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In this article, we study the sandpile group of the cone of a graph.

After introducing the concept of uniform homomorphism of graphs

we prove that every surjective uniform homomorphism of graphs

induces an injective homomorphismbetween their sandpile groups.

Also, we establish a relationship between the sandpile group of the

cone of the cartesian product of graphs and the sandpile group of

the cone of their factors. As an application of these results we obtain

an explicit description of a set of generators of the sandpile group of

the cone of the hypercube.
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1. Introduction

The sandpile modelswere firstly introduced by Bak et al. [3,4], and have been studied under several

names in statistical physics, theoretical computer science, algebraic graph theory, and combinatorics.

The abelian sandpile model of a graph was introduced by Dhar [19], which generalizes the sandpile

model of a grid given in [3]. The abelian sandpile model of Dhar [19] begins with a connected graph

G = (V, E) and a distinguished vertex s ∈ V , called the sink. Dhar [19] showed that the set of some

configurations (a configurations of G is a vector in NV\s), called recurrent configurations, with the

vertex-by-vertex sum as a binary operation forms a finite abelian group, called the sandpile group of

G. It follows from Kirchhoff’s Matrix-Tree theorem (see e.g. [7]) that the order of the sandpile group of
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a graph G is the number of spanning trees of G. Mainly, the abelian sandpile group has been studied

under the name of sandpile group, denoted by SP(G, s), and critical group, denoted by K(G). It has
been also studied under other names, such as Jacobian group, Picard group, dollar game, see, for

instance [8,9,28,29].

The sandpile grouphas been completely determined for some family of graphs, see, for instance [28,

32,29,25,9,33,35,26,14]. The sandpile group of the cartesian product has received special interest, for

instance the following cartesian products of graphs it has been determined: P4 × Cn [13], K3 × Cn [24],

Km × Pn [27], C4 × Cn [38], and Km × Cn [17,39]. The abstract structure of the sandpile group has

been partially described for the hypercube [2] and the cartesian product of complete graphs [25].

In [16] it was proved that the sandpile group of a dual graph G∗ is isomorphic to the sandpile group

of G. Also, in [6] there are established some relations between the sandpile group of a graph G and

the sandpile group of its line graph. In particular, they proved that if G is non-bipartite and regular,

then K(line(G)) is completely determined as a function of K(G). Finally, in [30] a relationship be-

tween the eigenvalues and eigenvectors of the Laplacian matrix of a graph and their sandpile group is

established.

Given a natural number n, the n-cone of a graph G, denoted by cn(G), is the graph obtained from G

when we add a new vertex s to G and n parallel edges between the new vertex s and all the vertices

of G. If n = 1 we simply write c(G) instead of c1(G). In this article, we study the sandpile group of

the cone of a graph. In particular, we give a partial description of the sandpile group of the cone of the

cartesian product of graphs as a function of the sandpile group of the cone of their factors. Also, we

introduce the concept of uniform homomorphism of graphs and prove that every surjective uniform

homomorphism of graphs induces an injective homomorphism between their sandpile groups. As an

application of these two results we obtain an explicit description of a set of generators of the sandpile

group of the cone of the hypercube of dimension d.

A graph G is a pair (V, E), where V is a finite set and E is a subset of the set of unordered pair of

elements of V . The elements of V and E are called vertices and edges, respectively. If e = {x, y}, then x

and y are incident to e, x and y are the ends of e and x and y are adjacents. Themultiplicity between two

vertices u and v of a graph, denoted bymu,v, is the number of edges with ends u and v. The degree of a

vertex x ∈ G, denoted by dG(x) = d(x), is the number of incident edges to x.

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V, E), if V ′ ⊆ V and E′ ⊆ E. An induced

subgraph G[V ′] = (V ′, E′) is a subgraph of G = (V, E) such that every edge e ∈ E that has its ends in

V ′ is in E′.
The article is organized as follows. In Section 2, the concepts of graph theory that will be needed in

the rest of the article are introduced. We also give the combinatorial and algebraic definitions of the

sandpile group of G with sink sG .

In Section 3, we introduce the concept of uniform homomorphism of graphs. Let G and H be two

graphs and V ⊆ V(H). A V-uniform homomorphism between G andH, is amapping f : V(G) → V(H)
such that for all x ∈ V and y ∈ V(H)

dG[{u}∪Sy](u) = mx,y for all u ∈ Sx = f−1(x)

and f : V(G)\ f−1(V) → V(H)\V is the identity isomorphism. After introducing the concept of a

V-uniform homomorphism, we prove the main theorem of this section.

Theorem 3.5. If f : G → H is a surjective V-uniform homomorphism with f−1(sH) = {sG} and

sH /∈ V ⊂ V(H) such that V(H)\V is a stable set, then the induced mapping f̃ : SP(H, sH) → SP(G, sG),
given by

f̃ (c)v =
⎧⎨⎩cf (v) if f (v) ∈ V,

deg( f ) · cf (v) if f (v) /∈ V,

is an injective homomorphism of groups.



1156 C.A. Alfaro, C.E. Valencia / Linear Algebra and its Applications 436 (2012) 1154–1176

Section 4 is devoted to the study of the sandpile group of the cone of the cartesian product of

graphs. Let a ∈ ZV(G) and b ∈ ZV(H) be configurations of the cones of G and H, respectively. Taking

the cartesian product of configurations as

(a�b)(u,v) = au + bv for all u ∈ V(G) and v ∈ V(H),

then, a�b is a recurrent configuration of the cone of the cartesian product of G and H whenever a

and b are recurrent configurations of G and H, respectively. This definition of the cartesian product of

configurations leads to the main result of Section 4.

Theorem 4.4. If eH is the identity of SP(c(H), sc(H)), then the mapping

π̃G : SP(c(G), sc(G)) → SP(c(G�H), sc(G�H))

given by π̃G(a) = a�eH is an injective homomorphism of groups.

Finally, in Section 5 we use an explicit description of the sandpile group of a thick graph with

three vertices as well as the results obtained in Sections 3 and 4, to get a concrete description of a set

of generators of the sandpile group of the cone of the hypercube of dimension d. More precisely, if

V(Qd) = {va | a ∈ {0, 1}d} is the vertex set of the hypercube of dimension d and

gβ(r, t)va =
⎧⎨⎩r if β · a is even,

t if β · a is odd,

for all β ∈ {0, 1}d. Then,
K̃β = {gβ(r, t) + (d − |β|)1 | 0 � r, t � d and either r = |β| or t = |β|} ⊂ ZV(Qd),

is a set of recurrent configurations of SP(c(Qd), sc(Qd))which is a subgroup of SP(c(Qd), sc(Qd)) isomor-

phic to Z2|β|+1. The next theorem gives a description of the sandpile group of the cone of Qd gluing

all the subgroups K̃β .

Theorem5.3. Let k � 0, d � 1 be natural numbers and let c2k+1(Qd) be the 2k+1-cone of the hypercube

Qd. If s = V(c2k+1(Qd))\V(Qd), then

SP(c2k+1(Qd), s) ∼=
d⊕

i=0

Z
(di)
2i+2k+1.

Furthermore, SP(c(Qd), s) = ⊕
β∈{0,1}d K̃β .

The introduction of an extra vertex in the cone’s construction is fundamental in order to get a

better behavior of the sandpile group. For instance, in 2003, Jacobson et al. [25] gave a partial de-

scription of the sandpile group of the cartesian product of complete graphs. In the same year, Bai [2]

proved that the number of invariant factors of the hypercube Qk is 2k−1 − 1 and gave a formula

for the number of occurrences of Z2 in the elementary divisor form of the sandpile group of Qk .

However, the full structure of the Sylow 2-subgroup of the sandpile group of the hypercube is still

unknown.

