts to become mineralized.
Transmission electron micrographs showed that mineral precipitation
occurs both intrafibrillarly and extrafibrillarly, but that, as a rule, the
majority of the mineral is found in the extrafibrillar space (Hellmich
and Ulm, 2003; Lees and Prostak, 1988; Lees et al., 1994; Prostak and
Lees, 1996; McNally et al., 2012; Alexander et al., 2012; Jantou et al.,
2009; Jantou-Morris et al., 2010).

This short summary clearly shows that, up to now, bone miner-
alization has been mainly studied experimentally, aiming at the
deciphering of fundamental mechanisms. Wishing to foster the
current trend in biomaterial science to develop theoretical and
se.
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Nomenclature

Variables

d Neutron diffraction spacing
D Dessication degree
f Volume fraction
m Mass
ℳ Mineralization degree
n Amount
ℛ Fluid-to-organic mass ratio
t Time
V Volume
ρ Mass density

Prefix

Δ Change of variable due to dehydration

Suffices

col … of collagen
dry … of dried tissue

ec … of extracollagenous space
ef … of extrafibrillar space
ef ; f l … of extrafibrillar fluid
ef ;HA … of extrafibrillar mineral
f ib … of fibrillar space
f ib; f l … of fibrillar fluid
f ib;HA … of fibrillar mineral
f l … of fluid
HA … of hydroxyapatite
max Maximum of …
tissue … of tissue (at the extracellular scale)
w … of wet tissue

Superscripts

0 at the beginning of the mineralization process
∞ at the end of the mineralization process
dh partially dehydrated
t at time instant t, between the beginning and the end

of the mineralization process
:̂ inside the fibrils
�⋅ in the extrafibrillar space
_a temporal derivative of a
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computational approaches to further pervade the matter, the present
paper is concerned with finding mathematically formulated rules
behind the aforementioned mineralization process within and outside
the collagen fibrils. These rules will be strictly validated against a
variety of physically and statistically independent experimental data
collected from the rich literature on the topic. While the systems
biology of bone, or the hierarchical microstructure of mineralized bone
and its emerging mechanical properties have been studied quite
successfully by theoretical and computational approaches (Lemaire
et al., 2004; Qin and Swain, 2004; Fritsch and Hellmich, 2007;
Hellmich et al., 2004; Pivonka et al., 2008), the evolution of the fibrillar
collagen–mineral nanocomposite in the course of biomineralization
has, to the best knowledge of the authors, at mostly faintly been
addressed by means of mathematical modeling. As kind of première-
type activity, we will test, throughout the remainder of this paper, the
following proposition: bone mineralization is a closed thermodynamic
process, both at the tissue level and at the fibrillar level, which is
expressed by mass density increase and volume reduction.
2. Methods

2.1. Mass conservation during mineralization

We wish to check, whether the structural evolution of bone
tissue during mineralization can be explained by means of
Fig. 1. Scheme concerning hierarchical structure of minerali
fluid–solid phase transitions in two thermodynamically closed
systems. Therefore, we consider a piece of extracellular bone
tissue (at a scale of some tens of micrometers) with properties
averaged over a classical bone sample measuring one to a few
millimeters, as accessible through standard experimental proto-
cols (Biltz and Pellegrino, 1969; Gong et al., 1964; Lees et al., 1979;
Vuong and Hellmich, 2011). As reviewed in the introduction, such
tissue is laid down (at time “0”) in the form of osteoid, consisting of
collagen molecules with mass m0

col, and of a ionic fluid with mass
m0

f l. Hence, the overall tissue mass reads as:

m0
tissue ¼m0

col þm0
f l ð1Þ

At a higher organizational level (see Fig. 1), the collagen molecules
build up fibrils with mass m0

f ib, consisting of molecular collagen
and intercollagenous fluid (with mass m0

f ib;f l), so that

m0
f ib ¼m0

col þm0
f ib;f l ð2Þ

The rest of the osteoid tissue consists of fluid-filled extrafibrillar
space with mass m0

ef ¼m0
ef ;f l. Hence, the initial tissue mass can be

alternatively written as

m0
tissue ¼ m0

f ib þm0
ef

¼ m0
col þm0

f ib;f l þm0
ef ;f l

ð3Þ

Thereafter, the ions swimming in the fluid start to form
hydroxyapatite minerals (referred to by suffix “HA” in the sequel).
zing bone tissue: (a) bone tissue and (b) fibrillar space.



Table 1
Experimental data: neutron diffraction spacings in wet and dry tissues, and
corresponding extracellular mass densities.

Bone Mass density of wet
tissue ρ∞tissue [g/cm3]

Diffraction spacing
of wet tissue d∞w
[nm]

Diffraction spacing
of dried tissue d∞dry
[nm]

Codfish
clythruma

1.44 1.38 1.07

Mineralized
turkey
tendona

1.66 1.34 1.03

Mineralized
turkey
tendona

1.58 1.33 1.08

Deer Antlera 1.80 1.29 1.11
Cow tibiaa 2.04 1.24 1.16
Horse
petrosalb

2.30 1.20 –

Whale t.
bullab

2.50 1.18 –

Porpoise
petrosalb

2.70 1.115 –

a Lees et al. (1984).
b Lees (2003).

Table 2
Experimental data: neutron diffraction spacings in dehydrated tissues, and corre-
sponding water contents, from (Lees and Mook, 1986). These experiments are
performed on extracellular bone tissue with a mass density of ρ∞tissue ¼ 2:1 g/cm3.

Water-to-organic mass ratio ℛ∞;dh [-] Diffraction spacing d∞;dh
w [nm]

0 1.18
0.025 1.15
0.19 1.17
0.24 1.20
0.27 1.20
0.32 1.21
0.37 1.23
0.39 1.22
0.42 1.22
0.50 1.24
0.51 1.24
0.53 1.25
0.54 1.23
0.58 1.27
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If both the fibrils and the extrafibrillar space are closed thermo-
dynamic systems (Coussy, 1995), i.e. if no fluid mass leaves or
enters these volumes during the mineralization process, then the
aforementioned precipitation of hydroxyapatite crystals entails
that the mass rate of lost ionic fluid mass equals the mass rate
of formed solid hydroxyapatite crystal mass in the fibrillar and
extrafibrillar subvolumes, as well as in the entire tissue volume

