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1. Introduction

The sandpile models were firstly introduced by Bak et al. [3,4], and have been studied under several
names in statistical physics, theoretical computer science, algebraic graph theory, and combinatorics.

The abelian sandpile model of a graph was introduced by Dhar [19], which generalizes the sandpile
model of a grid given in [3]. The abelian sandpile model of Dhar [19] begins with a connected graph
G = (V,E) and a distinguished vertex s € V, called the sink. Dhar [19] showed that the set of some
configurations (a configurations of G is a vector in NV\S), called recurrent configurations, with the
vertex-by-vertex sum as a binary operation forms a finite abelian group, called the sandpile group of
G. It follows from Kirchhoff's Matrix-Tree theorem (see e.g. [7]) that the order of the sandpile group of
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a graph G is the number of spanning trees of G. Mainly, the abelian sandpile group has been studied
under the name of sandpile group, denoted by SP(G, s), and critical group, denoted by K(G). It has
been also studied under other names, such as Jacobian group, Picard group, dollar game, see, for
instance [8,9,28,29].

The sandpile group has been completely determined for some family of graphs, see, for instance [28,
32,29,25,9,33,35,26,14]. The sandpile group of the cartesian product has received special interest, for
instance the following cartesian products of graphs it has been determined: P4 x C, [13], K3 x Cy [24],
K X Py [27], C4 X G [38], and K, x G, [17,39]. The abstract structure of the sandpile group has
been partially described for the hypercube [2] and the cartesian product of complete graphs [25].
In [16] it was proved that the sandpile group of a dual graph G* is isomorphic to the sandpile group
of G. Also, in [6] there are established some relations between the sandpile group of a graph G and
the sandpile group of its line graph. In particular, they proved that if G is non-bipartite and regular,
then K(line(G)) is completely determined as a function of K(G). Finally, in [30] a relationship be-
tween the eigenvalues and eigenvectors of the Laplacian matrix of a graph and their sandpile group is
established.

Given a natural number n, the n-cone of a graph G, denoted by ¢, (G), is the graph obtained from G
when we add a new vertex s to G and n parallel edges between the new vertex s and all the vertices
of G. If n = 1 we simply write c(G) instead of ¢ (G). In this article, we study the sandpile group of
the cone of a graph. In particular, we give a partial description of the sandpile group of the cone of the
cartesian product of graphs as a function of the sandpile group of the cone of their factors. Also, we
introduce the concept of uniform homomorphism of graphs and prove that every surjective uniform
homomorphism of graphs induces an injective homomorphism between their sandpile groups. As an
application of these two results we obtain an explicit description of a set of generators of the sandpile
group of the cone of the hypercube of dimension d.

A graph G is a pair (V, E), where V is a finite set and E is a subset of the set of unordered pair of
elements of V. The elements of V and E are called vertices and edges, respectively. If e = {x, y}, then x
and y are incident to e, x and y are the ends of e and x and y are adjacents. The multiplicity between two
vertices u and v of a graph, denoted by m, y, is the number of edges with ends u and v. The degree of a
vertex x € G, denoted by dg(x) = d(x), is the number of incident edges to x.

A graph G’ = (V', E') is a subgraph of the graph G = (V,E),if V' C V and E' C E. An induced
subgraph G[V'] = (V/, E') is a subgraph of G = (V, E) such that every edge e € E that has its ends in
V'isinE.

The article is organized as follows. In Section 2, the concepts of graph theory that will be needed in
the rest of the article are introduced. We also give the combinatorial and algebraic definitions of the
sandpile group of G with sink sg.

In Section 3, we introduce the concept of uniform homomorphism of graphs. Let G and H be two
graphsand V C V(H). A V-uniform homomorphism between G and H, is amappingf : V(G) — V(H)
such that forallx € Vandy € V(H)

d(;[{u}usy](u) =my,y forall ue S :f_l(x)

and f : V(G)\ f~(V) — V(H)\V is the identity isomorphism. After introducing the concept of a
V-uniform homomorphism, we prove the main theorem of this section.

Theorem 3.5. If f : G — H is a surjective V-uniform homomorphism with f~Ysy) = {s¢} and
sy ¢ V C V(H) such that V(H)\V is a stable set, then the induced mapping f : SP(H, sy) — SP(G, s¢),
given by

Cf(v) if fv) ev,
deg(f) -cry I f(v) ¢V,

is an injective homomorphism of groups.

flo), =
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Section 4 is devoted to the study of the sandpile group of the cone of the cartesian product of
graphs. Leta € 7V© andb € ZVH) pe configurations of the cones of G and H, respectively. Taking
the cartesian product of configurations as

(@lb)y,vy =ay, +b, forall ueV(G) and v e V(H),

then, alb is a recurrent configuration of the cone of the cartesian product of G and H whenever a
and b are recurrent configurations of G and H, respectively. This definition of the cartesian product of
configurations leads to the main result of Section 4.

Theorem 4.4. If ey is the identity of SP(c(H), S¢(m)), then the mapping
76 : SP(c(G), sc(G)) —> SP(c(GLIH), sc(crm))

given by 7ig(a) = aley is an injective homomorphism of groups.

Finally, in Section 5 we use an explicit description of the sandpile group of a thick graph with
three vertices as well as the results obtained in Sections 3 and 4, to get a concrete description of a set
of generators of the sandpile group of the cone of the hypercube of dimension d. More precisely, if
V(Qq) = {va|a € {0, 1}%} is the vertex set of the hypercube of dimension d and

r if B -aiseven,

gﬁ(rv t)Va =
t ifB-aisodd,

forall 8 € {0, 1}¢. Then,

I~<,g:{gﬁ(r,t)+(d—|,3|)1|0§r, t <d andeither r=|8] or tzlﬁI}CZV(Qd),

is a set of recurrent configurations of SP(c(Qq), Sc(q,)) Which is a subgroup of SP(c(Qq), Sc(q,)) isomor-
phic to Zy|g|41. The next theorem gives a description of the sandpile group of the cone of Qg gluing
all the subgroups Kg.

Theorem 5.3. Letk > 0,d > 1 be natural numbers and let co+1(Qqg) be the 2k + 1-cone of the hypercube
Qg. If s = V(car+1(Qa))\V(Qq), then
d d
SP(c2k4+1(Qa), 8) = @Zgb)rz“y

i=0

Furthermore, SP(c(Qq), s) = @ﬂe{o’l}d I~(,3.

The introduction of an extra vertex in the cone’s construction is fundamental in order to get a
better behavior of the sandpile group. For instance, in 2003, Jacobson et al. [25] gave a partial de-
scription of the sandpile group of the cartesian product of complete graphs. In the same year, Bai [2]
proved that the number of invariant factors of the hypercube Qy is 2! — 1 and gave a formula
for the number of occurrences of Z; in the elementary divisor form of the sandpile group of Q.
However, the full structure of the Sylow 2-subgroup of the sandpile group of the hypercube is still
unknown.