2. Preliminaries

Let G be a graph with V as vertex set and E as edge set. For simplicity, an edge e = {x, y} will be

denoted by xy. The sets of two or more edges with the same ends are calledmultiple edges. A loop is an

edge incident to a unique vertex. A multigraph is a graph with multiple edges and without loops.
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A digraph G is a pair (V, E), where V is a finite set and E is a subset of the set of ordered pair of

elements of V . The elements of V and E are called vertices and arcs, respectively. Given an arc e = (x, y),
we say that x is the initial vertex of e and y is the terminal vertex of e. The number of arcs with initial

vertex x and terminal vertex y will be denoted by m(x,y). The out-degree of a vertex x of a digraph,

denoted by d
+
G (x), is the number of arcs with initial vertex x. A vertex x is a sink if its out-degree is

zero. Moreover, a sink x is a global sink if for every vertex y ∈ G, there exists a directed path from y to x.

Given a multigraph G and a vertex s of G, let b(G, s) be the digraph with the same vertex set of G

and arc set equal to

E(b(G, s)) =
⎛⎝ ⋃

xy∈E(G\s)
{(x, y), (y, x)}

⎞⎠ ∪
⎛⎝ ⋃

xs∈E(G)

{(x, s)}
⎞⎠ .

Note that, b(G, s) is a digraph with global sink s.

Let G be a digraph, s be a global sink of G, and Ṽ the set of non-sink vertices of G.

2.1. The sandpile group

There exist several ways to define the sandpile group of a digraph. In this section, we will present

a combinatorial and an algebraic definition of the sandpile group.

Algebraic description. One of the simplest ways to define the sandpile group is by using an algebraic

description, known as the critical group. The Laplacian matrix of G, denoted by L(G), is the matrix of

|V | × |V | given by

L(G)u,v =
{
d+(u) − m(u,u) if u = v,

−m(u,v) otherwise.

The reduced Laplacian matrix, denoted by L(G, s), is the matrix obtained from L(G) by removing the

row and column s.

The sandpile group of G is the cokernel of L(G, s),

SP(G, s) = ZṼ/Im L(G, s)t .

Another way to define the sandpile group is by using stable and recurrent configurations.

Combinatorial description. A configuration of (G, s) is a vector c ∈ NṼ . A non-sink vertex v is called

stable if d+(v) > cv, and otherwise is called unstable.Moreover, a configuration is called stable if every

vertex v in Ṽ is stable. Toppling an unstable vertex u in c is performed by decreasing cu by the degree

d+(u), and adding the multiplicity m(u,v) to each of the vertices v such that (u, v) ∈ E(G). Now, let

�u = d+(u) − ∑
uv∈E m(u,v)ev, where ev is the vth canonical vector with a one in the vth coordinate

and zeros elsewhere. Then, �u is a row of the reduced Laplacian matrix L(G, s) and toppling umeans

to subtract �u from c.

By performing a sequence of topplings, we will eventually arrive at a stable configuration, [23,

Lemma 2.4]. See [23, Example 2.1] for an example of a digraph without global sink and a configuration

that does not stabilizes. Moreover, the stabilization of a unstable configuration is unique, [31, Theorem

2.1]. The stable configuration associated to c will be denoted by s(c). Then, s(c) = c − L(G, s)tβ for

some β ∈ NṼ .

Now, let (c + d)u := cu + du for all u ∈ Ṽ and c ⊕ d := s(c + d). A configuration c is recurrent if

it is stable and there exists a non-zero configuration r such that s(c + r) = c. The sandpile group of G,

denoted by SP(G, s), is the set of recurrent configurations with ⊕ as binary operation.

Given amultigraph Gwith a distinguished vertex s their sandpile group is defined by SP(b(G, s), s).
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Theorem2.1 [16, Corollary 2.5, 23, Corollary 2.16]. Let G = (V, E)be amultigraph (respectively, digraph)

with (respectively, global sink) sink s ∈ V, then SP(G, s) is an abelian group.

One of the simplest ways to check when a configuration of a multigraph is recurrent is given by the

following result.

Theorem 2.2 (Burning algorithm, [19]). A configuration c ∈ NṼ is recurrent if and only if there exist an

order u1, u2, . . . , un of the vertices Ṽ such that if c1 = c + ∑n
i=1 �ui , and

ci = ci−1 − �ui−1
for all i = 2, . . . , n,

then ui is an unstable vertex of ci for all i = 1, . . . , n and c = cn − �un .

There is a generalization of the burning algorithm for digraphs, know as the script algorithm,

see [34].

For instance, in the next proposition, we shall describe the sandpile group of the multidigraph

c(K2(r, t)) with V = {s, v1, v2} as vertex set, mv1,s = 1, mv2,s = 1, m(v1,v2) = r , and m(v2,v1) = t. If

r = t we simply write c(K2(r)) instead of c(K2(r, t)).

Theorem 2.3 [1, Theorem 2.34]. If r ∈ Z+ and t ∈ Z+, then

SP(c(K2(r, t)), s) ∼= Zr+t+1.

Moreover, SP(c(K2(r)), s) = {(m, l) | 0 � m, l � d and m = r or l = r} with (r, r) as the identity and

(r, 0) is a generator of SP(K2(r), s) with

k(r, 0) =
⎧⎨⎩(r − j, r) if k = 2j � 2r,

(r, j) if k = 2j + 1 � 2r + 1.

It is known that both descriptions are equivalent in the sense that both descriptions define isomor-

phic groups, [23, Corollary 2.16]. Is not difficult to see that the structure of the sandpile group does

not depend on the sink vertex. However, the set of recurrent configurations of G depends on the sink.

In this article, we are not only interested in the abstract structure of the sandpile group, we are also

interested in the set of recurrent configurations and in the description of the subgroups generated by

this recurrent configuration. We are interested in giving a description of the recurrent configurations

because they contain a very nice combinatorial structure and some combinatorial information of the

graph. In general it is easier to describe the abstract structure of the sandpile group than to give an

explicit description of recurrent configurations and their generated subgroups generated. For instance,

when G is the grid, in [10,12,18] is given a partial characterization of the recurrent configuration that

plays the role of the identity. The set of recurrent configuration and their generated subgroup has been

described only for a few family of graphs.

In the following, everymultigraphwill be connectedandwill haveadistinguishedvertex sG ∈ V(G),
called sink. Sometimeswewill simplywrite s instead of sG . The set of non-sink verticeswill be denoted

by Ṽ .

3. Graph homomorphism and the sandpile group

In this section, we introduce the concepts of uniform homomorphism andweak homomorphism of

graphs. This concepts are similar to the classical concepts of homomorphism and full homomorphism

of graphs. Also we introduce a directed variant of the uniform homomorphism concept, called di-

rected uniform homomorphism. In the literature, there are several concepts that are either equivalent
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or similar to the concepts of uniform homomorphism, weak homomorphism, and directed uniform

homomorphism of graphs. For instance, in [21, Chapter 5, 37, Section 5] the concept of an equitable

partition of a graph was defined. This concept of equitable partition is equivalent to the concept of

directed uniform homomorphism. In [11, Section 5], Berman defined the concept of divisibility of

graphs, which is closed related to the concept of weak V-uniform homomorphism when V = V(G),
see Remark 3.13 for a more precise explanation of this equivalence.

The concept of uniform homomorphism is useful in order to get an insight of the group structure

of the sandpile groups of graphs. For instance, Theorem 3.5 says that if f : G → H is a surjective

(V(H)\sH)-uniform homomorphism, then the induced mapping f̃ : SP(H, sH) → SP(G, sG) is an in-

jective homomorphism of groups; that is, this mapping sends recurrent configurations to recurrent

configurations and is compatible with the group structure. Theorem 5.7 in [11] shows an equivalent

result to the one in Theorem 3.5. Theorem 6.1 in [37] shows an equivalent result to the one in Theo-

rem3.9. In [5, Section 2] the concept of harmonicmorphismwas defined (this concept is different form

uniform homomorphism) and a functor between the category of graphs with harmonic morphisms

and the category of abelian groups was studied. In [36] it is explored a functor from the category

of graphs with divisibility to the category of abelian groups, see for instance Proposition 19. Finally,

in [6,20,29] some functorial results on the category of graphs to the category of abelian groups are

proved. For instance, in [29, Proposition 2,36, Proposition 21] is proved that: if G is a connected graph

and Gk is the graph obtained by dividing each edge of G in k edges, then there exists a surjective func-

tion between the sandpile group of Gk and the sandpile group of G. In [20] is introduced the concept

of symmetric configuration and quotient graph are discussed, more precisely Theorem 2.1 proved that

the set of symmetric configurations forms a subgroup of the sandpile group. In [6, Theorems 1.3 and

1.5] are established homomorphism between the sandpile group of the line graph of a graph G and the

sandpile group of G and between the sandpile group of the line graph of a graph G and the sandpile

group of a subdivision of G.