_mf ib;HA ¼ − _mfib;f l

_mef ;HA ¼ − _mef ;f l

_mHA ¼− _mf l ð4Þ
where a dot denotes the time derivative, and suffices “fib,HA” and
“ef,HA” refer to the hydroxyapatite crystals formed in the fibrils
and in the extrafibrillar space, respectively. At any time t of the
mineralization process, integration of the relations (4) yields

mt
f ib;f l ¼m0

f ib;f l−m
t
f ib;HA

mt
ef ;f l ¼m0

ef ;f l−m
t
ef ;HA

mt
f l ¼m0

f l−m
t
HA ð5Þ

In particular, at the end of the mineralization process (at time
“∞”), all the calcium and phosphate ions in the original ionic
solution have formed solid hydroxyapatite, so that the remaining
mass of the fluid in each compartment reads as

m∞
f ib;f l ¼m0

f ib;f l−m
∞
f ib;HA

m∞
ef ;f l ¼m0

ef ;f l−m
∞
ef ;HA

m∞
f l ¼m0

f l−m
∞
HA ð6Þ

On the other hand, the collagen mass remains unaltered through-
out the mineralization process

m0
col ¼m∞

col ¼mt
col ¼mcol ð7Þ

so that Eqs. (1), (6), and (7) give access to the mass of each
compartment at the end of the mineralization process

m0
f ib ¼mcol þm0

f ib;f l ¼mcol þm∞
f ib;f l þm∞

f ib;HA ¼m∞
f ib ¼mf ib

m0
ef ¼m0

ef ;f l ¼m∞
ef ;f l þm∞

ef ;HA ¼m∞
ef ¼mef

⇒m0
tissue ¼m∞

tissue ¼mtissue ð8Þ
Eq. (8) expresses that the overall mass of the tissue, but also the

submasses of fibrils and extrafibrillar space remain constant
throughout the entire mineralization process. In the following
sections, we will check the relevance of propositions (1)–(8), by
confronting them to numerous experimental data. This, however,
requires a number of mathematical developments since, rather
than masses [as occurring in Eqs. (1)–(8)], mass densities of tissues
(see Table 1) are directly accessible from experiments. In addition,
the precipitation of solved ions into solid mineral crystals is
accompanied by an increase in mass density, which, upon overall
mass preservation, leads to a volume decrease (or “shrinkage”) of
the tissues during the biomineralization process. This shrinkage
affects both the fibrillar and the extrafibrillar tissue compartments,
and the shrinkage of the fibrils can be experimentally accessed
through equatorial neutron diffraction spacings d∞w measured on
fully mineralized tissues (Morin et al., 2013; Miles and Ghelashvili,
1999)

d∞w
d0w

 !2

¼ V∞
f ib

V0
f ib

ð9Þ

with d0w as the neutron diffraction spacing at the time of osteoid
deposition (t¼0), and V0

f ib and V∞
f ib as the fibrillar volume in

unmineralized and fully mineralized tissues, respectively; see
Table 1 for experimental values concerning d∞w .

Consequently, the remainder of this paper will be devoted to
deriving, from Eqs. (1)–(9), a mass density–diffraction relation
(ρ∞tissue−d
∞
w relation), in three consecutive steps: first, the

mineralization-induced shrinkage will be evaluated at the tissue
level, based on “universal” tissue composition rules evidenced in
(Vuong and Hellmich, 2011); secondly, the mineralization-induced
extrafibrillar volume change will be evaluated based on the on-
average uniform mineral concentration in the extracollagenous
space as evidenced in (Hellmich and Ulm, 2003) and on a
hydration-dependent swelling rule for unmineralized tissues as
evidenced in (Morin et al., 2013); and thirdly, an analogous
procedure will allow for determination of the mineralization-
driven shrinkage of the fibrils. The resulting ρ∞tissue−d

∞
w relation will

be fed with experimental data for ρ∞tissue (from the second column
of Table 1), and the corresponding predictions for diffraction
spacings d∞w will be compared to the experimental data from the
third column of Table 1. After this first “tissue-as-thermodynami-
cally-closed-system” check, the developments will be extended to
partially dehydrated tissues, based on data from Table 2; before
general structural evolution patterns of mineralizing bone tissues
will be shown and discussed.
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2.2. Mineralization-induced volume change at tissue level

The conservation of mass during the phase transformation
from ionic fluid to solid hydroxyapatite, taking place under closed
thermodynamic conditions according to Eq.(6)3, together with the
precipitation-induced mass density gain from the fluid state (with
ρfl¼1.00 g/cm3) to the solid state [with the real mass density of
(biologically generated, "impure") hydroxyapatite amounting to
ρHA¼3.00 g/cm3 (Lees, 1987)], implies a decrease of the tissue
volume during the mineralization process. This volume change at
the tissue level can be quantified through

V∞
tissue

V0
tissue

¼ 1
1þ ðρHA=ρf l−1Þ � f∞HAðρ∞tissueÞ

ð10Þ

with f∞HA as the mineral volume fraction in the fully mineralized
tissue, which depends on the tissue mass density, as given in
Appendix A, Eq. (A.4). In more detail, Eq. (10) follows from
expressing both initial and final volumes as functions of the
constituent masses [see Eqs. (1) and (8)] and mass densities, and
from subsequent expression of the constituent masses in terms of
constituent volume fractions; the latter ones fulfilling “universal”
compositional rules evidenced by Vuong and Hellmich (2011),
see Appendix A for details.

2.3. Mineralization-induced volume change at extrafibrillar level

The most pronounced shrinkage effect of the compaction of
mineral ions during precipitation of hydroxyapatite takes place at
the level of the extrafibrillar space, which is, prior to mineraliza-
tion, entirely filled by the ionic solution. The corresponding
volume change can be quantified through

V∞
ef

V0
ef

¼ 1þ ð1−ρHA=ρf lÞ
1−f 0col

V∞
tissue

V0
tissue

� f∞HAðρ∞tissueÞ ð11Þ

where V∞
tissue=V

0
tissue obeys Eq. (10), f∞HA ρ∞tissue

� �
still follows from

Eq. (A.4), and f 0col is the collagen volume fraction in unmineralized
(osteoid) tissue, which can be quantified from the hydration-
dependent swelling rules evidenced by Morin et al. (2013), see
Appendix B, Eq. (B.5). As regards the structure of Eq. (11), its
derivation rests upon conservation expression (5)2 and upon the
finding of Hellmich and Ulm (2003) that the mineral concentration
in the extrafibrillar space is identical to that in the overall extra-
collageneous space (inside and outside the fibrils), see Appendix C
for details.