2. Preliminaries

Let G be a graph with V as vertex set and E as edge set. For simplicity, an edge e = {x, y} will be
denoted by xy. The sets of two or more edges with the same ends are called multiple edges. A loop is an
edge incident to a unique vertex. A multigraph is a graph with multiple edges and without loops.
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A digraph G is a pair (V, E), where V is a finite set and E is a subset of the set of ordered pair of
elements of V. The elements of V and E are called vertices and arcs, respectively. Given an arce = (x, y),
we say that x is the initial vertex of e and y is the terminal vertex of e. The number of arcs with initial
vertex x and terminal vertex y will be denoted by m(y y). The out-degree of a vertex x of a digraph,
denoted by daL (x), is the number of arcs with initial vertex x. A vertex x is a sink if its out-degree is
zero. Moreover, a sink x is a global sink if for every vertex y € G, there exists a directed path from y to x.

Given a multigraph G and a vertex s of G, let b(G, s) be the digraph with the same vertex set of G
and arc set equal to

E(b(G,s)) = ( U (@, (y,x)}) U ( U S)}> .

xy€E(G\s) sEE(G)

Note that, b(G, s) is a digraph with global sink s.
Let G be a digraph, s be a global sink of G, and V the set of non-sink vertices of G.

2.1. The sandpile group

There exist several ways to define the sandpile group of a digraph. In this section, we will present
a combinatorial and an algebraic definition of the sandpile group.

Algebraic description. One of the simplest ways to define the sandpile group is by using an algebraic
description, known as the critical group. The Laplacian matrix of G, denoted by L(G), is the matrix of
|V| x |V] given by

dt(u) —muy ifu=v,

L(G)yy =
(©uv —Myy) otherwise.

The reduced Laplacian matrix, denoted by L(G, s), is the matrix obtained from L(G) by removing the
row and column s.

The sandpile group of G is the cokernel of L(G, s),
SP(G,s) = Z¥ /ImL(G, 5)".
Another way to define the sandpile group is by using stable and recurrent configurations.

Combinatorial description. A configuration of (G, s) is a vector ¢ € NV. A non-sink vertex v is called
stableif d* (v) > ¢y, and otherwise is called unstable. Moreover, a configuration is called stable if every
vertex v in V is stable. Toppling an unstable vertex u in c is performed by decreasing ¢, by the degree
dT (u), and adding the multiplicity M,y to each of the vertices v such that (u, v) € E(G). Now, let
Ay =dT (W) — Suver My, v)€y, where e, is the vth canonical vector with a one in the vth coordinate
and zeros elsewhere. Then, A, is a row of the reduced Laplacian matrix L(G, s) and toppling u means
to subtract A, from c.

By performing a sequence of topplings, we will eventually arrive at a stable configuration, [23,
Lemma 2.4]. See [23, Example 2.1] for an example of a digraph without global sink and a configuration
that does not stabilizes. Moreover, the stabilization of a unstable configuration is unique, [31, Theorem
2.1]. The stable configuration associated to ¢ will be denoted by s(c). Then, s(c) = ¢ — L(G, s)tB for
some 8 € NV,

Now, let (¢ +d), := ¢, +d, forallu € V and ¢ @ d := s(c + d). A configuration c is recurrent if
it is stable and there exists a non-zero configuration r such that s(c + r) = c. The sandpile group of G,
denoted by SP(G, s), is the set of recurrent configurations with & as binary operation.

Given a multigraph G with a distinguished vertex s their sandpile group is defined by SP(b(G, s), s).
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Theorem 2.1 [16, Corollary 2.5,23, Corollary 2.16]. LetG = (V, E) be a multigraph (respectively, digraph)
with (respectively, global sink) sink s € V, then SP(G, s) is an abelian group.

One of the simplest ways to check when a configuration of a multigraph is recurrent is given by the
following result.

Theorem 2.2 (Burning algorithm, [19]). A configuration ¢ € N V is recurrent if and only if there exist an

order uy, uy, ..., Uy of the vertices V such thatif¢c; = ¢ + X2[L; Ay, and
G =Ci_1— Ay, forall i=2,...,n,
then u; is an unstable vertex of ¢; foralli =1, ..., nand ¢ = ¢; — Ay,.

There is a generalization of the burning algorithm for digraphs, know as the script algorithm,
see [34].

For instance, in the next proposition, we shall describe the sandpile group of the multidigraph
c(Ka(r, £)) with V = {s, v1, vo} as vertex set, my, s = 1, my, s = 1, My, v,) = 1,and m, ;) = t.If
r = t we simply write c(K3(r)) instead of c(Ky (1, t)).

Theorem 2.3 [1, Theorem 2.34]. Ifr € Zy and t € Z, then

SP(c(K2(r, £)),8) = Zyyey1.

Moreover, SP(c(Ky(1)),s) = {(m,]) |0 < m,l < dand m = r or | = r} with (r, r) as the identity and
(r, 0) is a generator of SP(K,(r), s) with

(r—j,r) if k=2j<2r,
(r.J) ifk=2+1<2r+1.

k(r,0) =

It is known that both descriptions are equivalent in the sense that both descriptions define isomor-
phic groups, [23, Corollary 2.16]. Is not difficult to see that the structure of the sandpile group does
not depend on the sink vertex. However, the set of recurrent configurations of G depends on the sink.
In this article, we are not only interested in the abstract structure of the sandpile group, we are also
interested in the set of recurrent configurations and in the description of the subgroups generated by
this recurrent configuration. We are interested in giving a description of the recurrent configurations
because they contain a very nice combinatorial structure and some combinatorial information of the
graph. In general it is easier to describe the abstract structure of the sandpile group than to give an
explicit description of recurrent configurations and their generated subgroups generated. For instance,
when G is the grid, in [10,12,18] is given a partial characterization of the recurrent configuration that
plays the role of the identity. The set of recurrent configuration and their generated subgroup has been
described only for a few family of graphs.

In the following, every multigraph will be connected and will have a distinguished vertexsg € V(G),
called sink. Sometimes we will simply write s instead of s¢. The set of non-sink vertices will be denoted
by V.

3. Graph homomorphism and the sandpile group

In this section, we introduce the concepts of uniform homomorphism and weak homomorphism of
graphs. This concepts are similar to the classical concepts of homomorphism and full homomorphism
of graphs. Also we introduce a directed variant of the uniform homomorphism concept, called di-
rected uniform homomorphism. In the literature, there are several concepts that are either equivalent
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or similar to the concepts of uniform homomorphism, weak homomorphism, and directed uniform
homomorphism of graphs. For instance, in [21, Chapter 5, 37, Section 5] the concept of an equitable
partition of a graph was defined. This concept of equitable partition is equivalent to the concept of
directed uniform homomorphism. In [11, Section 5], Berman defined the concept of divisibility of
graphs, which is closed related to the concept of weak V-uniform homomorphism when V = V(G),
see Remark 3.13 for a more precise explanation of this equivalence.