Definition 3.1. Let G, H be multigraphs without loops and V ⊆ V(H). A V-uniform homomorphism of

G to H, denoted by f : G → H, is a mapping f : V(G) → V(H) such that for all x ∈ V and y ∈ V(H)

dG[{u}∪Sy](u) = mx,y for all u ∈ Sx = f−1(x)

and f : V(G)\ f−1(V) → V(H)\V is the identity isomorphism.

If f : V(G) → V(H) is a V-uniform homomorphism with V = V(H), then we simply say that

f is a uniform homomorphism. In the case of directed multigraphs, we define a directed V-uniform

homomorphism as a mapping f : V(G) → V(H) such that f : V(G) \ f−1(V) → V(H) \ V is the

identity isomorphism and for all x ∈ V and y ∈ V(H)

d
+
G[{u}∪Sy](u) = m(x,y) for all u ∈ Sx,

where d
+
G (u) is the outdegree of the vertex u in the graph G, that is, the number of arcs of Gwith tail u.

If f : G → H is a V-uniform homomorphism, then Sx is a stable set of G for all x ∈ V because H

has no loops. Moreover, since G[Sx ∪ Sy] is a mx,y-regular bipartite graph for all x �= y ∈ V and H[V]
is connected, then |Sx| = |Sy| for all x, y ∈ V . The degree of a V-uniform homomorphism f : G → H,

denoted by deg( f ), is equal to the cardinality of the set Sx for some x ∈ V .

Proposition 3.2. If f : G → H is a V-uniform homomorphism and V(H)\V is a stable set, then

dG(u) =
⎧⎨⎩dH( f (u)) if f (u) ∈ V,

deg( f ) · dH(f (u)) if f (u) /∈ V .
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Proof. If u ∈ f−1(V), then

dG(u) = ∑
y∈V(H)\ f (u)

dG[{u}∪Sy](u) = ∑
y∈V(H)\ f (u)

dH[{f (u)}∪{y}](f (u)) = dH(f (u)).

On the other hand, since V(H) \ V is a stable set, then

dG(u) = ∑
v∈Sx,x∈V

dG[{v}∪{u}](u) = ∑
x∈V

deg( f ) · dH[{x}∪{f (u)}](f (u)) = deg( f ) · dH(f (u)).

when u /∈ f−1(V). �

The next proposition gives us an alternative description of a uniform homomorphism.

Proposition 3.3. Let G andH bemultigraphswithout loops. Then, f : G → H is a uniform homomorphism

if and only if

(i) Sx = f−1(x) is an independent set of G for all x ∈ V(H),
(ii) G[Sx ∪ Sy] is a mx,y-regular bipartite graph for all x �= y ∈ V(H).

Now, we will introduce the classical definitions of a homomorphism and a full homomorphism of

graphs in order to compare them with the notion of uniform homomorphism.

Let G and H be multigraphs. A homomorphism (respectively, full homomorphism) is a mapping

f : V(G) → V(H)

such that f (u)f (v) ∈ E(H) if (respectively, and only if) uv ∈ E(G).

The definitions of full homomorphism and isomorphism of graphs are similar. The main difference

between them is that a full homomorphism is not necessarily bijective;meanwhile an isomorphism is.

By example, let C4 and P3 be graphs as in Fig. 1. Themapping f : V(C4) → V(P3) given by v1, v3
f�→ u1,

and v2, v4
f�→ u2 is a full homomorphism.

The following proposition gives us an equivalent way to define a (full) homomorphism of graphs:

Proposition 3.4 [22, Proposition 1.10 and Exercise 10, p. 35]. Let G and H be multigraphs without loops.

Then f : G → H is an homomorphism if and only if

(i) Sx = f−1(x) is an independent set of G for all x ∈ V(H),
(ii) if xy /∈ E(H), then uv /∈ E(G) for all u ∈ Sx and v ∈ Sy.

Moreover, f is a full homomorphism if and only if f satisfies conditions (i), (ii), and

(ii′) if xy ∈ E(H), then uv ∈ E(G) for all u ∈ Sx and v ∈ Sy.

Fig. 1. A full homomorphism between C4 and P3.
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Fig. 2. The mapping f .

In order to illustrate the concept of uniform homomorphism, let C3 and C5 be the cycles with three

and five vertices, respectively (Fig. 2).

The mapping f : V(C5) → V(C3) given by

v1
f�−→ u1,

v2, v4
f�−→ u2,

v3, v5
f�−→ u3,

is a homomorphismof graphs that is neither a full nor uniformhomomorphism, see Fig. 2. Ifwe replace

C5 by C5 + v2v5 + v1v3 + v1v4, we get that the mapping f is a full homomorphism that is not uniform.

Additionally, if we replace C5 by C5 + v2v5 + v′
1v4 + v′

1v3 and C3 by C3 + u2u3, then the function given

by f̂ (vi) = f (vi) for all i = 1, . . . , 5 and f̂ (v′
1) = u1 is a uniform homomorphism, but f̂ is not a full

homomorphism because v′
1v2 is not an edge as required by Theorem 3.4[(ii)].

The concept of uniform homomorphism of graphs is relevant in the study of the sandpile group of

graphs as shown in the following result.

Theorem 3.5. Let G be a multigraph with sink sG, H be a multigraph with sink sH, V ⊂ V(H) such that

V(H) \ V is a stable set and sH /∈ V, f : G → H be a surjective V-uniform homomorphism such that

f−1(sH) = {sG}. Then the induced mapping f̃ : SP(H, sH) → SP(G, sG), given by

f̃ (c)v =
{
cf (v) if f (v) ∈ V,

deg( f ) · cf (v) if f (v) /∈ V,

is an injective homomorphism of groups, that is, SP(H, sH) 
 SP(G, sG).

Proof. Let f̂ : ZV(H\sH) → ZV(G\sG) be the mapping induced by f given by

f̂ (c)v =
{
cf (v) if f (v) ∈ V,

deg( f ) · cf (v) if f (v) /∈ V .

Clearly f̂ is an injective homomorphism of groups. In order to prove this theorem we need to prove

the following facts:

• If c is a recurrent configuration of (H, sH), then f̃ (c) is a recurrent configuration of (G, sG),• f̃ (c1 ⊕ c2) = f̃ (c1) ⊕ f̃ (c2) for all c1, c2 ∈ SP(H, sH).

The next claim will be useful to prove this fact.

Claim 3.6. If c1 and c2 are configurations of (H, sH), then

f̂ (s(c1 + c2)) = s(̂f (c1) + f̂ (c2)).
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Fig. 3. A surjective uniform homomorphism and its induced surjective (V(H) \ sH)-uniform homomorphism.

Proof. By proposition 3.2 a vertex x ∈ V(H) \ sH can be toppled in the configuration c of (H, sH) if

and only if the vertices Sx of G can be toppled in the configuration f̂ (c) of (G, sG).