2.4. Mineralization-induced volume change at fibrillar level

The mineralization-induced shrinkage of the bone tissue
according to Eq. (10) can also be downscaled to the fibrillar level,
by means of the fibrillar volume fraction f f ib ¼ Vf ib=Vtissue

V∞
f ib

V0
f ib

¼ f∞f ib
f 0f ib

V∞
tissue

V0
tissue

ð12Þ

where

f∞f ib ¼ 1−f∞ef ð13Þ

with f∞ef as the extrafibrillar volume fraction in the mineralized
tissue, following from evaluation of (C.13) for t-∞, and f 0col
according to (B.5), so that, conclusively, the mass conservation
law for a thermodynamically closed bone tissue as introduced in
this paper, the on-average uniform hydroxyapatite concentration
in the extracollagenous tissue spaces (Hellmich and Ulm, 2003),
the bilinear composition rules for fully mineralized tissues (Vuong
and Hellmich, 2011), and the hydration-dependent swelling rule
for unmineralized collagenous tissues (Morin et al., 2013) allow for
prediction of the fibrillar volume change just from known tissue
mass densities, as collected in Table 1. In order to check the
reliability of these predictions, they are transformed into neutron
diffraction spacings, according to continuum geometry and con-
sidering negligible length changes in the meridional direction of
the tissue (Morin et al., 2013), already expressed in Eq. (9), so that,
thanks to Eqs. (12), (13), (A.4), (10), (C.13), (B.5)

d∞w ¼ d0w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−f 0ef � 1− ρHA=ρf l−1

� �� f∞HA �
f∞col

ρHAf
∞
HA=ρf l þ f∞f l

" #

ð1−f 0ef Þ � 1þ ρHA=ρf l−1
� �� f∞HA

� �

vuuuuut ð14Þ

with f 0ef according to Eq. (B.5), with d0w ¼ dmax ¼ 1:52 nm [see Eq.
(B.1)], and with dependencies of f∞col, f

∞
HA, and f∞f l on tissue mass

density as in (A.4). Eq. (14), together with Eqs. (B.5) and (A.4),
finally allows for a full quantitative check of our proposition of
considering mineralizing bone tissue compartments as closed
thermodynamic systems: its right-hand side is fed with the tissue
mass density values of the second column of Table 1, and the
resulting diffraction values are compared to the experimental
values of the third column of Table 1.

2.5. Drying-induced volume change of mineralized tissues

As a complementary check of our mineralization rule, we
consider partially dehydrated and fully dried tissues (indicated
by superscript "dh" standing for dehydrated), whose water-to-
organic mass ratios ℛ∞;dh and neutron diffraction spacings d∞;dh

w
were recorded and documented (Lees and Mook, 1986), see Table 2
and the last column of Table 1. During dehydration, some fluid
mass Δm∞

f l and corresponding volume ΔV∞
f l are lost, so that, with

respect to the fully mineralized state, the tissue shrinks again,
whereby the respective volume change reads as

V∞
tissue−ΔV

∞
f l

V∞
tissue

¼ V∞;dh
tissue

V∞
tissue

¼ 1−Δf∞f l ð15Þ

In Eq. (15), Δf∞f l is that volume fraction of fluid in a fully
mineralized bone tissue, which will be lost due to dehydration:
Δf∞f l ≤f

∞
f l , where the equal sign refers to the fully dehydrated case.

Accordingly, the constituent volume fractions of the partially or
fully dehydrated tissue read as

f∞;dh
f l ¼ f∞f l−Δf

∞
f l

1−Δf∞f l

f∞;dh
col ¼ f∞col

1−Δf∞f l

f∞;dh
HA ¼ f∞HA

1−Δf∞f l
ð16Þ

In order to downscale (15) to the fibrillar level (where we seek
experimental validation through diffraction data), we need to know
how the lost fluid volume ΔV∞

f l is partitioned between the fibrillar
and extrafibrillar spaces. Therefore, we again consider the identity
of extrafibrillar and extracollageneous mineral concentrations
(Hellmich and Ulm 2003), as given in detail in Appendix D. This
finally allows for identification of the dehydration-induced fibrillar
shrinkage, according to

V∞;dh
f ib

V∞
f ib

¼ V∞
f ib−ΔV

∞
f ib;f l

V∞
f ib

¼ V∞
f ib−ðΔV∞

ec−ΔV
∞
ef Þ

V∞
f ib

� V∞
tissue

V∞
tissue

¼ 1−
Δf∞f l
f∞f ib

� 1−
f 0ef

1−f 0col

 !
ð17Þ

This model prediction for the dehydration-induced shrinkage can
be experimentally validated, again by means of diffraction data,
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analogously to Eq. (9)

V∞;dh
f ib

V∞
f ib

¼ d∞;dh
w

d∞w

 !2

ð18Þ

Combination of (18) and (17), reading as

d∞;dh
w ¼ d∞w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

Δf∞f l−f
0
efΔf

∞
f l =ð1−f 0colÞ

f∞f ib

vuut ð19Þ

provides a second fully independent quantitative check of our
proposition of considering bone tissue compartments as closed
thermodynamic systems, also under dehydration. Accounting for

Δf∞f l ¼ f∞f l−ℛ
∞;dhf∞col

ρcol
ρf l

ð20Þ

the right-hand side of (19) is fed with fluid-to-organic mass ratios
ℛ∞;dh, according to the first column of Table 2, and the resulting
diffraction values are compared to the experimental values of the
second column of Table 2. Identification of Δf∞f l ¼ f∞f l in (19) delivers
model predictions for the diffraction spacing in fully dried tissue as

d∞dry ¼ d∞w
ffiffiffiffiffiffiffiffiffiffiffiffi
1−f∞f l

q

¼ d0w
ffiffiffiffiffiffiffiffiffiffiffiffi
1−f∞f l

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−f 0ef � 1−ðρHA=ρf l−1Þf∞HA � f∞col

f∞HAρHA=ρf lþf∞f l

h i
ð1−f 0ef Þ � 1þ ðρHA=ρf l−1Þ � f∞HA

� �
vuuut ð21Þ

with f 0ef according to Eq. (B.5) and mass density-dependent volume
fractions f∞col, f

∞
HA, and f∞f l according to (A.4). Eq. (21) will be checked

through the data pairs of columns 2 and 4 of Table 1. All
aforementioned comparisons, checking the proposed mass conser-
vation rules, are quantified in terms of relative errors between
theoretical predictions dpred of the diffraction spacings [Eqs. (14),
(19), and (21), together with (20), (A.4), and (B.5)] and correspond-
ing experimental values dexp from Tables 1 and 2

ed ¼
dpred−dexp

dexp
ð22Þ
2.6. Evolution of tissue composition and structure during
mineralization

We here derive mathematical expressions for the tissue com-
partment volume changes as well as for the constituent volume
fractions, as functions of the mineralization degree, defined as:

ℳ¼ nt
HA

n∞
HA

¼ Vt
HA

V∞
HA

¼ mt
HA

m∞
HA

ð23Þ

with nt
HA and n∞

HA as the amount of hydroxyapatite (typically
measured in moles) in the tissue at time t and at time “∞”,
respectively. Use of mass–volume relation (A.3) specified for time
t instead of “∞”, in mass balance Eq. (5)3, followed by the insertion
of the result into the volume composition at time t, which follows
from replacing “∞” by “t” in Eq. (A.2), and identification of the
initial volume composition given by Eq. (A.1), yields

Vt
tissue

V0
tissue

¼ 1−ℳ f∞HA
V∞
tissue

V0
tissue

� ρHA
ρf l

−1

 !
ð24Þ

where V∞
tissue=V

0
tissue still follows from Eq. (10).