The concept of uniform homomorphism is useful in order to get an insight of the group structure
of the sandpile groups of graphs. For instance, Theorem 3.5 says that if f : G — H is a surjective
(V(H)\sy)-uniform homomorphism, then the induced mapping f : SP(H, sy) — SP(G, s¢) is an in-
jective homomorphism of groups; that is, this mapping sends recurrent configurations to recurrent
configurations and is compatible with the group structure. Theorem 5.7 in [11] shows an equivalent
result to the one in Theorem 3.5. Theorem 6.1 in [37] shows an equivalent result to the one in Theo-
rem 3.9.In [5, Section 2] the concept of harmonic morphism was defined (this concept is different form
uniform homomorphism) and a functor between the category of graphs with harmonic morphisms
and the category of abelian groups was studied. In [36] it is explored a functor from the category
of graphs with divisibility to the category of abelian groups, see for instance Proposition 19. Finally,
in [6,20,29] some functorial results on the category of graphs to the category of abelian groups are
proved. For instance, in [29, Proposition 2,36, Proposition 21] is proved that: if G is a connected graph
and G, is the graph obtained by dividing each edge of G in k edges, then there exists a surjective func-
tion between the sandpile group of Gy and the sandpile group of G. In [20] is introduced the concept
of symmetric configuration and quotient graph are discussed, more precisely Theorem 2.1 proved that
the set of symmetric configurations forms a subgroup of the sandpile group. In [6, Theorems 1.3 and
1.5] are established homomorphism between the sandpile group of the line graph of a graph G and the
sandpile group of G and between the sandpile group of the line graph of a graph G and the sandpile
group of a subdivision of G.

Definition 3.1. Let G, H be multigraphs without loops and V C V(H). A V-uniform homomorphism of
G to H, denoted by f : G — H, isamapping f : V(G) — V(H) such thatforallx € Vandy € V(H)

d(;[{u}usy](u) =my, forall uesS, :fﬁl(x)
andf : V(G)\f_l(V) — V(H)\V is the identity isomorphism.
Iff : V(G) — V(H) is a V-uniform homomorphism with V = V(H), then we simply say that
f is a uniform homomorphism. In the case of directed multigraphs, we define a directed V-uniform
homomorphism as a mapping f : V(G) — V(H) such thatf : V(G) \ f~'(V) — V(H) \ V is the
identity isomorphism and for allx € Vandy € V(H)
dé_[{u}usy](“) =M,y forall ue€s,,

where dé’ (u) is the outdegree of the vertex u in the graph G, that is, the number of arcs of G with tail u.

Iff : G — His aV-uniform homomorphism, then S is a stable set of G for all x € V because H
has no loops. Moreover, since G[Sy U Sy ] is a my y-regular bipartite graph for allx # y € V and H[V]
is connected, then |Sy| = |S,| forallx, y € V. The degree of a V-uniform homomorphism f : G — H,
denoted by deg( ), is equal to the cardinality of the set S, for some x € V.

Proposition 3.2. Iff : G — H is a V-uniform homomorphism and V(H)\V is a stable set, then

@y if fw e v,
deg(f) - du(f(w) if F(u) ¢ V.
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Proof. Ifu € f~1(V), then
de) = D douus,i@ = D dugraiopnFW) = du(f(u)).
YEVH)\ f(u) YEVH)\ f(u)
On the other hand, since V(H) \ V is a stable set, then

de) = D deyyuun @) = D deg(f) - duppuyrwn Fw) = deg(f) - duy(f(w)).

veSy,xeV xeV

when u ¢f‘1(V). ]

The next proposition gives us an alternative description of a uniform homomorphism.

Proposition 3.3. Let G and H be multigraphs without loops. Then, f : G — H is a uniform homomorphism
if and only if

(i) Sy = f~1(x) is an independent set of G for all x € V(H),
(ii) G[Sx U Sy]is a my y-regular bipartite graph for allx #y € V(H).

Now, we will introduce the classical definitions of a homomorphism and a full homomorphism of
graphs in order to compare them with the notion of uniform homomorphism.

Let G and H be multigraphs. A homomorphism (respectively, full homomorphism) is a mapping
f:V(G) — V(H)
such that f (u)f(v) € E(H) if (respectively, and only if) uv € E(G).

The definitions of full homomorphism and isomorphism of graphs are similar. The main difference
between them is that a full homomorphism is not necessarily bijective; meanwhile an isomorphism is.

By example, let C4 and P3 be graphs as in Fig. 1. The mappingf : V(C4) — V(P3) givenby vy, v3 |i> uq,
and vy, v4 |i> uy is a full homomorphism.
The following proposition gives us an equivalent way to define a (full) homomorphism of graphs:

Proposition 3.4 [22, Proposition 1.10 and Exercise 10, p. 35]. Let G and H be multigraphs without loops.
Then f : G — H is an homomorphism if and only if

(i) Sy = f~1(x) is an independent set of G for all x € V(H),
(i) ifxy ¢ E(H), thenuv ¢ E(G) forallu € Syandv € S,.

Moreover, f is a full homomorphism if and only if f satisfies conditions (i), (ii), and
(ii") ifxy € E(H), thenuv € E(G) forallu € Syand v € S,,.
VU1 U3 U1

Ca

us
V4 V2 U2

Fig. 1. A full homomorphism between C4 and Ps.
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Uz
1
f '
U1 _— : U1
\
A}
us

Fig. 2. The mapping f.

In order to illustrate the concept of uniform homomorphism, let C3 and Cs be the cycles with three
and five vertices, respectively (Fig. 2).

The mapping f : V(Cs) — V(C3) given by

f
Vi U1,
f
Vo, V4 —— Uy,

f
V3, V5 ——> U3,

is a homomorphism of graphs that is neither a full nor uniform homomorphism, see Fig. 2. If we replace
Cs by C5 4 vovs5 + vy v3 + vy v4, we get that the mapping f is a full homomorphism that is not uniform.
Additionally, if we replace C5 by Cs + vovs + 1/l V4 + vﬁ v3 and C3 by C3 + uyus, then the function given
byf(vi) = f(vj) foralli=1,...,5 andf(vﬁ) = uy is a uniform homomorphism, butfis not a full
homomorphism because v; v, is not an edge as required by Theorem 3.4[(ii)].

The concept of uniform homomorphism of graphs is relevant in the study of the sandpile group of
graphs as shown in the following result.