On the other hand, since f̂ (�x) = ∑
v∈Sx

�v for all x ∈ V(H)\{sH} and s(c) = c − ∑
w∈W �w for

some multisetW of V(H)\sH , then

f̂ (s(c1 + c2)) = f̂

⎛⎝c1 + c2 − ∑
w∈W

�w

⎞⎠ = f̂ (c1) + f̂ (c2) − ∑
w∈W

f̂ (�w)

= f̂ (c1) + f̂ (c2) − ∑
w∈W

∑
v∈Sw

�v = s( f̂ (c1) + f̂ (c2)). �

Clearly, c is a stable configuration of (H, sH) if and only if f̂ (c) is a stable configuration of (G, sG). Fur-
thermore, if c is a recurrent configuration of (H, sH), then there exists a configuration u of (H, sH) such
that s(c + u) = c. Thus, byClaim3.6 s( f̂ (c)+f̂ (u)) = f̂ (s(c+u)) = f̂ (c) and therefore f̂ (c) is a recur-
rent configurationof (G, sG). Finally, f̃ (c1 ⊕ c2)= f̃ (s(c1 + c2)) = s( f̃ (c1) + f̃ (c2)) = f̃ (c1) ⊕ f̃ (c2)
for all c1, c2 ∈ SP(H, sH). �

Remark 3.7. Note that, amapping f : G → H is a surjective uniform homomorphism if and only if the

induced mapping f̌ : Ǧ → H is a surjective (V(H) \ sH)-uniform homomorphism, where Ǧ = G/f−1

(sH) is the graph obtained from G when we contract all the vertices in f−1(sH) to a single vertex sG .

For instance, consider the next graphs in Fig. 3 with f : G → H given by

u1, u
′
1

f�−→ sH,

u2, u4
f�−→ v2,

u3, u5
f�−→ v3.

Then f̌ : Ǧ → H is a surjective (V(H) \ sH)-uniform homomorphism of graphs.

Example 3.8. In order to illustrate Theorem 3.5, consider the surjective (V(H) \ sH)-uniform ho-

momorphism, f̌ : Ǧ → H defined in Remark 3.7. Using the CSandPile 1 program we can see that

SP(H, sH) ∼= Z8 with identity eH = (1, 2) and generated by c8 = (0, 3), and SP(G, sG) ∼= Z2 ⊕ Z48

1 CSandPile is aC++programthat computes thesandpilegroupofagraph. It is availablebyrequesting toalfaromontufar@gmail.com.
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Fig. 4. A surjective (V(H)\sH)-uniform homomorphism.

with identity eG = f̃ (eH) = (1, 2, 1, 2) and generated by c2 = (2, 1, 2, 3) of order two and

c48 = (1, 2, 2, 3) of order 48, see Fig. 4.

For instance, the induced mapping f̃ : SP(H, sH) → SP(Ǧ, s
Ǧ
) sends the configuration c8 to the

configuration c̃8 = f̃ (c8) = (0, 3, 0, 3), which generates a subgroup of order eight in SP(Ǧ, s
Ǧ
).

Moreover, c̃8 = c2 ⊕ 6 · c48 = (2, 1, 2, 3) ⊕ (2, 2, 2, 0).

Now, we will present a directed version of Theorem 3.5.

Theorem 3.9. If G are a multigraph with sink sG, H is a multigraph with sink sH, and f : G → H is a

directed surjective V(H) \ sH-uniform homomorphism with f−1(sH) = {sG}. If f̂ : ZV(H\sH) → ZV(G\sG)

is the mapping given by

f̂ (c)v = cf (v) for all v ∈ V(G) \ sG,

then the induced mapping f̃ : SP(H, sH) → SP(G, sG) is an injective homomorphism of groups, that is,

SP(H, sH) 
 SP(G, sG).

Proof. Clearly, f̂ is an an injective homomorphism of groups. Moreover, if L(H, sH)z = a, then

L(G, sG )̂f (z) = f̂ (a). Thus, since det(L(G, sG)) �= 0, then

f̂ (Im L(H, sH)) = f̂ (ZV(H\sH)) ∩ Im L(G, sG).

Hence themapping f : ZV(H\sH) → ZV(G\sG)/ Im L(G, sG) given by f (a) = f̂ (a) (mod Im L(G, sG)) has
a kernel equal to Im L(H, sH) and therefore the induced mapping

f̃ : SP(H, sH) = ZV(H\sH)/ Im L(H, sH) → ZV(G\sG)/ Im L(G, sG) = SP(G, sG)

is an injective homomorphism of groups. �

Remark 3.10. Note that, if f : G → H is a directed surjective V(H)\ sH-uniform homomorphismwith

f−1(sH) = {sG} and a is an eigenvector of L(H, sH) for the eigenvalue λ, then f̂ (a) is an eigenvector of

L(G, sG) for λ.

Also, note that in the directed case the mapping f̃ defined in Theorem 3.9 is not a natural homo-

morphism of sandpile groups in the sense that it does not necessarily send recurrent configurations

to recurrent configurations.

The next corollary is an application of Theorem 3.9.

Corollary 3.11. If Br,t is a bipartite graph with bipartition V = V1 ∪ V2 and

d(u) =
{
r if u ∈ V1,

t if u ∈ V2,

then Zr+t+1 
 SP(c(Br,t), sBr,t ).
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Proof. Let K2(r, t) be the multigraph with V = {v1, v2} as set of vertices and mv1,v2 = r, mv2,v1 = t.

Let f : c(Br,t) → c(K2(r, t)) be the mapping given by

f (v) =
⎧⎪⎪⎨⎪⎪⎩
v1 if v ∈ V1,

v2 if v ∈ V2,

sK2(r,t) if v = sBr,t .

Since f is a surjective {v1, v2}-uniform homomorphism, then by Theorems 3.9 and 2.3 we have that

Zr+t+1
∼= SP(c(K2(r, t))) 
 SP(c(Br,t), sBr,t ). �

Remark 3.12. Aweak V-uniform homomorphism is amapping f : V(G) → V(H) such that for all x ∈ V

and y ∈ V(H) with x �= y

dG[{u}∪Sy](u) = mx,y for all u ∈ Sx

(that is, the sets Sx are not necessarily stable) and f : V(G) \ f−1(V)→V(H) \ V is the identity

isomorphism. In this case the induced mapping f̃ does not send recurrent configurations to recurrent

configurations, but the mapping f̂ (c)=[ f̃ (c)] (where [ f̃ (c)] is the unique recurrent configuration of

G such that s( f̃ (c) + r)=[ f̃ (c)] for some non-zero configuration r) is an injective homomorphism of

groups.

Remark 3.13. The group of bicycles of a graph G over an abelian group A, denoted by B(G, A), consists
of the edge weightings of G over A that are both cycles and cocycles of G and the entry by entry sum.

The group of bicycles and the sandpile group of a graph are closely related. For instance, B(G, A) =
HomZ(SP(G), A). Moreover, if either A = Q/Z or A = Z|SP(G)|, then the group B(G, A) of bicycles of

G is isomorphic to SP(G).

LetG,H be connectedmultigraphs and V(H) = {u1, . . . , u|V(H)|} be the vertex set ofH. We say that

G isdivisiblebyH (see [11, p. 9]) if theverticesofG canbepartitioned into |V(H)| classesU1, . . . ,U|V(H)|,
such that for 1 � i, j � |V(H)| a vertex v in Ui is either joined only to vertices of Ui or for every i �= j

is joined to exactlymui,uj vertices of Uj (and any number of vertices in Ui).

Note that the concepts of divisibility and weak V(G)-uniform homomorphism are closed related.

Clearly, if G is divisible by H, then there exists a weak V(H)-uniform homomorphism f between G and

H. However, if Ǧ andH are the graphs defined in Remark 3.7, then Ǧ is not divisible byH but there exists

a surjective (V(H) \ sH)-uniform homomorphism f̌ between Ǧ andH. Also, it is not difficult to see that

the cyclewith four verticeswith an addedpendant edge (that is, E(G) = {x1x2, x2x3, x3x4, x4x1, x1x5})
is divisible by K2(2) but there not exists a uniform homomorphism between them.

Theorem 5.7 in [11] says that if G is divisible by H, then B(H, Zk) is a subgroup of B(G, Zk) for all

k ∈ Z. That is, Theorems 3.5, 3.9, and [11, Theorem 5.7] shows injections between groups induced by

some class of morphism between graphs.