Similarly, the extrafibrillar volume change due to mineraliza-
tion follows from the insertion of Eq. (C.13) into Eq. (C.1) specified
for time t instead of “∞”

Vt
ef

V0
ef

¼ 1þ ð1−ρHA=ρf lÞ
1−f 0col

Vt
HA

V0
tissue

¼ 1þ ð1−ρHA=ρf lÞ
1−f 0col

ℳf∞HA
V∞
tissue

V0
tissue

ð25Þ
Analogously, the fibrillar volume change reads as

Vt
f ib

V0
f ib

¼ f tf ib
f 0f ib

Vt
tissue

V0
tissue

¼ 1−f tef
f 0f ib

Vt
tissue

V0
tissue

ð26Þ

When accounting additionally for Eq. (B.3) and for Eq. (C.13) we
arrive at

Vt
f ib

V0
f ib

¼ 1

f 0f ib

Vt
tissue

V0
tissue

−f 0ef−
f 0ef � ð1−ρHA=ρf lÞ

1−f 0col

V∞
tissue

V0
tissue

ℳf∞HA

" #
ð27Þ

where Vt
tissue=V

0
tissue is given in Eq. (24), f 0col and f 0ef are given in

Eq. (B.5), and f 0f ib ¼ 1−f 0ef [see Eq. (B.3)].
As to derive a mineralization degree-dependent expression for

the extrafibrillar volume fraction f tef , we remember
f∞HA ¼ V∞

HA=V
∞
tissue and (23), from which we get the relation

f tHA ¼ℳf∞HA
V∞
tissue

Vt
tissue

ð28Þ

We then insert Eq. (28) into Eq. (C.13), yielding

f tef ¼
f 0ef

Vt
tissue=V

0
tissue

þ f 0ef
1−f 0col

� 1−
ρHA
ρf l

 !
ℳf∞HA

V∞
tissue

Vt
tissue

ð29Þ

In (29), f 0col and f 0ef follow from Eq. (B.5), f∞HA from Eq. (A.4), and
Vt
tissue=V

0
tissue from Eq. (24).

In order to get access to the expression V∞
tissue=V

t
tissue as function

of ℳ, we specify (A.2) for “t” instead of “∞”, then replace mt
f l by the

expression given in (5)3, followed by substitution of m0
f l by the

expression following from (6)3, yielding

Vt
tissue ¼ mcol

ρcol
þ

m∞
f l þm∞

HA−m
t
HA

ρf l
þmt

HA

ρHA

¼ V∞
tissue þ ðm∞

HA−m
t
HAÞ

1
ρf l

−
1
ρHA

 ! ð30Þ

where we made use of the expression for V∞
tissue according to (A.2).

Using additionally definition (23) for the mineralization degree ℳ
and mass–volume relation (A.3)2, we arrive at the sought relation

V∞
tissue

Vt
tissue

¼ 1
1þ ρHA=ρf l−1

� �� f∞HAðρ∞tissueÞ � ð1−ℳÞ ð31Þ

As in Eq. (B.2), the collagen volume fraction within a fibril is the
ratio between the collagen volume fraction within the tissue and
the fibrillar volume fraction within the tissue, reading at time t as

f̂
t

col ¼
f∞col
f tf ib

V∞
tissue

Vt
tissue

ð32Þ

with f tf ib ¼ 1−f tef as given in Eq. (29), V∞
tissue=V

t
tissue in Eq. (31), and

f∞col in Eq. (A.4). The mineral volume fraction inside the fibrils, f̂
t

HA,
is determined by dividing the overall tissue volume fraction of
fibrillar mineral, which is determined as the difference between
the total and the extrafibrillar mineral volume fractions [given in
Eq. (C.12)], by the volume fraction of the fibrils, f tf ib

f̂
t

HA ¼
f tHA−f

t
ef ;HA

f tf ib
¼ 1−f 0ef =ð1−f 0colÞ

f tf ib
ℳf∞HA

V∞
tissue

Vt
tissue

ð33Þ

Finally, the volume fraction of fluid inside the fibrils reads as:

f̂
t

f l ¼ 1−f̂
t

HA−f̂
t

col ð34Þ
The volume fraction of mineral in the extrafibrillar space f̆

t

HA is
the ratio of the extrafibrillar mineral volume fraction [given in Eq.
(C.12)] and the extrafibrillar volume fraction

f̆
t

HA ¼
f tef ;HA
f tef

¼ f tef
f tef � ð1−f 0colÞ

ℳf∞HA
V∞
tissue

Vt
tissue

ð35Þ

and the volume fraction of fluid in the extrafibrillar space finally



C. Morin, C. Hellmich / Journal of Theoretical Biology 335 (2013) 185–197190
reads as

f̆
t

f l ¼ 1− f̆
t

HA ð36Þ
Fig. 3. Normalized tissue volume Vt
tissue=V

0
tissue as function of the mineralization

degree ℳ, for different final tissue mass densities ρ∞tissue .
3. Results

3.1. Mineralizing bone tissue as closed thermodynamic system:
experimental validation

In order to check the relevance of representing mineralizing
bone tissue as a thermodynamically closed system, in which
hydroxyapatite precipitates from an ionic solution filling all
extracollagenous spaces (both intra- and extrafibrillarly), we
compare the mathematical model-predicted neutron diffraction
spacings in mineralized tissues at different hydration states,
according to Eqs. (14), (19), and (21) [together with Eqs. (A.4),
(B.5), and (20)], to corresponding experimental values given in
Tables 1 and 2, see Fig. 2. The remarkable precision of our
mathematical approach is quantified through the relative error
between model predictions and experimental values [see Eq. (22)],
amounting to ed ¼ 2:25 % 72:51 % (mean value7standard
deviation).

