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Abstract

Given a finite field F and a linear recurrence relation over F it is possible to find, in a fairly

‘‘obvious’’ way, a finite extension L of F and a subgroup M of the multiplicative group of L

such that the elements of M may be written, without repetition, so as to form a cyclically

closed sequence which obeys the recurrence. Here we investigate this phenomenon for second-

order recurrences; the situation in which F has prime order and the characteristic polynomial

of the relation is irreducible over F is described.

r 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In certain finite fields F; it is possible to find a subgroup M of the multiplicative
group of F such that the elements of M may be written, without repetition, so as to
form a cyclically closed Fibonacci sequence; that is, M ¼ ðm0; m1;y; mm�1Þ and
miþ2 ¼ miþ1 þ mi for all relevant i; with indices ðmodmÞ: For example, the
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multiplicative group of F11 and its subgroup of squares may be written

ð1; 8; 9; 6; 4; 10; 3; 2; 5; 7Þ and ð1; 4; 5; 9; 3Þ;

respectively. We will see, (1.5), that there is an ‘‘obvious’’ way for this to occur, and
the natural question, addressed in this paper, is whether the obvious way is the only
way. It happens that the obvious way is the only way in many, but not all, cases and
it is this behaviour which interested us. This seems to have been investigated first by
Somer, [5,6]; see also [1].
We study this phenomenon for sequences which obey general second-order linear

recurrence relations of the form

miþ2 ¼ smiþ1 þ rmi; ð1Þ

over a finite field F; where s; rAF; ra0: Associated with (1) is the so-called
characteristic polynomial of the relation

f ðtÞ ¼ t2 � st � rAF½t�;

a sequence which obeys (1) will be called an f -sequence.

Preliminaries 1.1. Let F ¼ Fq be the finite field of order q and let F� denote the
multiplicative group of F: If G is a finite group and gAG then jGj and jgj denote their
respective orders. Our characteristic polynomials f ðtÞ are all monic, quadratic and
satisfy f ð0Þa0; so we write

F0½t� :¼ ff ðtÞAF½t�: f is monic; quadratic and f ð0Þa0g:

Let f ðtÞ ¼ t2 � st � rAF0½t�:

(a) The unit f -sequence in F (the impulse-response f -sequence in [4]) is the f -
sequence ðuiÞiAN0

such that u0 ¼ 0; u1 ¼ 1: If n; bAN0 then unþb ¼ unþ1ub þ runub�1:

this is easy to prove by induction; alternatively, see [3, Lemma 1(a)].
(b) The least period of an f -sequence ðsiÞiAN0

in F is the smallest natural number m

such that si ¼ siþm for all iAN0:
(c) The order of f ; written ordðf Þ; is the least natural number e for which f ðtÞ

divides te � 1: If f has distinct roots x; z in an extension field L of F then ordðf Þ ¼
lcmðjxj; jzjÞ (see [4, 3.11]).

Definition 1.2. Let F be a finite field and let f ðtÞ ¼ t2 � st � rAF0½t�:

By an f -subgroup we understand a subgroup MpK�; where K is some finite
extension of F; such that M may be written as

M ¼ fm0 ¼ 1; m1;y; mm�1g ¼ fmig;
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where miþ2 ¼ smiþ1 þ rmi for all i (indices ðmodmÞ) and miamj if 0piajom: We

emphasise that notation is always standardised so that m0 ¼ 1: In this situation we
say that the f -sequence ðmiÞiAN0

represents M:

Observation 1.3. Suppose that fAF0½t�; that K is a finite extension of F and that M is
an f -subgroup of K�: By [4, 8.27], jMj divides ordðf Þ:

Suppose f has roots xaz in the splitting field L of f over K; so L ¼ Kðx; zÞ: Now
ordðf Þ ¼ lcmðjxj; jzjÞ divides jFðx; zÞ�j and so MpFðx; zÞ� as L� has a unique
subgroup of each possible order.
Suppose f has the repeated root xAF: By [4, 3.8] ordðf Þ ¼ jxjp; where p is the

characteristic of F: Thus jMj divides jxj because MpK�; whence MpF�:
In particular, an f -subgroup is always contained in the splitting field of f over F;

this will in future be assumed without comment.
Furthermore, if f is irreducible over F then jMj ¼ ordðf Þ ¼ jxj; the first equality

by [4, 8.28], and then M ¼ /xS:

Lemma 1.4. Let F be a finite field and let f ðtÞ ¼ t2 � st � rAF0½t�: If M ¼ f1; m1;yg
is an f -subgroup with jMjp4 then f ðm1Þ ¼ 0:

Proof

(a) If M ¼ 1 then 1 ¼ sþ r and f ð1Þ ¼ 0:
(b) If jMj ¼ 2 then M ¼ f1;�1g; whence 1 ¼ �sþ r and f ð�1Þ ¼ 0:
(c) If jMj ¼ 3 then M ¼ f1; m1; m21g and f ðm1Þ ¼ 0:
(d) Suppose jMj ¼ 4: If jm1j ¼ 4 and m2 ¼ m21 then f ðm1Þ ¼ 0: If jm1j ¼ 4 and m2 ¼ m31

then m3 ¼ m21 whence m
3
1 ¼ sm1 þ r and 1 ¼ sm21 þ rm31: The last equation gives

m31 ¼ sm1 þ rm21; so rm21 ¼ r and m21 ¼ 1; a contradiction. If jm1j ¼ 2; similar
reasoning gives a contradiction. &

Observation 1.5. Let fAF0½t� and let x; z be the roots of f in a splitting field. Write

jxj ¼ m: Then ð1; x; x2;y; xm�1;yÞ is clearly an f -sequence, and M ¼ /xS is an

f -subgroup. If jzj ¼ jxj then ð1; z; z2;yÞ is another way of writing M as an
f -subgroup.
This is the ‘‘obvious’’ way for an f -subgroup to occur. By Lemma 1.4, any f -

subgroup of order at most 4 can only be written in this way. There exist cases when it
is possible to rewrite an f -subgroup /xS as an f -sequence ð1; b; g;yÞ where b is not

a root of f : examples of this phenomenon will be given in Section 2. By Observation
1.3, if f is irreducible then any f -subgroup has the form /xS (considered as a
group), but we have no proof that this must occur in general.

These considerations motivate the following.

Definition 1.6. Let F be a finite field and fAF0½t�: Suppose that M is an f -
subgroup. Then M is said to be nonstandard if there exists a choice of bAL� where
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f ðbÞa0 such that for m1 ¼ b we have M ¼ f1; m1;yg; otherwise, M is said to be
standard.

Thus by Lemma 1.4, any f -subgroup of order at most 4 is standard. There is
another general situation where it is very easy to prove that an f -subgroup must be
standard.

Proposition 1.7. Let F be a finite field and let f ðtÞAF0½t�: Suppose that f ðtÞ has a

double root xAF� and that M is an f -subgroup. Then M is standard.

Proof. Write jMj ¼ m; then m j ordðf Þ by [4, 8.27]. By [4, 8.23], we have

M ¼ fðaþ nbÞxn: nAN0g ¼ fðaþ nbÞxn: 0pnpm � 1g:

Write mn ¼ ðaþ nbÞxn (with m0 ¼ 1); then a ¼ 1 and mn ¼ ð1þ nbÞxn: Because mm ¼
m0 then ð1þ mbÞxm ¼ 1; and then because m1 ¼ mmþ1 and xa0; easy calculations give
b ¼ bxm: If ba0 then xm ¼ 1; whence 1þ mb ¼ 1 and mb ¼ 0: But m j j F�j so ma0
and then b ¼ 0: The assertion follows. &

The proof of our main result, Theorem 3.1, depends on the following Hermite-
type condition for a polynomial to permute the elements of a finite multiplicative
subgroup of a field. For the reader’s convenience, we outline a proof; more details
are given in [2, Theorem 3.3].