4. The sandpile group of the cartesian product of graphs

The sandpile group of the cartesian product of graphs has been studied by several authors, see

for instance [2,13,24,25,27]. In this section, we define the cartesian product of configurations and we

prove that the cartesian product of recurrent configurations is a recurrent configuration. After that,

we prove that: if eH ∈ SP(c(H), sc(H)) is the identity of the sandpile group of the cone of H, then the

mapping π̃G : SP(c(G), sc(G)) → SP(c(G�H), sc(G�H)) given by

π̃G(a) = a�eH,

is an injective homomorphism of groups.
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Fig. 5. Cartesian product of C5 and K2.

The cartesian product ofG andH, denoted byG�H is the graphwithV(G)×V(H) as its vertex set and
two vertices (u1, v1) and (u2, v2) are adjacent in G�H if and only if either u1 = u2 and v1v2 ∈ E(H),
or v1 = v2 and u1u2 ∈ E(G), see Fig. 5.

Let πG : G�H → G and πH : G�H → H be the projection mappings, given by

πG(u, v) = u for all (u, v) ∈ V(G�H) and πH(u, v) = v for all (u, v) ∈ V(G�H).

Thus, it is not difficult to see that the mappings πG and πH are weak surjective uniform homomor-

phisms of graphs. For the rest of this section, let sc(G) ∈ V(c(G)) \ V(G), sc(H) ∈ V(c(H)) \ V(H) and
sc(G�H) ∈ V(c(G�H)) \ V(G�H).

Now, let a ∈ NV(G) be a configuration of c(G), b ∈ NV(H) be a configuration of c(H) (as shown in

Fig. 6),

and let a�b ∈ NV(G�H) be the configuration of c(G�H) given by

(a�b)(u,v) = au + bv for all u ∈ V(G) and v ∈ V(H).

The following lemma shows that the cartesian product of configurations of c(G) and c(H) is com-

patible with the toppling operators of c(G), c(H) and c(G�H).

Lemma 4.1. Let G and H be multigraphs, a ∈ NV(G) be a configuration of c(G), and b ∈ NV(H) be a

configuration of c(H). Then

(i) If a and b are stable configurations, then a�b is a stable configuration of c(G�H),
(ii) If a and b are recurrent configurations, then a�b is a recurrent configuration of

c(G�H).

Proof (i) If a and b are stable configurations of c(G) and c(H) respectively, then

au � degc(G)(u) − 1 for all u ∈ V(G) and bv � degc(H)(v) − 1 for all v ∈ V(H).

Fig. 6. Cartesian product of configurations.
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Hence a�b(u,v) = au + bv � degc(G)(u) + degc(H)(v) − 2 = degc(G�H)((u, v)) − 1, that is, a�b is a

stable configuration of c(G�H).

(ii) We will use the burning Algorithm 2.2 to prove the second part of this lemma. Since, the sink sG of

c(G) is adjacent to all the vertices of G, then
∑n

i=1 �ui = 1.

Claim 4.2. Let a be a recurrent configuration of c(G) and b be a recurrent configuration c(H). Also, let

ai =
{
a + 1 if i = 1

ai−1 − �ui−1
if i = 2, . . . , n,

and bi =
{
b + 1 if j = 1

bi−1 − �vi−1
if j = 2, . . . ,m,

such that the vertex ui is an unstable vertex in ai for all i = 1, . . . , n and the vertex vj is an unstable vertex

in bj for all j = 1, . . . ,m. If c = a�b, c(1,1) = a�b + 1 = a1�b = a�b1, and

c(i,j) =
{
c(i−1,m) − �(ui−1,vm) if i = 2, . . . , n and j = 1,

c(i,j−1) − �(ui,vj−1) otherwise,

then the vertex (ui, vj) is an unstable vertex in c(i,j) for all i = 1, . . . , n and j = 1, . . . ,m.

Proof. Since the vertex ui is an unstable vertex in ai for all i = 1, . . . , n and the vertex vj is an unstable

vertex in bj for all j = 1, . . . ,m, then (ai)ui � degc(G)(ui) for all i = 1, . . . , n and (bj)vj � degc(H)(vj)
for all j = 1, . . . ,m.

Now, c(i,1) = c(1,1) − ∑
1≤k�i−1

∑
1≤l�m �(uk,vl) = (a1 − ∑

1≤k�i−1 �uk)�b = ai�b for all

i = 1, . . . , n. Thus,

(c(i,1))(ui,v1) = (ai�b)(ui,v1) = (ai)ui+bv1 = (ai)ui+(b1)v1−1 � degc(G)(ui)+degc(H)(v1)−1

= degc(G�H)((ui, v1)) for all i = 1, . . . , n.

Moreover, since c(i,j) = ai�b − ∑
1≤l�j �(ui,vl) = (ai − 1)�b1 − ∑

1≤l�j �(ui,vl), then

(c(i,j))(ui,vj) = (ai)ui + (bj)vj − 1 � degc(G)(ui) + degc(H)(vj) − 1 = degc(G�H)((ui, vj))

for all i = 1, . . . , n and j = 1, . . . ,m.

Therefore (ui, vj) is an unstable vertex of c(i,j) for all i = 1, . . . , n and j = 1, . . . ,m. �

Finally, by using part (i) of this lemma and the previous claim we obtain that a�b is recurrent. �

The next example is useful to illustrate the previous theorem:

Example 4.3. Let G ∼= H ∼= K2 with V(G) = {u1, u2} and V(H) = {v1, v2} as vertex sets, a = (1, 1)
be a recurrent configuration of c(G) and b = (1, 0) be a recurrent configuration of c(H).

Hence c= (2, 1, 2, 1)= (1, 1)�(1, 0) is a recurrent configuration of c(G�H), as is shown in

Fig. 7.

Fig. 7. The topplings of the configuration c = (3, 2, 3, 2) of c(C4).
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The next theorem shows that themappingsπG andπH induce homomorphisms of groups between

the sandpile groups of the cones of G and G�H, and H and G�H; respectively.

Theorem 4.4. Let G and H be two multigraphs, and eH be the identity of the sandpile group of the cone of

H. Then the mapping π̃G : SP(c(G), sc(G)) → SP(c(G�H), sc(G�H)) given by

π̃G(a) = a�eH,

is an injective homomorphism of groups.

Proof. Since eH is recurrent, then using Lemma 4.1(ii), π̃G(a) = a�eH is a recurrent configuration of

c(G�H) for all a ∈ SP(c(G), sc(G)); that is, the mapping π̃G is well defined.

Now, we will prove that π̃G is a homomorphism of groups. Let a, b ∈ SP(c(G), sc(G)), then

π̃G(a ⊕ b) = (a ⊕ b)�eH = s(a + b)�eH = (a + b)�eH (mod L(c(G�H), sc(G�H)))

= a�eH + b�eH = s(a�eH + b�eH) (mod L(c(G�H), sc(G�H))) = a�eH ⊕ b�eH

= π̃G(a) ⊕ π̃G(b),

and therefore π̃G is a homomorphism of groups.

Finally, π̃G(a) = π̃G(b) if and only if a�eH = b�eH if and only if a = b, and therefore π̃G is an

injective homomorphism of groups. �

Example 4.5. Using the CSandPile programwe get that, SP(c(K2), sc(K2)) = Z3 is generated by (1, 0)

with identity (1, 1), SP(c(C5), sc(C5)) = Z2
11 is generated by (2, 1, 1, 1, 1) and (1, 2, 1, 1, 1) with

identity e = (2, 2, 2, 2, 2) (also see [15, p. 5]), and SP(c(C5�K2)) = Z11·29 ⊕ Z3·11·29.
Moreover, using the mapping πK2

we have that

πK2
(1, 0) = (3, 3, 3, 3, 3, 2, 2, 2, 2, 2)

is a generator of a subgroup of SP(c(C5�K2)) isomorphic toZ3, and using themapping iC5 wehave that

πC5(2, 1, 1, 1, 1)= (3, 2, 2, 2, 2, 3, 2, 2, 2, 2) and

πC5(1, 2, 1, 1, 1)= (2, 3, 2, 2, 2, 2, 3, 2, 2, 2)

are generators of subgroups of SP(c(C5�K2)) isomorphic to Z11.