3.2. Volume changes during mineralization and dessication

Given this excellent confirmation of hydroxyapatite precipitat-
ing under closed thermodynamic conditions from an ionic solution
in the fibrillar and extrafibrillar spaces of bone tissue, the corre-
sponding evolution Eqs. (24)–(27) [together with Eqs. (A.4), (10),
(B.3), and (B.5)] can now be employed as to quantify the structural
(volumetric) evolution of mineralizing bone tissue: during miner-
alization, the volume of the overall collagenous tissue is shrinking
because the mass density of hydroxyapatite is around three times
larger than that of the liquid ionic solution. In general, the more
mineral is present in the tissue (i.e. the higher the mass density of
the mineralized tissue or the higher the mineralization degree),
the higher the shrinkage of the volumes of the different compart-
ments (see Figs. 3 and 4). More specifically, this volume loss is
minimal for low-mineralized tissues at the beginning of the
mineralization process (see left lower corner of Fig. 3), whereas
highly mineralized bone tissue has lost up to 60% of its initial
(osteoid) volume (see right upper corner of Fig. 3). The overall
tissue shrinkage due to mineralization is essentially a consequence
of the shrinkage of the extrafibrillar space which looses, in highly
mineralized tissues, more than 60% of its initial size [see Fig. 4(b)],
Fig. 2. Predicted vs. experimental diffraction spacing for wet, dry, and partially
dehydrated, mineralized tissues. Experimental data are summarized in Tables 1 and 2.
all the more so as the extrafibrillar space makes up more than half
of the volume of the initially non-mineralized tissue. During the
mineralization period, the collagenous volume only reduces by
slightly more than 30% [see Fig. 4(a)], due to the presence of
(chemically inert) collagen in this compartment.

All these shrinkage and compaction phenomena are schemati-
cally illustrated in Fig. 5, where the volume changes are repre-
sented as changes in area, and where the local mass densities are
quantified through a grey scale.

Fibrillar volume change is closely connected to the evolving
equatorial diffraction spacing dtw [remember Eq. (9)], which can be
predicted through Eq. (14) (in which superscript “∞” has to be
replaced by t), together with Eqs. (28), (29), (31), (32), (A.4), and
(B.5), for different tissues at different mineralization states (see
Fig. 6). The diffraction spacing decreases with increasing miner-
alization degree (up to 20% for hyper dense bones of porpoise with
ρ∞tissue ¼ 2:7 g/cm3). It is also illustrative to plot dehydration-
induced changes in the neutron diffraction spacings, according to
Eq. (21), see Fig. 7. Our model predicts the diffraction spacing to
decrease with the mass density of wet tissues, but to increase with
the mass density of dry tissues, and this is what Lees (2003)
observed experimentally.
3.3. Mineralization-induced compositional changes

Still motivated by the excellent model prediction capabilities
shown in Fig. 2, we now use Eqs. (29) and (32)–(36), together with
(31), (A.4), and (B.5), for illustrating the compositional evolutions
of mineralizing bone tissues: The mineralization process leads to
slight increase of the fibrillar volume fractions (up to about 20%,
see Fig. 8), since the fibrils, thanks to the presence of chemically inert
collagen, are less affected by the fluid-to-crystal transformation-
induced volume loss, as compared to the extrafibrillar space.

Within the fibrils, the fluid volume fraction, starting from
around 50% in the unmineralized osteoid, is reduced by one third
in the case of low-mineralized tissues [see Fig. 9(a)], while it is
almost completely consumed in the case of very highly miner-
alized tissues [see Fig. 9(d)]. Thereby, “lost” fluid volume fractions
are “replaced” by collagen and mineral volume fractions, at about
same shares [see Fig. 9(a)–(d)].

In the extrafibrillar space, mineral volume fractions increase
overlinearly with the mineralization degree, the more so the more
highly the tissue is mineralized [see Fig. 10(a)–(d)].



Fig. 4. Normalized fibrillar (a) and extrafibrillar (b) volumes, Vt
f ib=V

0
f ib (a) and Vt

ef =V
0
ef (b), as functions of the mineralization degreeℳ, for different final tissue mass densities

ρ∞tissue .

Fig. 5. Scheme of the structural evolution of extracellular bone tissue due to
mineralization (ρ∞tissue ¼ 1:70 g/cm3): the left structural schemes refer to the
unmineralized state, and the right ones refer to fully mineralized tissue:
(a) tissue scale, (b) compartment (fibrillar) scale, (c) collagen–mineral scale; grey
scale indicates mass densities of tissues and tissue constituents.

Fig. 6. Equatorial diffraction spacing dtw , as function of the mineralization degree
ℳ, for different mass densities of the mineralized tissues ρ∞tissue .

Fig. 7. Equatorial diffraction spacing d∞;dh
w , as function of the extracellular mass

density of bone tissue ρ∞tissue , for different dessication degrees D¼Δf∞f l =f
∞
f l ranging

from 0% up to 100%.
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4. Discussion

This contribution showed that the volume and structure
changes in mineralizing bone tissue can be mathematically pre-
dicted when considering the tissue as a closed thermodynamic
system, in which crystals start to precipitate from a supersaturated
solution, while the mass conservation law is continuously fulfilled.
The corresponding mathematical formulation incorporated earlier
general findings on collagen swelling (Morin et al., 2013), on tissue
composition at the fully mineralized state (Vuong and Hellmich,
2011), and on the partitioning of the mineral between the fibrillar



Fig. 8. Extrafibrillar and fibrillar volume fractions (f ef and f f ib , respectively), as functions of the mineralization degree ℳ, for four different values of the extracellular tissue
mass density ρ∞tissue: (a) ρ

∞
tissue =1.44 g/cm3, (b) ρ∞tissue =1.90 g/cm3, (c) ρ∞tissue =2.30 g/cm3 and (d) ρ∞tissue =2.70 g/cm3.

Fig. 9. Volume fractions of collagen, mineral, and water inside the fibrils (f̂ col , f̂ HA , and f̂ f l , respectively), as functions of the mineralization degree ℳ, for four different values
of the extracellular tissue mass density ρ∞tissue: (a) ρ

∞
tissue =1.44 g/cm3, (b) ρ∞tissue =1.90 g/cm3, (c) ρ∞tissue =2.30 g/cm3 and (d) ρ∞tissue =2.70 g/cm3.
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Fig. 10. Volume fractions of mineral and water inside the extrafibrillar space (�f HA , and �f f l , respectively), as functions of the mineralization degree ℳ, for four different values
of the extracellular tissue mass density ρ∞tissue: (a) ρ

∞
tissue =1.44 g/cm3, (b) ρ∞tissue =1.90 g/cm3, (c) ρ∞tissue =2.30 g/cm3 and (d) ρ∞tissue =2.70 g/cm3.
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and extrafibrillar spaces (Hellmich and Ulm, 2003). Our mathe-
matical model was checked through various experimental data
from neutron diffraction and mass density measurements at
different mineralization and dehydration states. As regards the
appropriate use of the used experimental data, we note that
neutron diffraction is a well-accepted technique for micro-strain
quantification (Daymond and Priesmeyer, 2002), and that
millimeter-sized pieces of bone tissue exhibit a mean tissue age
of the order of years (Baroncelli et al., 1998), which is much larger
than the characteristic times of both primary and secondary
mineralization, amounting to days (Wergedal and Baylink, 1974)
and months (Bala et al., 2010). Therefore, such pieces give indeed
access to the mass density ρ∞tissue of fully mineralized tissue.