Theorem 1.8 (Brison [2]). Let F be a field and suppose that GpF� where jGj ¼ mAN:

Suppose that gðtÞAF½t� induces a permutation of the elements of G: If bAN; let %gðbÞðtÞ
denote the reduction of ðgðtÞÞb ðmod ðtm � 1ÞÞ and let fðbÞ

0 denote the constant term of

%gðbÞðtÞ: Then fðbÞ
0 ¼ 0 whenever bc0 ðmodmÞ:

Proof. For bAN; write Sb ¼
P

kAG kb: The elements of G are precisely the roots of

tm � 1; it follows by Newton’s Formula [4, 1.75] that Sb ¼ 0 if 1pbom and thus that
Sb ¼ 0 whenever bc0 ðmodmÞ because km ¼ 1 for kAG:

Now Sb ¼
P

kAG ðgðkÞÞb because g permutes the elements of G: Write %gðbÞðtÞ ¼Pm�1
i¼0 fðbÞ

i ti; where fðbÞ
i AF: Then ðgðkÞÞb ¼ %gðbÞðkÞ ¼

Pm�1
i¼0 fðbÞ

i ki for kAG and so

Sb ¼
X
kAG

Xm�1

i¼0
fðbÞ

i ki ¼ fðbÞ
0 m þ fðbÞ

1 S1 þ?þ fðbÞ
m�1Sm�1;

whence Sb ¼ fðbÞ
0 m; for bAN; because S1 ¼ ? ¼ Sm�1 ¼ 0: Because GpF� then m;

considered as an element of F; is nonzero. Thus fðbÞ
0 ¼ 0 whenever

bc0 ðmodmÞ: &
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2. Some nonstandard subgroups

In this section some general configurations which give rise to nonstandard
f -subgroups are presented. Firstly, an example.

Example 2.1. Let f ðtÞ ¼ t2 � t � 1AF3½t�; f is irreducible over F3 and splits in F9:
Easy calculations show that for any of the six elements lAF�9\F

�
3; the f -sequence

ð1; l;yÞ represents F�9; thus F�9 is a nonstandard f -subgroup. This example illustrates

the case q ¼ 3 and ordðf Þ ¼ 8 of Proposition 2.4.

Lemma 2.2. Let L be a finite field of odd characteristic. Let xAL�: Then

(a) Not both jxj and j � xj can be odd.
(b) Suppose that jxj ¼ 2k where kAN: If k is even then jxj ¼ j � xj: If k is odd then

j � xj ¼ k and jxj ¼ 2j � xj:

Proof.

(a) If h :¼ jxj � j � xj were odd then 1 ¼ ðxÞh=ð�xÞh ¼ ð�1Þh ¼ �1; which is false.
(b) We have jxkj ¼ 2; xk ¼ �1 and �x ¼ xkþ1: If k is even then gcdð2k; k þ 1Þ ¼ 1

and j � xj ¼ jxj: If k is odd then gcdð2k; k þ 1Þ ¼ 2 and so k þ 1 ¼ 2v; where
vAN with gcdðjxj; vÞ ¼ 1: But now �x ¼ xkþ1 ¼ ðxvÞ2; where jxvj ¼ jxj; and the
final assertion follows. &

Proposition 2.3. Let F be a finite field of odd characteristic and L be the splitting field

of f ðtÞ ¼ t2 � rAF0½t�: Let xAL� be a root of f with jxj even. Let M be an f -subgroup

with jMj44:

(a) If jMj is odd then M ¼ /� xS and M is standard.
(b) If jMj is even then M ¼ /xS and M is nonstandard. Moreover, when jrj is even

then jMj is even.

