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Abstract

Given a finite field F and a linear recurrence relation over F it is possible to find, in a fairly
“obvious” way, a finite extension L of [ and a subgroup M of the multiplicative group of L
such that the elements of M may be written, without repetition, so as to form a cyclically
closed sequence which obeys the recurrence. Here we investigate this phenomenon for second-
order recurrences; the situation in which F has prime order and the characteristic polynomial
of the relation is irreducible over F is described.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In certain finite fields F, it is possible to find a subgroup M of the multiplicative
group of F such that the elements of M may be written, without repetition, so as to
form a cyclically closed Fibonacci sequence; that is, M = (uy, ty, ..., t,,—;) and
Uizr = i +; for all relevant 7, with indices (modm). For example, the
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multiplicative group of F;; and its subgroup of squares may be written
(1,8,9,6,4,10,3,2,5,7) and (1,4,5,9,3),

respectively. We will see, (1.5), that there is an “obvious” way for this to occur, and
the natural question, addressed in this paper, is whether the obvious way is the only
way. It happens that the obvious way is the only way in many, but not all, cases and
it is this behaviour which interested us. This seems to have been investigated first by
Somer, [5,6]; see also [1].

We study this phenomenon for sequences which obey general second-order linear
recurrence relations of the form

Hitor = Ol + Pl (1)

over a finite field F, where o,pelF, p#0. Associated with (1) is the so-called
characteristic polynomial of the relation

£(0) = & = ot — peFi,
a sequence which obeys (1) will be called an f-sequence.

Preliminaries 1.1. Let F = F, be the finite field of order ¢ and let F* denote the
multiplicative group of F. If G is a finite group and g€ G then |G| and |g| denote their
respective orders. Our characteristic polynomials f(¢) are all monic, quadratic and
satisfy £(0) #0, so we write

Fo[f] = {f(¢)eF[f]: f is monic, quadratic and f(0)#0}.
Let f(t) = 2 — ot — peFo[1].

(a) The unit f-sequence in F (the impulse-response f-sequence in [4]) is the f-
sequence (u,-)ieNO such that uy = 0, uy = 1. If n,be Ny then w,.p = u, 1up + puyiy_;:
this is easy to prove by induction; alternatively, see [3, Lemma 1(a)].

(b) The least period of an f-sequence (s;) ien, 10 [ 1s the smallest natural number m
such that s; = s;,, for all ieNj.

(c) The order of f, written ord(f), is the least natural number e for which f(¢)
divides ¢ — 1. If f has distinct roots £, { in an extension field L of F then ord(f) =
lem(|€], |¢]) (see [4, 3.11]).

Definition 1.2. Let [ be a finite field and let f(¢) = > — ot — peFolt].

By an f-subgroup we understand a subgroup M <K*, where K is some finite
extension of F, such that M may be written as

M = {:uO = la:ula "'7."‘71171} = {:ui}a
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where ;. , = opy + pu; for all i (indices (modm)) and p,#u; if 0<i#j<m. We
emphasise that notation is always standardised so that y, = 1. In this situation we
say that the f-sequence (4;),., represents M.

Observation 1.3. Suppose that f € Fy[¢], that K is a finite extension of F and that M is
an f-subgroup of K*. By [4, 8.27], |M| divides ord(f).

Suppose f has roots £+ in the splitting field L of f over K, so L = IK(&, (). Now
ord(f) = lem(|¢[, [¢|) divides |F(&,()°| and so M<F(£,()" as L* has a unique
subgroup of each possible order.

Suppose f has the repeated root £eF. By [4, 3.8] ord(f) = |¢|p, where p is the
characteristic of F. Thus | M| divides |£| because M <IK*, whence M <[F".

In particular, an f-subgroup is always contained in the splitting field of f over [F;
this will in future be assumed without comment.

Furthermore, if f is irreducible over F then |M| = ord(f) = ||, the first equality
by [4, 8.28], and then M = {¢).