In the bone tissues identified as closed thermodynamic sys-
tems, the volume of ionic solution involved in the precipitation
process is fully replaced by the volume of newly formed mineral,
and the potential relevance of such a replacement process of an
originally larger volume of a low density substance, by a then
smaller volume of a high density substance, was at least partially
perceived by some researchers for quite some while: e.g., Deakins
(1942) writes that “the volume of ash deposited just fills the space
from which the water was displaced”; and Lees (2003) concludes
that his diffraction-based calculation “where the mass of the tissue
is constant and the volume varies, matches the results observed
experimentally”. As a major complement to these early “feelings”,
the present contribution, besides from being supported by an
unprecedented number of independent experimental data, pro-
vides mathematical predictions of fibrillar and extrafibrillar, as
well as mineral and collagen volumes and volume fractions, i.e.
our general approach covers compositional changes at different
hierarchical levels, throughout the bone mineralization process.
Thereby, as a formal limitation of the present contribution, the
complex chemical changes in the solid crystals, from
hydroxyapatite precursors to hydroxyapatite itself (Cuisinier,
1996) are not explicitly modeled, i.e. “hydroxyapatite” in our model
refers to “hydroxyapatite and all its precursors”. In this context, we
here leave aside a more detailed chemical description of hydro-
xyapatite precipitation, which is a very complex process depend-
ing with high sensitivity on chemical parameters (Orlovskii et al.,
2002), the precise functioning of which in vivo is still in the
discovery phase (Colfen, 2010). On the other hand, the time
instants “0” and "infinity" as introduced in the present approach,
can indeed be clearly assigned to the more detailed bone crystal
growth mechanisms as introduced by Cuisinier (1996): “0” relates
to crystal nucleation in the fluid spaces of a collagenous template
which has already adsorbed the calcium and phosphate ions, while
“infinity” relates to the completion of crystal fusion, following the
intermediate crystal growth period.

Quantification of tissue volume and composition evolution
during bone mineralization, as proposed in the present paper,
provides valuable, new input values for computer-aided biomater-
ial design as an important complement to purely experimental
approaches (Lindenmair et al., 2010; Verma et al., 2010). This
newly emerging computational field has already provided tools for
assessing the structural integrity of biomaterials and tissue-
engineered bones, often based on Computed Tomography (CT)
and Finite Element analyses (Lacroix et al., 2006; Scheiner et al.,
2009), but also comprising analytical approaches (Bertrand and
Hellmich 2009; Fritsch et al., 2010; Orr et al., 2003), as well as
techniques for assessing or simulating the evolution of biomater-
ials and their surrounding tissues, with respect to bone ingrowth
(Byrne et al., 2007; Sandino et al., 2008; Sandino and Lacroix,
2011; Sengers et al., 2007), scaffold degradation (Bohner and
Baumgart, 2004), or chemically-induced biomaterial shrinkage
(Orr et al., 2003). While, in all these approaches, bone tissue (be
it natural or tissue-engineered), is considered as a non-evolving
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entity, an assumption which may appear plausible for the applica-
tions discussed in the aforementioned references, our new results
on mineralization-induced bone microstructure evolution now
open the door towards the mechanical properties of mineralizing
bone tissue (which can be derived from the volume fraction
evolutions of Figs. 8–10), by means of experimentally validated
micromechanics models (Hellmich et al., 2004; Fritsch and
Hellmich, 2007; Fritsch et al., 2009; Hamed and Jasiuk, 2012),
which, together with the tissues' shrinkage behavior illustrated in
Figs. 3–5, will enable again more realistic simulations of the
loading of tissue engineering scaffolds, namely through accounting
also for a shrinkage-induced loading portion, which has never
been considered so far. Moreover, our findings can also help to
elucidate the stresses evolving in newly deposited osteoid in the
course of bone remodeling, thereby complementing recent simu-
lation results based on a coupled systems biology-micromechanics
theory (Scheiner et al., 2013; Pivonka et al., 2008; Lemaire et al.,
2004).
5. Conclusion

Mineralizing bone tissue acts as a closed thermodynamic
system undergoing a fluid-to-solid phase transformation in the
extra-collagenous space. The corresponding rigorous mathemati-
cal approach was successfully validated through neutron diffrac-
tion and physical chemistry tests, and gives unprecedented access
to compositional and structural changes in mineralizing bone
tissue, at all final collagen-to-mineral ratios found in Nature.
Besides from its impact on fundamental bone science, this
approach promises to open new avenues in computer-aided
biomaterials design, by delivering so far inaccessible input data
needed for realistic modeling of the scaffold-tissue interaction.
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Appendix A. Derivation of the expression for tissue shrinkage,
Eq. (10)

The initial tissue volume follows from the initial tissue mass (1)
and the mass densities of the fluid (approximated by that of water,
ρfl¼1.00 g/cm3) and of molecular collagen [ρcol¼1.42 g/cm3 (Lees,
1981; Lees and Heeley, 1981; Morin et al., 2013)]

V0
tissue ¼ Vcol þ V0

f l ¼
mcol

ρcol
þ
m0

f l

ρf l
ðA:1Þ

with Vcol and V0
f l as the (initial) volumes of collagen and fluid.

Analogously, the final tissue volume follows from the final tissue
mass (8) and the mass densities of collagen, fluid, and hydroxya-
patite [the latter amounting to ρHA¼3.00 g/cm3 (Lees, 1987)]

V∞
tissue ¼ Vcol þ V∞

f l þ V∞
HA ¼

mcol

ρcol
þ
m∞

f l

ρf l
þm∞

HA

ρHA
ðA:2Þ

with Vcol, V
∞
f l , and V∞

HA as the (final) volumes of collagen, fluid, and
hydroxyapatite, respectively.