Theorem 3.5. Let G be a multigraph with sink s, H be a multigraph with sink sy, V. C V(H) such that
V(H) \ Vis a stable set and sy ¢ V, f : G_— H be a surjective V-uniform homomorphism such that
f~1(sy) = {sc}. Then the induced mapping f : SP(H, sy) — SP(G, s¢), given by

F(v) iff(v) eV,
deg(f) - ¢y if f(v) ¢V,

is an injective homomorphism of groups, that is, SP(H, sy) < SP(G, s¢).

f(c)v—{

Proof. Let f : ZV(H\sv) 5 7V(G\sc) pe the mapping induced by f given by

P W if f(v) eV,
ey = {deg(f) G 0 F) ¢V

Clearlyf is an injective homomorphism of groups. In order to prove this theorem we need to prove
the following facts:

e If cis a recurrent configuration of (H, sy), then f (c) is a recurrent configuration of (G, s¢),
o f(c1 ®c2) =f(c1) B f(cy) foralley, €3 € SP(H, sp).

The next claim will be useful to prove this fact.

Claim 3.6. If ¢y and c; are configurations of (H, sy), then

f(s(er + €2)) = s(f(e1) + f(e2)).
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V2
f SH
o at U3
us G U .7
e e ~
| % \<
Ug Us

Fig. 3. A surjective uniform homomorphism and its induced surjective (V(H) \ sy)-uniform homomorphism.

Proof. By proposition 3.2 a vertex x € V(H) \ sy can be toppled in the configuration c of (H, sp) if
and only if the vertices Sy of G can be toppled in the configuration f (¢) of (G, s¢).

On the other hand, smcef(AX) = > es, Ay forallx € V(H)\{sy} and s(c) = ¢ — >, ew Ay for
some multiset W of V(H)\sy, then

fs(e1+ ) = f(cl +e— > Aw> flen) +f(e) — > F(aw)

weW weW

= fle) +fe) — D D Ay =s(fle1) +f(cz). O

weW veSy,

Clearly, cis a stable configuration of (H, sy) if and only iff(c) is a stable configuration of (G, s¢). Fur-
thermore, if ¢ is a recurrent configuration of (H, sy), then there exists a configuration u of (H, sy) such
thats(c + u) = ¢.Thus, by Claim 3.6 s( f(c)+f(u)) = f(s(c+u)) —[(c )and thereforef(c) isarecur-
rent configuration of (G, s¢). Finally,f(¢; @ €2) =f(s(¢1 + €2)) = s(f(€1) + f(€2)) = f(c1) @ f(c2)
forall ¢y, ¢; € SP(H, sy). O

Remark 3.7. Note that,amappingf : G — H is a surjective uniform homomorphism if and only if the

induced mappmgf G— Hisa surjective (V(H) \ sy)-uniform homomorphlsm where G = G/f !
(sy) is the graph obtained from G when we contract all the vertices in f~!(sy) to a single vertex sc.
For instance, consider the next graphs in Fig. 3 with f : G — H given by

i

uy, Uy /> SH,
f

U, Ugy = vy,
f

us, Us —— vs3.

Thenf :G— Hisa surjective (V(H) \ sy)-uniform homomorphism of graphs.

Example 3.8. In order to illustrate Theorem 3.5, consider the surjective (V(H) \ sy)-uniform ho-
momorphism, f : G — H defined in Remark 3.7. Using the CSandPile! program we can see that
SP(H, sy) = Zg with identity ey = (1, 2) and generated by cg = (0, 3), and SP(G, s¢) = Zy @ Z4g

1 cSandPileisa C++ program that computes the sandpile group of a graph. It is available by requesting to alfaromontufar@gmail.com.
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3 0 0

SH

3

Fig. 4. A surjective (V(H)\sy)-uniform homomorphism.

with identity e; = f(eH) = (1,2,1,2) and generated by ¢c; = (2,1, 2, 3) of order two and
cys = (1, 2, 2, 3) of order 48, see Fig. 4.

For instance, the induced mappingj7 : SP(H, sy) — SP(E;, s¢) sends the configuration cg to the

conﬁguration Cg = f(cs) (0, 3, 0, 3), which generates a subgroup of order eight in SP(é, Se)-
Moreover,€g = ¢, D6 -¢48 = (2,1,2,3) D (2, 2, 2, 0).

Now, we will present a directed version of Theorem 3.5.

Theorem 3.9. If G are a multigraph with sink sg, H is a multigraph with sink sy, and f : G — Hisa
directed surjective V(H) \ sy-uniform homomorphism with f~1 (sy) = {s¢}. If f : ZV#H\s#) — 7V(C\sc)
is the mapping given by

f©)y = ¢y forall veV(G)\sc,

then the induced mappingf : SP(H, sy) — SP(G, s¢) is an injective homomorphism of groups, that is,
SP(H, sy) < SP(G, s¢).

Proof. Clearly, f is an an injective homomorphism of groups. Moreover, if L(H, sy)z = a, then
L(G, s(;)f(z) f(a) Thus, since det(L(G, s¢)) # 0, then

FamLH, sy)) = F(Z'H)) N ImL(G, s¢).

Hence the mappingf : ZV#H\s#) — 7V(C\se) / Im L(G, s¢) given by f(a) = f(a) (mod Im L(G, s¢)) has
a kernel equal to Im L(H, sy) and therefore the induced mapping

F:SP(H, sy) = ZVH /Im L(H, sy) — ZV €V /Im L(G, s¢) = SP(G, s¢)

is an injective homomorphism of groups. O

Remark 3.10. Note that,iff : G — His adirected surjective V(H) \ sy-uniform homomorphism with
f~Y(sy) = {sc} and a is an eigenvector of L(H, sy) for the eigenvalue A, then f (a) is an eigenvector of
L(G, s¢) for A.

Also, note that in the directed case the mappingf defined in Theorem 3.9 is not a natural homo-
morphism of sandpile groups in the sense that it does not necessarily send recurrent configurations
to recurrent configurations.

The next corollary is an application of Theorem 3.9.
Corollary 3.11. If B, ; is a bipartite graph with bipartition V = V1 U V; and

r if u eV,

d(u) =
® t ifuevy,

then Zy 111 <SP(c(By t), S8, ,)-
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Proof. Let K, (r, t) be the multigraph with V = {vy, v} as set of vertices and my, , =1, my, 4, = t.
Letf : c(Br,r) — c(K2(r, t)) be the mapping given by

Vi if vev,
fv)y = 1qvy if velv,
Sky(rty  if v =1sp,.
Since f is a surjective {vy, v3}-uniform homomorphism, then by Theorems 3.9 and 2.3 we have that

Zytt41 = SP(c(Ka(r, 1)) <SP(c(By 1), s,,). [

Remark 3.12. Aweak V-uniform homomorphism is a mappingf : V(G) — V(H) suchthatforallx € V
andy € V(H) withx # y

deuus,) (1) = myy forall u €S,

(that is, the sets Sy are not necessarily stable) and f : V(G) \ 71 (V)= V(H) \ V is the identity
isomorphism. In this case the induced mapping f does not send recurrent configurations to recurrent
configurations, but the mappingf(c):[f(c)] (where [f(c)] is the unique recurrent configuration of
G such that s(f(c) + r)=[f(c)] for some non-zero configuration r) is an injective homomorphism of
groups.