Lemma 1.4. Let F be a finite field and let f (1) = > — ot — peFolt]. If M = {1, ,, ...}
is an f-subgroup with |M|<4 then f(u,) = 0.

Proof

(@) f M=1thenl =0+ pandf(l)=0.

(b) If | M| =2 then M = {1,—1}, whence 1 = —o + p and f(—1) = 0.

(©) If [M| = 3 then M = {1,u;, i} and f(1;) = 0.

(d) Suppose |[M|=4.1f |u;| = 4 and p, = p then f(p;) = 0. If || = 4 and p, = 13
then w3 = p whence 13 = ou; + p and 1 = opuf + pui. The last equation gives
1 = ou, + pud, so pu? =p and p? =1, a contradiction. If || =2, similar
reasoning gives a contradiction. [

Observation 1.5. Let /' eFy[7] and let &, { be the roots of /" in a splitting field. Write
|é] = m. Then (1,&,&%, ...,&"" ...) is clearly an f-sequence, and M = (&) is an
f-subgroup. If |{| =|&| then (1,(,(% ...) is another way of writing M as an
f-subgroup.

This is the “obvious” way for an f-subgroup to occur. By Lemma 1.4, any f-
subgroup of order at most 4 can only be written in this way. There exist cases when it
is possible to rewrite an f-subgroup < ¢) as an f-sequence (1, f3,y, ...) where f§ is not
a root of f: examples of this phenomenon will be given in Section 2. By Observation
1.3, if f is irreducible then any f-subgroup has the form <{&) (considered as a
group), but we have no proof that this must occur in general.

These considerations motivate the following.

Definition 1.6. Let Fbe a finite field and felFy[f]. Suppose that M is an f-
subgroup. Then M is said to be nonstandard if there exists a choice of fel* where
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f(B)#0 such that for u; = f we have M = {1, p,, ... }; otherwise, M is said to be
standard.

Thus by Lemma 1.4, any f-subgroup of order at most 4 is standard. There is
another general situation where it is very easy to prove that an f-subgroup must be
standard.

Proposition 1.7. Let T be a finite field and let f(t)eFo[f]. Suppose that f(t) has a
double root E€F* and that M is an f-subgroup. Then M is standard.

Proof. Write |M| = m; then m | ord(f) by [4, 8.27]. By [4, 8.23], we have
M ={(a+np)E" neNo} = {(a+np)&" 0<n<m— 1}.

Write u, = (o0 + nf)&" (with py = 1); then o = 1 and g, = (1 + np)E". Because y,, =
Yo then (1 +mp)E™ = 1, and then because u; = u,,,; and £#0, easy calculations give
p = pE". If f#0 then &" = 1, whence 1 + mfi = 1 and mff = 0. But m| | F*| so m#0
and then f§ = 0. The assertion follows. [

The proof of our main result, Theorem 3.1, depends on the following Hermite-
type condition for a polynomial to permute the elements of a finite multiplicative
subgroup of a field. For the reader’s convenience, we outline a proof; more details
are given in [2, Theorem 3.3].

Theorem 1.8 (Brison [2]). Let F be a field and suppose that G<F* where |G| = meN.
Suppose that ¢(t) e F[] induces a permutation of the elements of G. If be N, let ") (1)
denote the reduction of (¢(1))" (mod (¢#" — 1)) and let qﬁéb) denote the constant term of
g (1). Then ¢ = 0 whenever b0 (mod m).

Proof. For beN, write Sy = >, _;k”. The elements of G are precisely the roots of
" — 1; it follows by Newton’s Formula [4, 1.75] that S;, = 0 if 1 <b<m and thus that
Sy = 0 whenever b#£0 (mod m) because kK = 1 for ke G.

Now Sp =D ic (g(k))" because g permutes the elements of G. Write §)(¢) =
Sl where ¢\” eF. Then (g(k))” = §® (k) = S5 ¢\P ki for ke G and so

1= 1

m—1
Si=3"3 "k = m+ ¢S+ + ¢ S,

keG i=0

whence Sj, = qbéb>m, for beN, because S| = --- = S,,— = 0. Because G<F* then m,

considered as an element of F, is nonzero. Thus q’)éb) =0 whenever
b#0 (modm). O
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2. Some nonstandard subgroups

In this section some general configurations which give rise to nonstandard
f-subgroups are presented. Firstly, an example.