Remark 4.6. If n > 1 and eH is the identity of SP(cn(G), scn(G)), then the mapping given by

π̃G(a) = a�eH

does not necessarily send stable configurations to stable configurations. For instance, the vector (3, 3)
is the identity of c3(Q1) and (6, 6, 6, 6) = π̃G((3, 3)) = (3, 3)�(3, 3) is a non-stable configuration

of c3(Q2). However, the non-canonical mapping

π̂G : SP(cn(G), scn(G)) → SP(cn(G�H), scn(G�H))

given by π̂G(a) = [π̃G(a)] is an injective homomorphism of groups.

5. The sandpile group of c(Qd)

The hypercube of dimension d is the cartesian product of d copies of the complete graph with two

vertices K2. The structure of the sandpile group of the hypercube is complex, see, for instance [2] for
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a description of the Sylow p-group of SP(Qd) when p is odd and [25] for a description of the cartesian

product of complete graphs in general.

In this section, we give an explicit combinatorial and algebraic description of a set of generators of

the sandpile group of the cone of the hypercube of dimension d, see Theorem 5.3. We will use mainly

Theorems 3.5 and 4.4, developed in previous sections, to get a description of the sandpile group of the

cone of the hypercube of dimension d.

First of all, we will fix some notation that will be needed in order to establish themain theorem, let

Qd = �d
i=1K2 = K2� · · · �K2︸ ︷︷ ︸

d-copies of K2

,

with vertex set V(Qd) = {va | a ∈ {0, 1}d} and edge set

E(Qd) = {vava′ | a, a′ ∈ {0, 1}d and a − a′ = ±ei for some 1 � i � d}.
Moreover, for all β ∈ {0, 1}d, let Qβ = Qd[{va | supp(a) ⊆ supp(β)}], be an induced subgraph of Qd,

where supp(c) = {i | ci �= 0}, see Fig. 8. It is not difficult to note that:

• Qβ = �i∈supp(β)Qei
∼= �|β|

i=1K2 = Q|β|, where |β| = ∑d
i=1 βi,

• Qβ ′ = Qβ�Qβ ′−β for all supp(β) ⊂ supp(β ′), in particular Qd = Q(1,...,1) = Qβ�Q1−β for all

β ∈ {0, 1}d.

Now, for all 0 �= β ∈ {0, 1}d, let fβ : c(Qβ) → c(K2(|β|)) be the surjective V(K2(|β|))-uniform
homomorphism of graphs given by

fβ(v) =
⎧⎪⎨⎪⎩
v1 if v = va and β · a is even,

v2 if v = va and β · a is odd,

sc(K2(|β|)) if v = sc(Qβ),

and for all β ′ ∈ {0, 1}d such that supp(β) ⊆ supp(β ′), let πβ,β ′ be the projection mapping of Qβ on

Qβ ′ .

Also, let K̃β,β ′ := Im(π̃β,β ′ ◦ f̃β), and gβ,β ′ : N2 → N
V(Qβ′ ) given by

gβ,β ′(r, t)va =
⎧⎨⎩r if β · a is even,

t if β · a is odd,

Fig. 8. The hypercubeQ3
∼= Q(1,1,1) , where the hypercubeQ(1,0,1)

∼= Q2 is colored in blue, and the hypercubeQ(0,1,0)
∼= Q1 is colored

in red.
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If β ′ = 1, then we simply denote πβ,β ′ by πβ , K̃β,β ′ by K̃β , and gβ,β ′ by gβ . Note that, if |β| = 1, then

fβ is the identity mapping and if β = β ′, then πβ,β ′ is the identity mapping.

Proposition 5.1. Let d be a natural number, s = V(c(Qd)) \ V(Qd), and β, β ′ ∈ {0, 1}d. Then

(i) K̃β = {gβ(r, t) + (d − |β|)1 | 0 � r, t � d and either r = |β| or t = |β|} 
 SP(c(Qd), s),

(ii) K̃β is generated by gβ(d, d − |β|) with identity d1 and K̃β
∼= Z2|β|+1,

(iii) π̃β(SP(c(Qβ), s)) ∩ π̃β ′(SP(c(Qβ ′), s)) = π̃β�β ′(SP(c(Qβ�β ′), s)),

where (a � b)i = ai · bi for all i.

Proof. (i) and (ii)

By Theorems 3.5 and 4.4 we get that π̃β and f̃β are injective homomorphims of groups.

By Theorem 2.3, SP(c(Qβ), s) is generated by f̃β(|β|, 0) with identity f̃β(|β|, |β|) = |β|1Qβ for all

β ∈ {0, 1}d. Moreover, since K̃β = Im(π̃β ◦ f̃β), then

K̃β = {π̃β ◦ f̃β(c) | c ∈ SP(c(K2(|β|)), s)} = {̃fβ(c)�(d − |β|)1Q1−β | c ∈ SP(c(K2(|β|)), s)}
= {̃fβ((r, t))�(d − |β|)1Q1−β | 0 � r, t � d and either r = |β| or t = |β|}
= {gβ(r, t) + (d − |β|)1 | 0 � r, t � d and either r = |β| or t = |β|} for all β ∈ {0, 1}d.

Thus

K̃β
∼= SP(c(K2(|β|)), s) ∼= Z2|β|+1 
 SP(c(Qd), s) for all β ∈ {0, 1}d

is generated by f̃β(|β|, 0)�(d − |β|)1Q1−β = gβ(d, d − |β|) and d1 = g1(d, d) is the identity of K̃β ,

see Fig. 9.

(iii) Finally, let c ∈ π̃β(SP(c(Qβ), s)). Since π̃β(a) = a�e for all a ∈ SP(c(Qβ), s), where e =
(d − |β|)1 is the identity of SP(c(Q1−β), s). Then c ∈ π̃β(SP(c(Qβ), s)) if and only if cva = cvb for all

a � β = b � β .

Now, c ∈ π̃β(SP(c(Qβ), s))∩ π̃β ′(SP(c(Qβ ′), s)) if and only if cva = cvb for all a�β = b�β , and

cva = cvb for all a � β ′ = b � β ′ if and only if cva = cvb for all a � (β � β ′) = b � (β � β ′) if and
only if c ∈ π̃β�β ′(SP(c(Qβ�β ′), s)). �

The next lemmawill be useful in order to get the description of the sandpile group of the hypercube.

Fig. 9. The mappings f̃(1,1,0) , π̃(1,1,0) , and π̃(1,1,0) ◦ f̃(1,1,0) on Q3.
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Lemma 5.2 [2, Proposition 3.1, 25, lemma 16]. Let A be an abelian group, and let α and β be two

endomorphisms of A such that β − α = m · 1A for some integer m. Then

Sylp(cokerαβ) ∼= Sylp(cokerα ⊕ cokerβ)

for all primes p that does not divide m.

The next theorem is the main result of this section.

Theorem5.3. Let k � 0, d � 1 be natural numbers and let c2k+1(Qd) be the 2k+1-cone of the hypercube

Qd. If s = V(c2k+1(Qd)) \ V(Qd), then

SP(c2k+1(Qd), s) ∼=
d⊕

i=0

Z
(di)
2i+2k+1.

Furthermore, SP(c(Qd), s) = ⊕
β∈{0,1}d K̃β .

Proof. Let s = V(ci(Qj)) \ V(Qj). Using elementary row and columns operations invertible over Z we

get an equivalent matrix of L(c2k+1(Qd+1), s).