Remark 3.13. The group of bicycles of a graph G over an abelian group A, denoted by B(G, A), consists
of the edge weightings of G over A that are both cycles and cocycles of G and the entry by entry sum.
The group of bicycles and the sandpile group of a graph are closely related. For instance, B(G, A) =
Homyz (SP(G), A). Moreover, if either A = Q/Z or A = Zsp(c)|, then the group B(G, A) of bicycles of
G is isomorphic to SP(G).

Let G, H be connected multigraphs and V(H) = {uy, ..., ujy(u)} be the vertex set of H. We say that
Gisdivisibleby H (see 11, p.9])if the vertices of G can be partitioned into |V (H)| classes Uy, . .., Ujy )],
such that for 1 < i,j < |V(H)| a vertex v in U is either joined only to vertices of U; or for every i # j
is joined to exactly my, ,,; vertices of U; (and any number of vertices in U;).

Note that the concepts of divisibility and weak V(G)-uniform homomorphism are closed related.
Clearly, if G is divisible by H, then there exists a weak V (H)-uniform homomorphism f between G and
H.However, if G and H are the graphs defined in Remark 3.7, then G is not divisible by H but there exists
a surjective (V(H) \ sy)-uniform homomorphism f between G and H. Also, it is not difficult to see that
the cycle with four vertices with an added pendant edge (thatis, E(G) = {x1X2, X2X3, X3X4, X4X1, X1X5})
is divisible by K (2) but there not exists a uniform homomorphism between them.

Theorem 5.7 in [11] says that if G is divisible by H, then B(H, Zj) is a subgroup of B(G, Zj,) for all
k € Z.Thatis, Theorems 3.5, 3.9, and [11, Theorem 5.7] shows injections between groups induced by
some class of morphism between graphs.

4. The sandpile group of the cartesian product of graphs

The sandpile group of the cartesian product of graphs has been studied by several authors, see
for instance [2,13,24,25,27]. In this section, we define the cartesian product of configurations and we
prove that the cartesian product of recurrent configurations is a recurrent configuration. After that,
we prove that: if ey € SP(c(H), scn)) is the identity of the sandpile group of the cone of H, then the
mapping 77 : SP(c(G), scg)) — SP(c(GUH), s¢crmy) given by

7g(a) = alley,

is an injective homomorphism of groups.
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U1 V2
[ O
u2701 (U27U2)
U37 U1
us, U2)
Uhvl (U17U2)
Uy, V2)
U4 Ul
’ u5,vl (u57/02)

Fig. 5. Cartesian product of Cs and Ky.

The cartesian product of G and H, denoted by GLIH is the graph with V(G) x V(H) as its vertex set and
two vertices (uq, v1) and (uy, v,) are adjacent in GLIH if and only if either u; = uy and v{v, € E(H),
or vy = vy and uquy € E(G), see Fig. 5.

Let 7 : GLJH — G and 7ty : GLIH — H be the projection mappings, given by
nc(u,v) =u forall (u,v) € V(GOH) and my(u,v) =v forall (u,v) € V(GLIH).

Thus, it is not difficult to see that the mappings 7 and ry are weak surjective uniform homomor-
phisms of graphs. For the rest of this section, let s¢g) € V(c(G)) \ V(G), sew) € V(c(H)) \ V(H) and
secOH) € V(c(GOH)) \ V(GOH).

Now, let a € NV(© be a configuration of ¢(G), b € NV be a configuration of c(H) (as shown in
Fig. 6),

and let allb € NV pe the configuration of c(GCIH) given by
(alb) vy = ay + by forallu € V(G) andv € V(H).

The following lemma shows that the cartesian product of configurations of ¢(G) and c(H) is com-
patible with the toppling operators of c(G), c(H) and c(GLIH).

Lemma 4.1. Let G and H be multigraphs, a € NY(© be a configuration of c¢(G), and b € NV pe g
configuration of c(H). Then

(i) Ifa and b are stable configurations, then al lb is a stable configuration of c(GLIH),
(ii) If a and b are recurrent configurations, then aldb is a recurrent configuration of
c¢(GLIH).

Proof (i) If a and b are stable configurations of c(G) and c(H) respectively, then

a, <degy(u) —1 forall ueV(G) and by, < degepyy(v) — 1forallv € V(H).

1 b 2
® ]

7
O
a b>3 4
6

Fig. 6. Cartesian product of configurations.
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Hence alb(, ) = a, + b, < deg(g) (1) + dege)(v) — 2 = degecomy (1, v)) — 1, thatis,allbis a
stable configuration of c(GLIH).

(ii) We will use the burning Algorithm 2.2 to prove the second part of this lemma. Since, the sink s¢ of
¢(G) is adjacent to all the vertices of G, then > | Ay, = 1.

Claim 4.2. Let a be a recurrent configuration of c(G) and b be a recurrent configuration c(H). Also, let

a+1 ifi=1 b+1 ifj=1
=12t I and b= |>" s
a1 — Ay, ifi=2,...,n, bi_1— Ay, fj=2,...,m,
such that the vertex u; is an unstable vertex in a; foralli = 1, ..., n and the vertex vj is an unstable vertex

inb; forallj =1,...,mIfc =allb, ¢¢1,1) = allb + 1 = a;[b = allby, and

e = 1Ci=tm) = Dy Fi=2,... nandj=1,
(i) Cij-1) — Aqy_y)  Otherwise,

then the vertex (u;, vj) is an unstable vertexin ¢ j) foralli=1,...,nandj=1,...,m.
Proof. Since the vertex u; is an unstable vertexina; foralli = 1, ..., nand the vertex v; is an unstable
vertexinb;forallj =1, ..., m,then (a;)y, = deg. ) (u;) foralli =1, ..., nand (bj)y; > deg.)(v))

forallj=1,...,m.

Now, €i,1) = €(1,1) — Zi<k<i—1 2a<i<m Dy = @ — 2i<k<io1 Ay)b = a;lb for all
i=1,...,n Thus,

(c(i,l))(ui,v1) = (aiDb)(ui,m) = (ai)ui‘i‘bv] = (ai)ui+(b1 )v1 -1= degc(G) (ui)+degc(H) (vi)—1
= deg.com) (Ui, vy)) foralli =1, ..., n.