Example 2.1. Let f(¢) = > — t — 1 €F3[{]; f is irreducible over F3 and splits in [Fo.
Easy calculations show that for any of the six elements Ae[F\F;, the f-sequence
(1, 4, ...) represents [Fg; thus Fj is a nonstandard f-subgroup. This example illustrates
the case ¢ = 3 and ord(f) = 8 of Proposition 2.4.

Lemma 2.2. Let | be a finite field of odd characteristic. Let (€l*. Then

(a) Not both |&| and | — &| can be odd.
(b) Suppose that |&| = 2k where keN. If k is even then |&| = | — &|. If k is odd then
| =&l =k and [¢] = 2] = ¢].

Proof.

@) If h = |&] x | — &| were odd then 1 = (£)"/(=&)" = (=1)" = —1, which is false.

(b) We have |&K| =2, & = —1 and —¢& = &1 If k is even then ged(2k,k 4+ 1) = 1
and | — & = |€|. If k is odd then ged(2k,k + 1) =2 and so k + | = 2v, where
veN with ged(|¢],v) = 1. But now —¢& = &1 = (£%)?, where |¢| = |, and the
final assertion follows. [J

Proposition 2.3. Let T be a finite field of odd characteristic and | be the splitting field
of (1) = > — pelo[t]. Let E€L* be a root of f with || even. Let M be an f-subgroup
with |M|>4.

() If |M| is odd then M = { — &) and M is standard.
(b) If |M] is even then M = &) and M is nonstandard. Moreover, when |p| is even
then |M| is even.

Proof. That f has a root of even order follows from Lemma 2.2.
Write |M| = m. Because M is an f-subgroup then

M:(1“07.“17"'):(17a7p7ap7'~a1aaa"')7 (2)

for some ael*, and w, = 1if and only if m | k. We have 1, = p” and p,,., = ap” for
h=>0. Because 1 = pl’l = Iy then m | 2|p[ and so [p|>2 because m>4.

Suppose firstly that m is odd; then m = 2n + 1 with neN. We have 1 = u,, = p,,,
and so 1 = ap" = p" = p**!. Thus, |p||m, and so m = |p| because m is odd and
m | 2|p|; in particular, |p| is odd. This, incidentally, proves the final statement of (b).
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We also have a = p"*! and a*> = p, whence |a| = |p|. Thus a is an odd-order root
of f(t),s0o a=—¢ and M = (1,a,d?,...) = { — &) is standard.

Suppose next that m is even with m>4. If M were standard, the only possible
representing f-sequences for M would be

(lvévpvépv"') and (1’_é7p7_épv~--)a

with the second only if | — | is even (as otherwise { — &) # M). Choose de {p) so
that d# + 1: this is possible because |p|>2. Then

{1,d¢, p,dép, ...} ={1,p, ...} V&d{l,p,...}

={l,p,...}U&{l,p,...}

:M’

and (1,d& p,dép,...) is an f-sequence which represents M while f(d&)#0. Thus
M is nonstandard. [

Proposition 2.4. Let F be a finite field of order q and f € Fyt] be irreducible with order
q> — 1. Then every f-subgroup M with |M|>4 is nonstandard.

Proof. Let [ be the splitting field of f over F and let M be an f-subgroup with
|M|>4. We have |M| = ord(f) = ¢*> — 1 = |K*|, the first equality by [4, 8.28]; in
particular, g=>3. Thus M = K*. Let & be a root of f in K.

Recall that (u,) denotes the unit f-sequence in F,. By [4, 8.27], (u,)
least period ¢* — 1 and u,z_; = 0. Let a(f) be the least element of {neN: u, = 0}; it
is well-known that if ne Ny then u, = 0 if and only if «(f) | n.