L(c2k+1(Qd+1), s) =
⎡⎢⎣ L(c2k+2(Qd), s) −I2d

−I2d L(c2k+2(Qd), s)

⎤⎥⎦∼
⎡⎢⎣ −I2d L(c2k+2(Qd), s)

L(c2k+2(Qd), s) −I2d

⎤⎥⎦

∼
⎡⎢⎣ I2d −L(c2k+2(Qd), s)

0 L(c2k+2(Qd), s)
2−I2d

⎤⎥⎦ ∼
⎡⎢⎣ I2d 0

0 L(c2k+1(Qd), s) · L(c2k+3(Qd), s)

⎤⎥⎦
Thus

|SP(c2k+1(Qd+1), s)| = |L(c2k+1(Qd+1), s)| = |L(c2k+1(Qd), s)| · |L(c2k+3(Qd), s)|

=
d∏

i=0

|L(c2k+2i+1(Q1), s)|(di) =
d∏

i=0

[(2k + 2i + 3)(2k + 2i + 1)](di)

=
d+1∏
i=1

(2k + 2i + 1)(
d+1
i ).

Applying Lemma 5.2 to A = Z2d , α = L(c2k+1(Qd), s) and β = L(c2k+3(Qd), s) (β − α = 2I2d ) we

get that

Sylp(SP(c2k+1(Qd+1), s)) ∼= Sylp(cokerαβ) ∼= Sylp(cokerα ⊕ cokerβ)

∼= Sylp(SP(c2k+1(Qd), s)) ⊕ Sylp(SP(c2k+3(Qd), s)).

Therefore, using induction on d and the fact that (2, |SP(c2k+1(Qd+1), s)|) = 1 we get that

SP(c2k+1(Qd), s) ∼=
d⊕

i=0

Z
(di)
2i+2k+1.
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Ontheotherhand,wewill use inductionond inorder toprove thatSP(c(Qd), s) = ⊕
β∈{0,1}d K̃β . For

d = 1, the result follows from Theorem 2.3. Now, for all d � 1, 0 �= β ∈ {0, 1}d, and a ∈ {0, 1}supp(β),

let

�β(a) = dc(Qβ)(va)eva −
a−b=±ei∑

supp(b)⊆supp(β)

evb ∈ ZV(Qβ)

be the toppling operator of the vertex va of (c(Qβ), s), I�(β) = 〈{�β(a) | a ∈ {0, 1}supp(β)}〉 be the

subgroup generated by the images of the toppling operators of (c(Qβ), s), and

IΓ (β) = 〈{Γβ ′,β = gβ ′,β(|β|, |β| − |β ′|) | 0 �= β ′ ∈ {0, 1}supp(β)}〉,
be the subgroup generated by the generators of K̃β ′,β . If β = 1, we simply denote �β(a) by �(a),
I�(β) by I�, Γβ ′,β by Γβ ′ , and IΓ (β) by IΓ .

Since,
⊕

β∈{0,1}d K̃β 
 SP(c(Qd), s) (proposition 5.1 (i)) and

|SP(c(Qd), s)| =
d∏

i=1

(2i + 1)(
d
i) = ∏

β∈{0,1}d
(2|β| + 1) = ∏

β∈{0,1}d
|K̃β | = | ⊕

β∈{0,1}d
K̃β |,

then proving that SP(c(Qd), s) = ⊕
β∈{0,1}d K̃β is equivalent to prove that ZV(Qd) = 〈I� ∪ IΓ 〉. Hence,

we will prove this equivalent form of Theorem 5.3.

Theorem 5.4. Let d � 1 be a natural number, then ZV(Qd) = 〈I� ∪ IΓ 〉.

Wewill use induction on d. For d = 1, the result is clear because�(0) = (2, −1),�(1) = (−1, 2),
and by Theorem 2.3, Γ1 = (1, 0) is a generator of SP(c(Q1), s) . Let us assume that the result is true

for all hypercubes of dimension less than d − 1.

The proof is divided in two steps, first we will prove that (2d + 1)eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd)

and after that we will prove that d2d−1eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd).

Claim 5.5. If d � 1, then (2d + 1)eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd).

Proof. We will fix some notation that will be useful in the following. For all 0, 1 �= β ∈ {0, 1}d, a ∈
{0, 1}supp(β), and b ∈ {0, 1}supp(1−β), let hbβ : {0, 1}supp(β) → {0, 1}d be the mapping

given by

hbβ(a)i =
⎧⎨⎩ai if i ∈ supp(β),

bi if i /∈ supp(β).

Now, let β ∈ {0, 1}d with |β| = d − 1. Since Qd
∼= Qβ�K2, then

• �β(a)�0 = �(h0β(a)) + �(h1β(a)) ∈ I� for all a ∈ {0, 1}supp(β),

• 1V(Qd) = ∑
a∈{0,1}d �(a) ∈ I�, and

• Γβ ′,β�0 = Γβ ′ − 1V(Qd) ∈ 〈I�, IΓ 〉 for all β ′ such that supp(β ′) ⊆ supp(β).

Thus, if

g = ∑
a∈{0,1}supp(β)

za�β(a) + ∑
β ′∈{0,1}supp(β)

wβ ′Γβ ′,β ∈ 〈I�(β), IΓ (β)〉,
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theng�0∈ 〈I�, IΓ 〉. Inparticular, by inductionhypothesis,eva ∈ 〈I�(β), IΓ (β)〉 for alla∈ {0, 1}supp(β)

and therefore

eva�0 = ev
h0β (a)

+ ev
h1β (a)

∈ 〈I�, IΓ 〉 for all a ∈ {0, 1}supp(β),

that is, if e = vava′ is an edge of Qd and χe is its characteristic vector, then χe ∈ 〈I�, IΓ 〉. Moreover, if

va and va′ are vertices of Qd, then

eva + (−1)dist(va,va′ )eva′ ∈ 〈I�, IΓ 〉,
wheredist(va, va′) is thedistancebetweenva andva′ inQd. Finally, sinceχe ∈ 〈I�, IΓ 〉 for all e ∈ E(Qd),
then

(2d + 1)eva = �(a) +
a−a′=±ei∑
a′∈{0,1}d

χvav
′
a
∈ 〈I�, IΓ 〉 for all va ∈ V(Qd). �

Now, we will prove that d2d−1eva is in 〈I�, IΓ 〉 for all va ∈ V(Qd).

Claim 5.6. If d � 2, then d2d−1eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd).

Proof. Again, we need to fix some notation before beginning with the proof. For all n � 1, let h1 :
{0, 1}n → {0, 1}n+1 be given by

h1(a)i =
⎧⎪⎨⎪⎩
ai + 1 (mod 2) if i = 1,

ai if 2 � i � n,

1 if i = n + 1,

h0 : {0, 1}n → {0, 1}n+1 given by h0(a) = h01n(a). For k = 1, 2, let Hk : ZV(Qn) → ZV(Qn+1) be the

mapping given by

Hk

⎛⎝ ∑
va∈V(Qn)

zvaeva

⎞⎠ = ∑
va∈V(Qn)

zvaevhk(a)
.

Also, for all d � 2, let

Rd = H0

(
d

d − 1
Rd−1

)
+ H1

(
d

d − 1
Rd−1

)
+ d2d−2

(
χv0ve1

− χve1 vh1(0)

)
,

with R2 = 2
(
χv(0,0)v(1,0) − χv(1,0)v(1,1)

)
.

Actually, we will prove by induction on d that Rd ∈ 〈I�, IΓ 〉 and d2d−1ev0 = Γ1 + Rd ∈ 〈I�, IΓ 〉
for all d � 2.

For d = 2, clearly R2 ∈ 〈I�, IΓ 〉 becauseχe ∈ 〈I�, IΓ 〉 for all e ∈ E(Q2) and 4ev(0,0) = Γ(1,1) +R2 ∈
〈I�, IΓ 〉. Moreover, 4eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Q2) becauseχe for all e ∈ E(Q2) andQ2 is connected,

see Fig. 10.