Proof. That f has a root of even order follows from Lemma 2.2.
Write jMj ¼ m: Because M is an f -subgroup then

M ¼ ðm0; m1;yÞ ¼ ð1; a; r; ar;y; 1; a;yÞ; ð2Þ

for some aAL�; and mk ¼ 1 if and only if m j k:We have m2h ¼ rh and m2hþ1 ¼ arh for

hX0: Because 1 ¼ rjrj ¼ m2jrj then m j 2jrj and so jrj42 because m44:
Suppose firstly that m is odd; then m ¼ 2n þ 1 with nAN: We have 1 ¼ mm ¼ m2m

and so 1 ¼ arn ¼ rm ¼ r2nþ1: Thus, jrj j m; and so m ¼ jrj because m is odd and
m j 2jrj; in particular, jrj is odd. This, incidentally, proves the final statement of (b).
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We also have a ¼ rnþ1 and a2 ¼ r; whence jaj ¼ jrj: Thus a is an odd-order root

of f ðtÞ; so a ¼ �x and M ¼ ð1; a; a2;yÞ ¼ /� xS is standard.
Suppose next that m is even with m44: If M were standard, the only possible

representing f -sequences for M would be

ð1; x; r; xr;yÞ and ð1;�x; r;�xr;yÞ;

with the second only if j � xj is even (as otherwise /� xSaM). Choose dA/rS so
that da71: this is possible because jrj42: Then

f1; dx; r; dxr;yg ¼f1; r;yg ’,xdf1; r;yg

¼f1; r;yg ’,xf1; r;yg

¼M;

and ð1; dx; r; dxr;yÞ is an f -sequence which represents M while f ðdxÞa0: Thus
M is nonstandard. &

Proposition 2.4. Let F be a finite field of order q and fAF0½t� be irreducible with order

q2 � 1: Then every f -subgroup M with jMj44 is nonstandard.

Proof. Let K be the splitting field of f over F and let M be an f -subgroup with

jMj44: We have jMj ¼ ordðf Þ ¼ q2 � 1 ¼ jK�j; the first equality by [4, 8.28]; in
particular, qX3: Thus M ¼ K�: Let x be a root of f in K:
Recall that ðunÞnAN0

denotes the unit f -sequence in Fq: By [4, 8.27], ðunÞnAN0
has

least period q2 � 1 and uq2�1 ¼ 0: Let aðf Þ be the least element of fnAN: un ¼ 0g; it
is well-known that if nAN0 then un ¼ 0 if and only if aðf Þ j n:

Fix bAN such that 0obpq2 � 2 and bc0 ðmod aðf ÞÞ; then uba0 while if nAN0

then ðun; unþbÞað0; 0Þ: Thus un þ xunþba0 for all nAN0 because f1; xg is a basis ofK
over Fq:

Suppose uk þ xukþb ¼ um þ xumþb where 0pkpmpq2 � 2: Then uk ¼ um and
ukþb ¼ umþb: By 1.1(a),

ukþb ¼ ukþ1ub þ rukub�1

umþb ¼ umþ1ub þ rumub�1;

and so ukþ1 ¼ umþ1: From this, the fact that uk ¼ um and the fact that the sequence is
determined by any two consecutive terms, we conclude that m � k is divisible by the

least period, q2 � 1: Thus k ¼ m: It follows that jfuk þ xukþb: 0pkpq2 � 2gj ¼
q2 � 1; and since uk þ xukþba0 for all k; then

fuk þ xukþb: 0pkpq2 � 2g ¼ K� ¼ M:
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Suppose now that 0pcadpq2 � 2 with c; dc0 ðmod aðf ÞÞ: If for some h;

0phpq2 � 2; we have

u0 þ xuc ¼ uh þ xuhþd

and

u1 þ xu1þc ¼ uhþ1 þ xuhþ1þd

then

u0 ¼ uh; u1 ¼ uhþ1;

uc ¼ uhþd ; u1þc ¼ uhþ1þd ;

whence h ¼ 0 and so c ¼ d; contrary to supposition. Thus the sequences ðuk þ
xukþcÞkAN0

and ðuk þ xukþdÞkAN0
are distinct in the strong sense that there is no

translation of one that can make it coincide with the other from some point onwards.