Fix heN such that 0<bh<q*> — 2 and b0 (mod a(f)); then u, #0 while if ne Ny
then (u, t,45) # (0,0). Thus u,, + Euyyp #0 for all ne Ny because {1, ¢} is a basis of K
over [,.

Suppose uy + Eugrp = thy, + Ettyypy Where 0<k<m<q®> —2. Then u; =u, and
Ujyp = Upmyp. By 1.1(a),

HGNO HGNO has

U+ = Uk+1Up + PUKUp—1
Ump+b = Um+1Up + PUMUL—1,

and SO | = Uy . From this, the fact that u;, = u,, and the fact that the sequence is
determined by any two consecutive terms, we conclude that m — k is divisible by the
least period, ¢> — 1. Thus k = m. It follows that |[{u; + Eupip: 0<k<qg? —2}| =
¢* — 1, and since uy + uy,p #0 for all k, then

{uk+fuk+bi 0<k<q2 —2} =K"'=M.
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Suppose now that 0<c#d<gq¢®>—2 with ¢,d#0 (mod«(f)). If for some A,
0<h<g’>—2, we have

uo + Sue = up + Cupg
and

uy 4 Cutye = Upr + Etlpri4a
then

Up = up, U = Upy,

Ue = Upyd, Ulye = Uptltd,

whence & =0 and so ¢ =d, contrary to supposition. Thus the sequences (ux +
Stk c)gen, and (ug + Cugra)y oy, are distinct in the strong sense that there is no
translation of one that can make it coincide with the other from some point onwards.

The unit f-sequence (u,),.y, has least period ¢*> —1; in the initial segment
(n)o<n<qo—2» €ach possible ordered pair (v, w)#(0,0), where v, weF,, must appear
exactly once as consecutive elements (where we regard (up_»,up) as being
consecutive) because there are ¢> — 1 such pairs, each of which determines the
sequence. Thus, in the initial segment, each pair (0,w) for we [F; appears exactly
once, and so the element 0 appears exactly ¢ — 1 times. But u, = 0 if and only if
a(f) | n. Thus there are exactly ¢ — 1 integers e with 0<e<g® —2 such that e =
0 (mod «(f)). By what we saw above, this means that there are ¢> — ¢ sequences
(uk + Cukeye)geny, Where ¢#0 (mod a(f)), distinct in the above strong sense, which

represent M. But ¢>3 and so ¢°> — ¢>2, whence M is nonstandard. [J

In the situation of the above result, there are ¢ — ¢ — 2 nonroot choices of i
(in our usual notation) which yield M.

3. The main theorem

The content of our main theorem is that, for irreducible polynomials over fields
of prime order, the nonstandard cases of the previous section are the only ones.

Theorem 3.1. Let F be a field of prime order, p, and let f(t)eFyt] be irreducible.
Suppose that M is an f-subgroup with |M|>4. Then M is standard if and only if both
|M|#p* — 1 and |M| does not divide 2(p — 1).

Proof. Write |M| = m. Then m = ord(f) by [4, 8.28], while m}(p — 1) because f is
irreducible.
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Write [ for the splitting field of /. Since M <L* then m | (p> — 1) and so m =
(¢/d)(p—1) where ¢,deN, c¢|(p+1), d|(p—1) and gcd(c,d) =1, while ¢>1
because m{p — 1. As m>4 then p>2.

Let &, & el be the roots of f. Then |¢| = |&’| =m and M = {(&). By [4, 8.21]
there exist o, €L (not both zero) such that

M = {a& + B(&"), 0<i<m —1}.