The final constituent masses can be expressed in terms of
constituent volume fractions f∞col ¼ Vcol=V

∞
tissue, f∞HA ¼ V∞

HA=V
∞
tissue,

and f∞f l ¼ V∞
f l =V

∞
tissue

mcol ¼ ρcolVcol ¼ ρcolf
∞
colV

∞
tissue
m∞
HA ¼ ρHAV

∞
HA ¼ ρHAf

∞
HAV

∞
tissue

m∞
f l ¼ ρf lV

∞
f l ¼ ρf lf

∞
f l V

∞
tissue ðA:3Þ

and it has been shown by Vuong and Hellmich (2011) from a large
experimental data base obtained from different chemical protocols
spanning over 80 years of research (Lees et al., 1979; Lees and
Page, 1992; Lees et al., 1995; Lees, 2003; Gong et al., 1964;
Hammet, 1925; Burns, 1929; Biltz and Pellegrino, 1969), that these
volume fractions follow universal bilinear rules depending on the
extracellular mass density ρ∞tissue of the bone tissue

if ρ∞tissue≤1:928 g=cm3; if ρ∞tissue≥1:928 g=cm3;

f∞HA ¼ 1
ρHA

ð1:331 ρ∞tissue−1:398Þ; f∞HA ¼ 1
ρHA

ð1:709 ρ∞tissue−2:127Þ;
f∞col ¼ 0:9

ρcol
ð0:381 ρ∞tissue−0:230Þ; f∞col ¼ 0:9

ρcol
ð−0:471 ρ∞tissue þ 1:412Þ;

f∞f l ¼ 1−f∞col−f
∞
HA: f∞f l ¼ 1−f∞col−f

∞
HA:

ðA:4Þ
Use of (A.3) in (6)3, and insertion of the result into (A.1) and

(A.2), delivers the mineralization-induced tissue volume change as
Eq. (10) of Section 2.2, with f∞HAðρ∞tissueÞ according to Eq. (A.4).
Appendix B. Derivation of the expressions for the constituent
volume fractions of unmineralized tissues

The extrafibrillar and collagen volume fractions in unminer-
alized tissues, f 0ef and f 0col, depend on the tissue hydration states,
as was identified by Morin et al. (2013) from diffraction data,
vacuum drying, and mass measurements (Katz and Li 1973; Lees
and Heeley, 1981; Meek et al., 1991; Rougvie and Bear, 1953).
Namely, upon fibrillar saturation, as always encountered in
osteoid, the volume fraction of collagen within the fibrils is
constant and amounts to

f̂
0
col ¼

V0
col

V0
f ib

¼ 0:88
ddry
dmax

� �2

¼ 0:88
1:09
1:52

� �2

¼ 0:45 ðB:1Þ

with ddry ¼ 1:09 nm (Lees et al., 1984) and dmax ¼ 1:52 nm (Brodsky
et al., 1982; Lees et al., 1984; Eanes et al., 1970; Katz and Li, 1973) as
the (X-ray) diffraction spacings of fully dried and fully saturated
unmineralized collagenous tissues. f̂

0
col relates to f 0col through

f 0col ¼
Vcol

V0
f ib

V0
f ib

V0
tissue

¼ f̂
0
col f

0
f ib ðB:2Þ

and the fibrillar and extrafibrillar volume fractions, f 0f ib and f 0ef
respectively, read as

f 0f ib ¼
V0
f ib

V0
tissue

¼ 1
0:88

dmax

ddry

� �2 ρf l

ℛ0ρcol þ ρf l
¼ 2:21

ρf l

ℛ0ρcol þ ρf l

f 0ef ¼ 1−f 0f ib ðB:3Þ

with ℛ0 as the water-to-organic mass ratio in the unmineralized
tissue, which can be retrieved from mass conservation rule (6)3
and mass–volume relation (A.3) as

ℛ0 ¼
m0

f l

mcol
¼

m∞
HA þm∞

f l

mcol
¼ ρHAf

∞
HAðρ∞tissueÞ þ ρf lf

∞
f l ðρ∞tissueÞ

ρcolf
∞
colðρ∞tissueÞ

ðB:4Þ

while Eqs. (B.1), (B.2), and (B.3) allow for expressing the initial
volume fraction of collagen f 0col and the initial extrafibrillar volume
fraction f 0ef as

f 0col ¼
f∞colðρ∞tissueÞ

ρHA
ρf l

f∞HAðρ∞tissueÞ þ f∞f l ðρ∞tissueÞ þ f∞colðρ∞tissueÞ

f 0ef ¼ 1−
1

0:88
dmax

ddry

� �2 f∞colðρ∞tissueÞ
ρHA
ρf l

f∞HAðρ∞tissueÞ þ f∞f l ðρ∞tissueÞ þ f∞colðρ∞tissueÞ
ðB:5Þ
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whereby dependencies on tissue mass density in (B.4) and (B.5)
follow (A.4).
Appendix C. Derivation of the expression for the extrafibrillar
shrinkage, Eq. (11)

Mineralization-induced shrinkage of the tissue according to
Eq. (10) can be formally downscaled to the extrafibrillar level (the
extrafibrillar space filling volume Vef ), by introduction of the
extrafibrillar volume fraction f ef ¼ Vef =Vtissue;

V∞
ef

V0
ef

¼ f∞ef
f 0ef

V∞
tissue

V0
tissue

ðC:1Þ

At any time instant t, the extrafibrillar space consists of fluid
and mineralized parts, with volume fractions f tef ;f l and f tef ;HA

f tef ¼ f tef ;f l þ f tef ;HA ðC:2Þ
whereby the mineralized part does not exist yet at the beginning
of the mineralization process (t¼0)

f 0ef ¼ f 0ef ;f l
V0
ef ¼ V0

ef ;f l ðC:3Þ

In order to get access to the volume fraction f ef ;f l of the
extrafibrillar fluid, we divide mass conservation expression (5)2
by the mass density of fluid, ρf l, and by the tissue volume Vt

tissue,
yielding

mt
ef ;f l

ρf lV
t
tissue

¼ Vt
ef ;f l

Vt
tissue

¼ f tef ;f l ¼
V0
ef

Vt
tissue

−
mt

ef ;HA

ρf lV
t
tissue

ðC:4Þ

Next, we express the right-hand term of (C.4) as function of
volume fractions and tissue shrinkage Vt

tissue=V
0
tissue, by using the

real mass density of hydroxyapatite ρHA

f tef ;f l ¼
V0
ef

V0
tissue

V0
tissue

Vt
tissue

−
Vt
ef ;HA

Vt
tissue

ρHA
ρf l

¼ f 0ef
Vt
tissue=V

0
tissue

−f tef ;HA
ρHA
ρf l

ðC:5Þ

Insertion of (C.5) into (C.2) yields the extrafibrillar volume
fraction f tef as function of only two unknowns, f tef ;HA and f 0ef , in the
form

f tef ¼
f 0ef

Vt
tissue=V

0
tissue

þ f tef ;HA � 1−
ρHA
ρf l

 !
ðC:6Þ

In order to get access into the first of these two unknowns, the
volume fraction of hydroxyapatite in the extrafibrillar space, f tef ;HA,
we recall the finding of Hellmich and Ulm (2003) that the mineral
concentration in the extrafibrillar space is equal to that in the
extracollagenous space, which reads mathematically as