The unit f -sequence ðunÞnAN0
has least period q2 � 1; in the initial segment

ðunÞ0pnpq2�2; each possible ordered pair ðv;wÞað0; 0Þ; where v;wAFq; must appear

exactly once as consecutive elements (where we regard ðuq2�2; u0Þ as being

consecutive) because there are q2 � 1 such pairs, each of which determines the
sequence. Thus, in the initial segment, each pair ð0;wÞ for wAF�q appears exactly

once, and so the element 0 appears exactly q � 1 times. But un ¼ 0 if and only if
aðf Þ j n: Thus there are exactly q � 1 integers e with 0pepq2 � 2 such that e 

0 ðmod aðf ÞÞ: By what we saw above, this means that there are q2 � q sequences
ðuk þ xukþcÞkAN0

where cc0 ðmod aðf ÞÞ; distinct in the above strong sense, which
represent M: But qX3 and so q2 � q42; whence M is nonstandard. &

In the situation of the above result, there are q2 � q � 2 nonroot choices of m1
(in our usual notation) which yield M:

3. The main theorem

The content of our main theorem is that, for irreducible polynomials over fields
of prime order, the nonstandard cases of the previous section are the only ones.

Theorem 3.1. Let F be a field of prime order, p; and let f ðtÞAF0½t� be irreducible.

Suppose that M is an f -subgroup with jMj44: Then M is standard if and only if both

jMjap2 � 1 and jMj does not divide 2ðp � 1Þ:

Proof. Write jMj ¼ m: Then m ¼ ordðf Þ by [4, 8.28], while m[ðp � 1Þ because f is
irreducible.
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Write L for the splitting field of f : Since MpL� then m j ðp2 � 1Þ and so m ¼
ðc=dÞðp � 1Þ where c; dAN; c j ðp þ 1Þ; d j ðp � 1Þ and gcdðc; dÞ ¼ 1; while c41
because m[p � 1: As m44 then p42:
Let x; xpAL be the roots of f : Then jxj ¼ jxpj ¼ m and M ¼ /xS: By [4, 8.21]

there exist a; bAL (not both zero) such that

M ¼ faxi þ bðxpÞi; 0pipm � 1g:

To prove that M is standard, it will suffice to prove that one of a; b must be zero;
thus assume for a contradiction that aba0 and write g ¼ �b=a: Now

M ¼ faxi þ bðxiÞp; 0pipm � 1g ¼ famþ bmp; mAMg;

whence gðtÞ :¼ at þ btp permutes the elements of M:

By Theorem 1.8, ðgðtÞÞb ðmod ðtm � 1ÞÞ has constant term zero if bc0 ðmodmÞ
and then the constant term of ðhðtÞÞb ðmod ðtm � 1ÞÞ is zero for these b; where hðtÞ ¼
gðtÞ=a ¼ t � gtp:
Suppose now that m[2ðp � 1Þ and that cop þ 1: Then

ðhðtÞÞb ðmod ðtm � 1ÞÞ has constant term zero if bAfp � 1; 2ðp � 1Þg: ð3Þ

We have

ðhðtÞÞp�1 ¼ ðt � gtpÞp�1 ¼
Xp�1
i¼0

p � 1
i

 !
ð�gÞi

tðiþ1Þðp�1Þ:

But

p � 1
i

 !
¼ ðp � 1Þðp � 2Þ?ðp � iÞ

1� 2�?� i

 ð�1Þi ðmod pÞ:

Thus

ðhðtÞÞp�1 ¼
Xp

i¼0
gitðiþ1Þðp�1Þ

 !
� gptðp

2�1Þ:

Because c j ðp þ 1Þ the summation may be rewritten as a double sum, over a
rectangular array of size c � ðp þ 1Þ=c:

ðhðtÞÞp�1 ¼
Xc�1
j¼0

Xpþ1c
�1

i¼0
gciþj tciðp�1Þ

0
B@

1
CAtðjþ1Þðp�1Þ � gptðp

2�1Þ:
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Now m ¼ ðc=dÞðp � 1Þ where gcdðc; dÞ ¼ 1; so if kAN then m j kðp � 1Þ if and only
if cðp � 1Þ j kdðp � 1Þ: Thus

m j kðp � 1Þ if and only if c j k: ð4Þ

Thus, tciðp�1Þ 
 t0 ðmod ðtm � 1ÞÞ for all i; while tp2�1 
 t0 ðmod ðtm � 1ÞÞ because
m j ðp2 � 1Þ: Thus,