Moreover, since ¢(; jy = ailIb — > 1 <i<j Aq;,vy = @ — Dby — 34 <1j Ay, then
(€)@ = @)y + (by)y; — 1 = degeg) (ui) + degeyy (vj) — 1 = degecomy (i, vj))

foralli=1,...,nandj=1,...,m.
Therefore (uj, vj) is an unstable vertex of ¢(; j foralli=1,...,nandj=1,...,m. 0

Finally, by using part (i) of this lemma and the previous claim we obtain that alJb is recurrent. []
The next example is useful to illustrate the previous theorem:

Example 4.3. Let G = H = Ky with V(G) = {uq, us} and V(H) = {vq, v} as vertex sets,a = (1, 1)
be a recurrent configuration of ¢(G) and b = (1, 0) be a recurrent configuration of c(H).

Hence c=(2,1,2,1)=(1,1)LJ(1, 0) is a recurrent configuration of c(GLIH), as is shown in
Fig. 7.

€11) [FAwie) = €12 [FAww) T €@ |[FAMw) T €22 [~Auswe) = c

3 3 0 4 1 4 2 1 2 2

Fig. 7. The topplings of the configuration ¢ = (3, 2, 3, 2) of c(Cy4).
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The next theorem shows that the mappings 77 and ry induce homomorphisms of groups between
the sandpile groups of the cones of G and GLIH, and H and GLIH; respectively.

Theorem 4.4. Let G and H be two multigraphs, and ey be the identity of the sandpile group of the cone of
H. Then the mapping 7 : SP(c(G), S¢(c)) — SP(c(GLIH), sc(cm)) given by

7c(a) = alley,

is an injective homomorphism of groups.

Proof. Since ey is recurrent, then using Lemma 4.1(ii), 7g(a) = alley is a recurrent configuration of
c(GUH) foralla € SP(c(G), S¢(c)); that is, the mapping 7 is well defined.

Now, we will prove that 77 is a homomorphism of groups. Let a, b € SP(c(G), s¢()), then

7c(@a®b) =(adb)lUey = s(a+ b)lley = (a+ b)Uey (mod L(c(GUH), sccomy))
=alley + bUey = s(alley + blley) (mod L(c(GLIH), s¢cn))) = alley @ blley

=17¢(a) & 7g(b),

and therefore 77 is a homomorphism of groups.

Finally, 7g(a) = 7¢(b) if and only if alley = blley if and only if a = b, and therefore 7 is an
injective homomorphism of groups. O

Example 4.5. Using the CSandPile program we get that, SP(c(K3), S¢(x,)) = %3 is generated by (1, 0)
with identity (1, 1), SP(c(Cs), S¢(c5)) = Zfl is generated by (2,1, 1,1,1) and (1, 2,1, 1, 1) with
identity e = (2, 2, 2, 2, 2) (also see [15, p. 5]), and SP(c(C5[1K3)) = Z11.29 D Z3.11.29-

Moreover, using the mapping mx, we have that
nKz(]s 0) = (3s 37 31 35 37 21 27 23 2, 2)

is a generator of a subgroup of SP(c(Cs[JK;)) isomorphic to Zs3, and using the mapping ic; we have that

me(2,1,1,1,1)=(3,2,2,2,2,3,2,2,2,2) and
7es(1,2,1,1,1)=(2,3,2,2,2,2,3,2,2,2)

are generators of subgroups of SP(c(Cs[1K3)) isomorphic to Zq;.

Remark 4.6. If n > 1 and ey is the identity of SP(c,(G), S¢,()), then the mapping given by
7ig(a) = alley

does not necessarily send stable configurations to stable configurations. For instance, the vector (3, 3)
is the identity of c3(Q) and (6, 6, 6, 6) = 7¢((3, 3)) = (3, 3)LI(3, 3) is a non-stable configuration
of c3(Q2). However, the non-canonical mapping

g : SP(cn(G), Scn(G)) — SP(c,(GLIH), an(CDH))

given by 775(a) = [7(a)] is an injective homomorphism of groups.

5. The sandpile group of c(Qq)

The hypercube of dimension d is the cartesian product of d copies of the complete graph with two
vertices K. The structure of the sandpile group of the hypercube is complex, see, for instance [2] for
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a description of the Sylow p-group of SP(Q4) when p is odd and [25] for a description of the cartesian
product of complete graphs in general.

In this section, we give an explicit combinatorial and algebraic description of a set of generators of
the sandpile group of the cone of the hypercube of dimension d, see Theorem 5.3. We will use mainly
Theorems 3.5 and 4.4, developed in previous sections, to get a description of the sandpile group of the
cone of the hypercube of dimension d.

First of all, we will fix some notation that will be needed in order to establish the main theorem, let

Q= D?leCz = K- - - UKC,,
2
d-copies of Ky

with vertex set V(Qq) = {va |a € {0, 1}9} and edge set
E(Qq) = {vavy |2, € {0,1}%anda — a’ = =e; for some 1 < i < d}.

Moreover, for all B € {0, 1}¢, let Qg = Qq[{va | supp(a) < supp(p)}], be an induced subgraph of Qg,
where supp(c) = {i | ¢; # 0}, see Fig. 8. It is not difficult to note that:

o O = icsupp(p Qo = O ko = Qg where |B] = 3L, B,
e Qg = Ql1Qgr_g forall supp(B) C supp(B’), in particular Qg = Qq,...,1) = QglJQq_g forall
B < {0, 1}4.

Now, for all 0 # S € {0, 1}, let fg : c(Qp) — c(K2(]B])) be the surjective V(K3 (|B]))-uniform
homomorphism of graphs given by
2 ifv =v,and B - aiseven,
fp(v) = v ifv=v,and B - aisodd,
Secx () 1V = Scqp)
and for all B/ € {0, 1}4 such that supp(B) C supp(B’), let 7g,p be the projection mapping of Qg on
Q.

75,60 /s

(Qp) c(Qp) c(Ka(18)))
Also, let I?ﬂ,ﬂ/ = 1Im(7Tg g ofﬂ), and gg g’ : N2 - NV(@») given by

r if B -aiseven,
gp.p/(r, Dy, = . .
t ifB-aisodd,

v(0,1,0)

V(0,1,1)

V(0,0,0)

v(0,0,1)

V(1,0,1)

Fig. 8. The hypercube Q3 = Q(1,1,1), Where the hypercube Q(1,0,1) = Q2 is colored in blue, and the hypercube Qo,1,0) = Q1 is colored
in red.
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If B/ = 1, then we simply denote 7, by 7R, I?ﬁ,,g/ by I?,g, and gg g by gg. Note that, if 8| = 1, then
fp is the identity mapping and if 8 = B, then 7, p is the identity mapping.