To prove that M is standard, it will suffice to prove that one of «, f must be zero;
thus assume for a contradiction that off #0 and write y = —f/o. Now

M = {0 + B(EY, 0<ism — 1} = {ap+ fi, pe M},

whence ¢(¢) := at 4+ 1P permutes the elements of M.
By Theorem 1.8, (¢(1))” (mod (#” — 1)) has constant term zero if b#0 (mod m
and then the constant term of (h(r))” (mod (/" — 1)) is zero for these b, where /() =

g(t)Joo=1—yt.
Suppose now that m42(p — 1) and that c<p + 1. Then

(h(1))” (mod (" — 1)) has constant term zero if be{p—1,2(p—1)}.  (3)

We have
I — Py S () (p-1).
) G T S )
i=0
But
p-1\ (p-D@-2-0@-i)_, .
< i )z Tx 0w o xi = (1) (modp).
Thus

P
= <Z '))lt(l+1)(pl>> _'ypz(p271).
i=0

Because c|(p+ 1) the summation may be rewritten as a double sum, over a
rectangular array of size ¢ x (p + 1)/c:

p+1
c—1

Z Z ycH-/lcz(p 1) t(1+1 p—1) Pt(l’ —l)
] =l
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Now m = (¢/d)(p — 1) where ged(c,d) = 1, so if keN then m | k(p — 1) if and only
ife(p—1)|kd(p —1). Thus

m|k(p—1) if and only if c|k. (4)
Thus, =) = (mod (" — 1)) for all i, while #’'~' = £ (mod (" — 1)) because
m| (p* — 1). Thus,
N
oy =S| S 5 | o (mod (¢ - 1),
=0 \ =0

For j in the range of summation, (V*)?=1 = {0 precisely when j = ¢ — 1. Thus the
constant term of (A(r))’~" (mod (" — 1)) is

ptl_

1
C
> [y =,
i=0

and by (3) this must be zero. Since y#0, this yields

ptl

and so
=2 .o
(/’l(l))pil = fochl Z ,V/t(]Jrl)(pfl) (mod (Zm _ 1))
7=0

Note that the term with j = ¢ — 1 cancels with y”. Thus

c=2 =2
(/1([))2(p 1) Z(p c+1) ( yl+jtl+j+2 (p— l)) (mod (tm _ 1))

j=0 i=0

In the double sum, there are contributions to the constant term precisely when
c|(i+j+2), because of (4). The summations extend from 0 to ¢ — 2, so there are
just ¢ — 1 such contributions, corresponding to the pairs

(G=0,i=c—-2),...,( =c—2,i=0).

It follows that the constant term of (4(7))**~" (mod (" —1)) is y*~¢(c — 1), and,

again by (3), this must be zero. But y#0, and so ¢ — 1 = 0 as an element of L; this is

impossible as 1 <c<p + 1. This contradiction proves that M is standard in this case.
Next assume that ¢ =p + 1.
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If d =1 then m = p> — 1 and M is nonstandard by Proposition 2.4.
Suppose d>1. Now m =v(p+ 1) where v = ’%]; in particular, 20#£0 (mod m).
We have

. (20 o
()" = (1= =3 ( j )(—w/)fz“f@ .

Jj=0

If j=v then 2v+j(p — 1) =v(p + 1) = m. On the other hand, if 2v+j(p—1) =
20+ k(p — 1) (mod m) then j = k (mod (m/ged(m,p — 1))). Now

ged(m, (p — 1)) e{v, 2v}
because ged(p — 1,p+ 1) =2 and so
m/ged(m,p —1)=v(p+1)/2v=(p+1)/2>v.

Thus for je{0, ...,2v} we have 2v + j(p — 1) = 0 (mod m) if and only if j = v, and so
the constant term of (h(¢))* (mod (#” — 1)) is (*')(—y)". But this constant term is

zero, which is absurd because y#0 by choice and (ZL”) #0 because 2v<p. Thus M is
standard in this case.

Finally, suppose m |2(p — 1). Then [¢][2(p — 1), (&¥"1)* =1 and &' = +1. If
&' =1 then ¢eF;, which is false. Thus & = —¢ and 6 = & + ¢ = 0. Now [¢| =
| — ¢] and so by Lemma 2.2, |p| is even. By Proposition 2.3, M is nonstandard. [

The main theorem was proved for irreducible polynomials over fields of prime
order. We are tempted by numerical evidence to conjecture that some similar result
should be true over arbitrary finite fields.
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