ðhðtÞÞp�1 

Xc�1
j¼0

Xpþ1c
�1

i¼0
gci

0
B@

1
CAgj tðjþ1Þðp�1Þ � gp ðmod ðtm � 1ÞÞ:

For j in the range of summation, tðjþ1Þðp�1Þ 
 t0 precisely when j ¼ c � 1: Thus the
constant term of ðhðtÞÞp�1 ðmod ðtm � 1ÞÞ is

Xpþ1c
�1

i¼0
gci

0
B@

1
CAgc�1 � gp;

and by (3) this must be zero. Since ga0; this yields

Xpþ1c
�1

i¼0
gci ¼ gp�cþ1;

and so

ðhðtÞÞp�1 
 gp�cþ1
Xc�2
j¼0

gj tðjþ1Þðp�1Þ ðmod ðtm � 1ÞÞ:

Note that the term with j ¼ c � 1 cancels with gp: Thus

ðhðtÞÞ2ðp�1Þ 
 g2ðp�cþ1Þ
Xc�2
j¼0

Xc�2
i¼0

giþj tðiþjþ2Þðp�1Þ

 !
ðmod ðtm � 1ÞÞ:

In the double sum, there are contributions to the constant term precisely when
c j ði þ j þ 2Þ; because of (4). The summations extend from 0 to c � 2; so there are
just c � 1 such contributions, corresponding to the pairs

ðj ¼ 0; i ¼ c � 2Þ;y; ðj ¼ c � 2; i ¼ 0Þ:

It follows that the constant term of ðhðtÞÞ2ðp�1Þ ðmod ðtm � 1ÞÞ is g2p�cðc � 1Þ; and,
again by (3), this must be zero. But ga0; and so c � 1 ¼ 0 as an element of L; this is
impossible as 1ocop þ 1: This contradiction proves that M is standard in this case.
Next assume that c ¼ p þ 1:
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If d ¼ 1 then m ¼ p2 � 1 and M is nonstandard by Proposition 2.4.

Suppose d41: Now m ¼ vðp þ 1Þ where v ¼ p�1
d
; in particular, 2vc0 ðmodmÞ:

We have

ðhðtÞÞ2v ¼ ðt � gtpÞ2v ¼
X2v
j¼0

2v

j

 !
ð�gÞj

t2vþjðp�1Þ:

If j ¼ v then 2v þ jðp � 1Þ ¼ vðp þ 1Þ ¼ m: On the other hand, if 2v þ jðp � 1Þ 

2v þ kðp � 1Þ ðmodmÞ then j 
 k ðmod ðm=gcdðm; p � 1ÞÞÞ: Now

gcdðm; ðp � 1ÞÞAfv; 2vg

because gcdðp � 1; p þ 1Þ ¼ 2 and so

m=gcdðm; p � 1ÞXvðp þ 1Þ=2v ¼ ðp þ 1Þ=24v:

Thus for jAf0;y; 2vg we have 2v þ jðp � 1Þ 
 0 ðmodmÞ if and only if j ¼ v; and so

the constant term of ðhðtÞÞ2v ðmod ðtm � 1ÞÞ is ð2v
v
Þð�gÞv: But this constant term is

zero, which is absurd because ga0 by choice and ð2v
v
Þa0 because 2vop: Thus M is

standard in this case.

Finally, suppose m j 2ðp � 1Þ: Then jxj j 2ðp � 1Þ; ðxp�1Þ2 ¼ 1 and xp�1 ¼ 71: If

xp�1 ¼ 1 then xAF�p; which is false. Thus x
p ¼ �x and s ¼ xp þ x ¼ 0: Now jxj ¼

j � xj and so by Lemma 2.2, jrj is even. By Proposition 2.3, M is nonstandard. &

The main theorem was proved for irreducible polynomials over fields of prime
order. We are tempted by numerical evidence to conjecture that some similar result
should be true over arbitrary finite fields.
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