Proposition 5.1. Let d be a natural number, s = V(c(Qq)) \ V(Qq), and B8, B’ € {0, 1}4. Then

(i) K,g ={gg(r,t) +(@d—|BDN1]0 < < dandeitherr = |Blort = |B]} <SP(c(Qq), s),
(ii) K,g is generated by gp( (d,d— 18 wzth zdentzty d1 and K,g = Zoig1+1,
(iii) 74 (SP(c(Qp), 5)) N7 (SP(c(Qp), 5)) = Tpop (SP(c(Qgop): 9)

where (@ ® b); = a; - b; for alli.

Proof. (i)and (ii)
By Theorems 3.5 and 4.4 we get that 775 and f,g are injective homomorphims of groups.

SP(c(Ka(181)), )‘—> SP((Qp);8) s, SP(c(Qa); 5)

By Theorem 2.3, SP(c(Qg), s) is generated byf,g(|ﬂ|, 0) with identityfﬁ(|/3|, |B1) = |Bl1q, forall
B € {0, 1}%. Moreover, since Kg = Im(7 o fg), then

Kg = {7 o fg(c) | ¢ € SP(c(K2(IBD), )} = {fp (@D — [B)1gy_, | € € SP(c(K2(IB]), 5)}
= {fﬁ((r, HU(d — |BD1g, 4, 10 <r,t <d andeither r=|B|ort=|Bl}
={gg(r,t) +(d—[BD1]|0<r, t <dandeitherr = |B|ort = |B]} forall B € {0, 1}d.
Thus
Kp = SP(c(KC2(1B1)), $) = Zag+1 <SP(c(Qa),s) forall B € {0, 1)

is generated byfﬂ(|ﬂ|, 0)J(d — |,3|)1Q1_ﬂ =gp(d,d — |B|) and d1 = g1(d, d) is the identity 0f1~</3,
see Fig. 9.

(iii) Finally, let ¢ € 7g(SP(c(Qp), s)). Since 7Tg(a) = alle for alla € SP(c(Qp), s), where e =
(d — |B1is the identity of SP(c(Q1—g), s). Then ¢ € 75 (SP(c(Qp), s)) if and only if ¢,, = ¢, for all
a0 pB=b0oOg.

Now, ¢ € 75(SP(c(Qp), s)) N g (SP(c(Qg’), s)) ifand only if ¢, = ¢y, foralla® B =b© B,and
¢, =c¢y, foralla® g’ =b O B ifand onlyifc,, = ¢, foralla® (BO L) =bO (B O ') ifand
only ifc € Tgep (SP(c(Qgep).s). O

The next lemma will be useful in order to get the description of the sandpile group of the hypercube.

7T(110)°f(110)

U 13
0 L///// 0 2 o ~
A
1
— |Qu10| —— 1
f1,1,0) T(1,1,0)
9 0
2 3 1

Fig. 9. The mappingsf(m_o), (11,0, and T(q,1,0) of(m_g) on Q3.
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Lemma 5.2 [2, Proposition 3.1, 25, lemma 16]. Let A be an abelian group, and let « and f be two
endomorphisms of A such that f — o = m - 14 for some integer m. Then

Syl (cokera8) = Syl,(cokerar @ cokerf)

for all primes p that does not divide m.

The next theorem is the main result of this section.

Theorem 5.3. Letk > 0,d > 1 be natural numbers and let cyx+1(Qq) be the 2k + 1-cone of the hypercube
Q4. If s = V(cak+1(Qq)) \ V(Qq), then

0!
SP(cok+1(Qa), 8) = D Zol 51 -

i=0

Furthermore, SP(c(Qq), S) = @ﬁe{o’l}d I~<,3.

Proof. Lets = V(c;(Q))) \ V(Q;). Using elementary row and columns operations invertible over Z we
get an equivalent matrix of L(cax+1(Qg+1), S)-

[ L(cak2(Qa),s)  —he —ha  L(Ca42(Qa), 5)
L(cok+1(Qa41),8) = ~
—ILya L(cok+2(Qq), 5) L(cok4+2(Qq), 5) —Iha
[ha  —L(cars2(Qa), 5) Ipa 0
| 0 L(cak42(Qa), $)*—lp 0 L(cak+1(Qa), 5) - L(cak+3(Qa), 5)

Thus

ISP(Cok+1(Qat1), $)| = [L(Cok+1(Qd+1), S| = |L(Cok+1(Qa), S| - [L(c2k+3(Qq), )]

d d
= [T 1LCarsais1 (@), D = [TIk+ 2i + 3) 2k + 2i + 1)]D
i=0 i=0
d+1

= [[@k+2i+ 1.
i=1

Applying Lemma5.2to A = sz, o = L(cok+1(Qq), s) and B = L(ck+3(Qq), 5) (B — o = 2I5d) we
get that

Syly (SP(cok+1(Qd1), 5)) = Syly(cokeraB) = Syl, (cokera @ cokerf)

= Sylp (SP(c2k+1(Qa). 5)) @ Sylp (SP(C2k+3(Qa) $))-
Therefore, using induction on d and the fact that (2, |SP(c2k+1(Q4+1), S)|) = 1 we get that

d d
SP(cok+1(Qa), 5) = P Zgii-)‘rzk-‘r]'
i=0
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Ontheother hand, we will use induction ondin order to prove that SP(c(Qq), s) = EB/S {0,1}¢ I~<,g .For

d = 1, the result follows from Theorem 2.3. Now, foralld > 1,0 # 8 € {0, 1}¢,anda € {0, 1}sPP(A),
let

a—b=xe;
Alg (@) = dc(Qﬁ)(Va)eva — z ey, € ZV(Qﬂ)
supp(b) Csupp(p)

be the toppling operator of the vertex v, of (c(Qg), 5), Ia(B) = ({Ag(a)|a € {0, l}suPp(ﬂ)}) be the
subgroup generated by the images of the toppling operators of (c(Qg), s), and

Ir(B) = ({Tp.p = gp.p(BL 1Bl — 1B') 10 # B’ € {0,177},

be the subgroup generated by the generators of 1~<,3/,,3. If B = 1, we simply denote Ag(a) by A(a),
Ia(B) by Ia, Ty g by Iyr,and Ir-(B) by Ir-

Since, @ﬁe{o,l}d I~<,3 <1SP(c(Qq), s) (proposition 5.1 (i)) and

d d ~ P
ISPc(Qa), )l = ]I+ D@D = ] @Bl+= [] Ksl=1 P Kl

i=1 pefo, 1} Befo,1)¢ pefo,1}d

then proving that SP(c(Qq), s) = @ﬂe{oyl}d I~<ﬂ is equivalent to prove that Z¥(@) = (1, UI). Hence,
we will prove this equivalent form of Theorem 5.3.

Theorem 5.4. Let d > 1 be a natural number, then ZV @) = (I, UI).

We will use induction on d. Ford = 1, the result is clear because A(0) = (2, —1), A(1) = (-1, 2),
and by Theorem 2.3, I'T = (1, 0) is a generator of SP(c(Q1), s) . Let us assume that the result is true
for all hypercubes of dimension less than d — 1.