∀ t∈ 0;∞½ �; mt
HA

Vt
ec

¼
mt

ef ;HA

Vt
ef

ðC:7Þ

with Vt
ec ¼ Vt

tissue−Vcol as the extracollagenous volume at time t.
Relation (C.7) was confirmed by transmission electromicrographs
(Prostak and Lees 1996; Zylberberg et al., 1998), neutron diffrac-
tion data (Lees et al., 1984; Bonar et al., 1985), and chemical tests
(Lees 1987; Biltz and Pellegrino. 1969; Lees and Page, 1992), see
(Hellmich and Ulm 2003) for details. In order to study the effect of
mass conservation in closed fibrillar and extrafibrillar spaces,
expressed through Eq. (4), on the on-average uniform concentra-
tion of mineral in the extracollagenous tissue space, we differ-
entiate Eq. (C.7) with respect to time, yielding

_mt
HAV

t
ef þmt

HA
_V
t
ef ¼ _mt

ef ;HAV
t
ec þmt

ef ;HA
_V
t
ec ðC:8Þ

Considering the volume rates as the sum of fluid and mineral
subvolume rates, and expressing the latter as ratios of fluid and
mineral mass rates over corresponding real mass densities yields:

Vt
ef ¼ Vt

ef ;HA þ Vt
ef ;f l ¼

mt
ef ;HA

ρHA
þ

mt
ef ;f l

ρf l
⇒ _V

t
ef ¼

_mt
ef ;HA

ρHA
þ

_mt
ef ;f l

ρf l

Vt
ec ¼ Vt

HA þ Vt
f l ¼

mt
HA

ρHA
þ
mt

f l

ρf l
⇒ _V

t
ec ¼

_mt
HA

ρHA
þ

_mt
f l

ρf l
ðC:9Þ

Insertion of (C.9) into (C.8), specifying the corresponding result
for mass transformation (4), and using mass balance (5) yields

_mt
HA Vt

ef−
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ef ;HA

ρHA
þ
m0

ef ;f l

ρf l
−
mt

ef ;f l

ρf l

 !
¼ _mt

ef ;HA Vt
ec−

mt
HA

ρHA
þ

m0
f l

ρf l
−
mt

f l

ρf l

 !

ðC:10Þ
Integration of Eq. (C.10) between time zero (where no mineral

is present) and time t, while using the relations for the initial fluid
volumes in the extrafibrillar space, V0

ef ;f l ¼m0
ef ;f l=ρf l, and in the

whole tissue, V0
f l ¼m0

f l=ρf l, yields

mt
ef ;HA ¼

V0
ef ;f l

V0
f l

mt
HA ðC:11Þ

Now, we are in the position to finally get access to the
extrafibrillar mineral volume fraction, through dividing Eq. (C.11)
by the mineral mass density ρHA and the current tissue volume
Vt
tissue, while dividing the initial fluid volumes V0

ef ;f l and V0
f l by the

initial tissue volume V0
tissue, which yields

mt
ef ;HA

ρHAV
t
tissue

¼ Vt
ef ;HA

Vt
tissue

¼ f tef ;HA ¼ V0
ef ;f l=V

0
tissue

V0
f l=V

0
tissue

mt
HA

ρHAV
t
tissue

¼ V0
ef =V

0
tissue

ðV0
tissue−VcolÞ=V0

tissue

Vt
HA

Vt
tissue

¼ f 0ef
1−f 0col

f tHA

ðC:12Þ

with f 0col as the initial volume fraction of collagen. Inserting (C.12)
into the expression for the extrafibrillar volume fraction (C.6)
yields

f tef ¼
f 0ef

Vt
tissue=V

0
tissue

þ f 0ef
1−f 0col

� 1−
ρHA
ρf l

 !
f tHA ðC:13Þ

Evaluation of (C.13) for t-∞, and insertion of the correspond-
ing result into extrafibrillar shrinkage expression (C.1) delivers Eq.
(11) of Section 2.3.
Appendix D. Derivation of the expression for the fibrillar
shrinkage of partially dehydrated tissues, Eq. (17)

In order to downscale (15) to the fibrillar level (where we seek
experimental validation through diffraction data), we need to
know how the lost fluid volume ΔV∞

f l is partitioned between the
fibrillar and extrafibrillar spaces, with the respective fractions
fulfilling

ΔV∞
f l ¼ΔV∞

ef ;f l þ ΔV∞
f ib;f l ðD:1Þ

whereby the overall fluid volume loss can be identified as the
dehydration-induced volume loss of the extracollagenous space,
ΔV∞

ec , and the extrafibrillar volume loss can be identified as the
volume loss of the extrafibrillar space:

ΔV∞
f l ¼ΔV∞

ec and ΔV∞
ef ;f l ¼ΔV∞

ef ðD:2Þ

The evolutions of the extracollagenous and extrafibrillar volumes
during dehydration follow from specification of mineral distribu-
tion evolution (C.8) for t-∞ and for vanishing mass formation
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rates, _m∞
HA ¼ _m∞

ef ;HA ¼ 0, reading as

_Vec

_Vef
¼

_Vf l

_Vef ;f l
¼ m∞

HA

m∞
ef ;HA

ðD:3Þ

The mineral mass ratio in (D.3) can be determined as a function
of the volume fractions in unmineralized tissue, thanks to
Eqs. (C.11) and (C.12)

m∞
HA

m∞
ef ;HA

¼ 1−f 0col
f 0ef

ðD:4Þ

with f 0ef and f 0col according to Eq. (B.5).
Integration of (D.3) from the fully mineralized and fully

hydrated state, during the entire time span of the (partial or full)
dehydration process, results in

ΔV∞
ec

ΔV∞
ef

¼ ΔV∞
f l

ΔV∞
ef ;f l

¼ 1−f 0col
f 0ef

ðD:5Þ

where use of (D.4) was made, and f 0ef and f 0col still follow from
Eq. (B.5). Eq. (D.5), together with (15), (D.1), and (D.2), finally
allows for identification of the dehydration-induced fibrillar
shrinkage, according to Eq. (17) of Section 2.5.
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