Fig. 10. Γ(1,1) + R2 = 4ev(0,0) .
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Let us assume that the result is true for all the natural numbers less or equal than d − 1. Since,

vhk(a)vhk(b) ∈ E(Qn+1) for all vavb ∈ E(Qn), n � 1, and k = 1, 2, then Hk

(
d

d−1
Rd−1

)
∈ 〈I�, IΓ 〉

for k = 1, 2. Thus, Rd = H0

(
d

d−1
Rd−1

)
+ H1

(
d

d−1
Rd−1

)
+ d2d−2

(
χv0ve1

− χve1 vh1(0)

)
∈ 〈I�, IΓ 〉.

Moreover, since Γ1 = H0

(
d

d−1
Γ1d−1

)
+ H1

(
d

d−1
Γ1d−1

)
, then

Γ1 + H0

(
d

d − 1
Rd−1

)
+ H1

(
d

d − 1
Rd−1

)
= H0

(
d

d − 1
Γ1d−1

+ Rd−1

)
+ H1

(
d

d − 1
Γ1d−1

+ Rd−1

)

= H0(d2
d−2ev0 ) + H0(d2

d−2ev0 ) = d2d−2(evh0(0)
+ evh1(0)

),

and therefore

(d2d−1)ev0 = Γ1 + Rd ∈ 〈I�, IΓ 〉.
Since χe for all e ∈ E(Qd) and Qd is connected, then d2d−1eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd). �

Finally, by Claims 5.5 and 5.6, (2d + 1)eva ∈ 〈I�, IΓ 〉 and (d2d−1)eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd)
and therefore

eva ∈ 〈I�, IΓ 〉 for all va ∈ V(Qd)

because (2d + 1, d2d−1) = (2d + 1, d) = 1. �

Remark 5.7. If n is odd, then Theorem 5.3 says that

SP(cn(Qd), s) ∼=
d⊕

i=0

Z
(di)
2i+n.

However, when n is even, this formula is not valid. For instance, if n = 2 and d = 2, then

SP(c2(Q2), s) ∼= Z2
8 ⊕ Z3 �∼= Z2 ⊕ Z2

4 ⊕ Z6 =
d⊕

i=0

Z
(di)
2i+n.

Remark 5.8. In [30] is established a close relation between the sandpile group of a graph G and the

eigenvalues and eigenvectors of their Laplacian matrix. For instance, Lorenzini [30] proved that if λ
is an integral eigenvalue of the Laplacian matrix of a graph G and μ(λ) is the maximum number of

linear independent eigenvectors associated to λ, then the sandpile group of G contains a subgroup

isomorphic to Z
μ(λ)−1

λ , see [30, Proposition 2.3].

When G is the n-cone of the hypercube of dimension dwe can use induction on n and d in order to

get the eigenvalues of their Laplacianmatrix.Moreprecisely: ifn, d arenatural numbers and0 � i � d,

then λi = 2i + n is an eigenvalue of the Laplacian matrix of cn(Qd) with multiplicity
(
d

i

)
. Using the

results in [30] that relate the eigenvalues and eigenvectors of the Laplacian matrix of a graph you can

get only a partial description of the sandpile group of c2k+1(Qd). For instance, using results in [30] you

can guarantee only thatZ2
3 
 SP(c(Q2), s) ∼= Z2

3 ⊕Z5. The n-cone of the hypercube is an example that

in general the eigenvalues and eigenvectors of the Laplacian matrix are not enough to determine the

group structure of the sandpile group.

Remark 5.9. If ci ∈ K̃βi
for i = 1, 2 with β1 � β2 = 0, then c1 ⊕ c2 = c1 + c2 − d1. Also, by

Theorem 2.3 the generator gβ(d, d − |β|) of K̃β satisfies that
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Fig. 11. The identity and the generators of SP(c(Q2), s).

k · gβ(d, d − |β|) =
⎧⎨⎩(d − j, d) if k = 2j � 2|β|,
(d, d + j − |β|) if k = 2j + 1 � 2|β| + 1.

That is, in some cases it is easy to compute the sum of two elements of the sandpile group of c(Qd).

Example 5.10. If d = 1, we have that SP(c(Q1)) = Z3, SP(c(Q1), s) = {(1, 0), (0, 1), (1, 1)}, (1, 0)
and (0, 1) are generators SP(c(Q1)), and (1, 1) is the identity of SP(c(Q1)).

If d = 2, we have that SP(c(Q2)) = Z2
3 ⊕ Z5, SP(c(Q2), s) is generated by the recurrent configu-

rations {Γ(1,0) = (2, 1, 2, 1), Γ(0,1) = (2, 2, 1, 1), Γ(1,1) = (2, 0, 2, 0)}, and Γ(0,0) = (2, 2, 2, 2) is
the recurrent configuration that plays the role of the identity in SP(c(Q2)) see Fig. 11.

Furthermore,

K̃(1,0) = {(2, 1, 2, 1), (1, 2, 1, 2), (2, 2, 2, 2)} and

K̃(0,1) = {(2, 2, 1, 1), (1, 1, 2, 2), (2, 2, 2, 2)}
form two subgroups of SP(c(Q2)) isomorphics to Z3, and

K̃(1,1) ={(2, 0, 0, 2), (1, 2, 2, 1), (2, 1, 1, 2), (0, 2, 2, 0), (2, 2, 2, 2)}
forms one subgroup isomorphic to Z5, and SP(c(Q2), s) = K̃(1,0) ⊕ K̃(0,1) ⊕ K̃(1,1).

Remark 5.11. It is clear that

SP(cn(Q0), s) = {(i) | 0 � i � n − 1} ∼= Zn

and (i) ⊕ (j) = (i + j(mod n)). Also, it is not difficult to see that e(cn(Qd),s) = kmax · n12d , where

kmax = max{i | n · i � n + d − 1} is the identity of SP(cn(Qd), s). Furthermore, if n > 1 and

K̂β = π̂1 ◦ f̃β(SP(cn(K2(|β|)), s))/π̂1(SP(cn(Q0), s)),

then SP(cn(Qd), s) = ⊕
β∈{0,1}d K̂β .

For instance, if d = 2 and n = 3, then SP(c3(Q2)) = Z3 ⊕ Z2
5 ⊕ Z7, SP(c3(Q2), s) is generated by

the recurrent configurations {(2, 2, 2, 2), (3, 0, 3, 0), (0, 0, 3, 3), (0, 3, 3, 0)}, and (3, 3, 3, 3) is the
recurrent configuration that plays the role of the identity in SP(c3(Q2)). Furthermore,

K̂(0,0) = {(2, 2, 2, 2), (4, 4, 4, 4), (3, 3, 3, 3)}
forms a subgroup of SP(c(Q2), s) of order 3,

K̂(1,0) = {(3, 0, 3, 0), (2, 1, 2, 1), (1, 2, 1, 2), (0, 3, 0, 3), (3, 3, 3, 3)}, and

K̂(0,1) = {(0, 0, 3, 3), (2, 2, 1, 1), (1, 1, 2, 2), (3, 3, 0, 0), (3, 3, 3, 3)}
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form two subgroups of SP(c(Q2), s) of order 5, and

K̂(1,0) = {(0, 3, 3, 0), (2, 1, 1, 2), (2, 4, 4, 2), (4, 2, 2, 4), (1, 2, 2, 1),
(3, 0, 0, 3), (3, 3, 3, 3)}

forms a subgroup of SP(c(Q2), s) of order 7.

Note that the construction of the K̂β subgroups is not canonical, because π̂1((0)) = (0, 0, 0, 0) +
e(cn(Qd),s) and π̂1((2)) = (2, 2, 2, 2).

Remark 5.12. If IF(d) is the number of invariant factors of SP(c(Qd)), then

IF(d) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

p|2i+1
3�p�2d+1

(
d

i

)
| p is a prime number

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎨⎩6 if d = 4,∑� d−1

3
�

i=0

(
d

1+3i

)
if d �= 4.

Furthermore, it is not difficult to see that

lim
d→∞

IF(d)

2d
= 1

3
.
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