The proof is divided in two steps, first we will prove that (2d + 1)e,, € (Ia, Ir) forallva € V(Qq)
and after that we will prove that dzd_leva € (In, Ir) forall v, € V(Qq).

Claim 5.5. Ifd > 1, then 2d + 1)ey, € (Ia, Ir) forall vy € V(Qq).

Proof. We will fix some notation that will be useful in the following. For all 0,1 # g € {0, 1}4ae
{0,139 and b € {0, 1}5PPA=A) et h% . {0, 1)3PPB) {0, 1} be the mapping
given by

a; ifi € supp(B),
b; ifi ¢ supp(B).

Now, let B € {0, 1}¢ with |8] = d — 1. Since Qg = QgIK>, then

hp@); =

o Ap(@)00 = A(h}(a) + A(h(a)) € I, foralla € {0, 1}5PPP),
e 1y = 2acjo,1¢ A(@) €14, and
o I'g g0 = I'y — 1y(q, € (Ia, Ir) forall B’ such that supp(B’) < supp(B).

Thus, if
g= Q. zlg@+ > welpg e alB),Ir(B).

ae{oJ}Sllpp(ﬁ) '3/6{0’1}supp(ﬁ)
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thengJ0 € (I, Ir).Inparticular, by induction hypothesis, e,, € (Ia(8), Ir(B)) foralla € {0, 1}5upp(A)
and therefore

e,L00=rey, +ey, €(lalr) forall a e {0, 1}5uPP),
B "B

(@) (@)

that is, if e = v,vy is an edge of Qg and ¥, is its characteristic vector, then x. € (Ia, I;). Moreover, if
v, and vy are vertices of Qqg, then

ey, + (—1)"Ye, e (15, 1r),

where dist(v,, vy ) is the distance between v, and v, in Qq. Finally, since x. € (Ia, I) foralle € E(Qy),
then

a—a'=+e;
d+ e, =A@+ D v, € (a.Ip) forallva € V(Qp). O
a’ef{o0,1)d

Now, we will prove that clzd_le‘,é1 isin (Ix, I) forall vy € V(Qy).
Claim 5.6. Ifd > 2, then dzd’]e\,a € (Ia, Ir) forall v, € V(Qg).

Proof. Again, we need to fix some notation before beginning with the proof. For alln < 1, let h; :
{0, 1} — {0, 1}™*! be given by

aj+1(mod2) ifi=1,
hi@); = 1a if 2 <i<n,
1 ifi=n+1,

ho : {0, 1}" — {0, 1}"*! given by ho(a) = hY (a). Fork = 1,2, let Hy : 7V (@) — 7V(@+) pe the
mapping given by

Hi, ( Z Zv, eVa) = Z Zv, e"hk(a) .

Va€V(Qn) va€V(Qu)
Also, foralld > 2, let
Rs = Ho ( d Rd—l) + Hy ( d Rd—]) + d2472 (Xvove — XVeyVh (0)) )
d—1 d—1 ! E

with Ry =2 (XV<0,0)V<1,0> - X"(l.O)V(Ll))'

Actually, we will prove by induction on d that Ry € (I, I} and dZd_le,,o =T1714Rq € (Ia,I)
foralld > 2.

Ford = 2,clearlyRy € (Ia, I;) because . € (Ia, Iy ) foralle € E(Qy) and4ey,, = I(1,1)+R2 €
(In, Ir).Moreover, 4e,, € (I, Ir) forallv, € V(Qy) because x, foralle € E(Q2) and Q, is connected,

see Fig. 10.
0, 2 Op —2 0O 0
H + H 72X’U(011)v<111) ) H
2 20 2 20 4 20

2Xv(0,0y0(1.0)

Fig.10. [{1,1) + Ry = 46‘,(0.0).



C.A. Alfaro, C.E. Valencia / Linear Algebra and its Applications 436 (2012) 1154-1176 1173

Let us assume that the result is true for all the natural numbers less or equal than d — 1. Since,
Vi@ Vhed) € E(Qny) for all vavy € E(Qn), n > 1,and k = 1, 2, then Hi (%qu) € (Ia,Ir)

for k = 1,2. Thus, Rs = Ho (3%Ra—1) + H1 (3% Ra—1) + 4272 (xuoue, = Xveyum) € (s Ir)-
Moreover, since I'T = Hy (%Fld—l) + H; (%FM_]), then

d d d d
I7 + Ho (d — ]Rd—l) + Hy (d— ]Rd—l) =Ho (dirldq +Rd—l) + Hi (dflrld—l +Rd—1)

= HO(dzd_zeVo) + HO(dzd_ZQVo) = dzd_z(e\/hgm) + ey, )
and therefore
(2 Yey, = I + Ry € {Ia, Ir).

Since x. for all e € E(Qq) and Qg is connected, then d2d’1eva € (Ia, Ip) forallv, € V(Qq). O

Finally, by Claims 5.5 and 5.6, (2d + 1)e,, € (I, Ir) and ((12‘7’_1)6‘,a € (In, I) forall v, € V(Qy)
and therefore

ev, € (Ia,Ir) forall v, € V(Qq)
because 2d + 1, d2¢" )Y = 2d+ 1,d) = 1. O

Remark 5.7. If n is odd, then Theorem 5.3 says that

g
SP(cn(Qa). 5) = D Zyjy -
i=0

However, when n is even, this formula is not valid. For instance, if n = 2 and d = 2, then
)
SP(2(Q2),5) ZZE @ 7 X Ly ® 72 & Ls = D Ly
i=0

Remark 5.8. In [30] is established a close relation between the sandpile group of a graph G and the
eigenvalues and eigenvectors of their Laplacian matrix. For instance, Lorenzini [30] proved that if A
is an integral eigenvalue of the Laplacian matrix of a graph G and @ (A) is the maximum number of
linear independent eigenvectors associated to A, then the sandpile group of G contains a subgroup

isomorphic to Z’f()‘)_l, see [30, Proposition 2.3].

When G is the n-cone of the hypercube of dimension d we can use induction on n and d in order to
get the eigenvalues of their Laplacian matrix. More precisely: if n, d are natural numbersand 0 < i < d,
then A; = 2i + n is an eigenvalue of the Laplacian matrix of c,(Qq) with multiplicity (?) Using the

results in [30] that relate the eigenvalues and eigenvectors of the Laplacian matrix of a graph you can
get only a partial description of the sandpile group of ck+1(Qg). For instance, using results in [30] you
can guarantee only that Z% <aSP(c(Qy),s) = Z% @ Zs. The n-cone of the hypercube is an example that
in general the eigenvalues and eigenvectors of the Laplacian matrix are not enough to determine the
group structure of the sandpile group.

Remark 5.9. If ¢; € Kg fori = 1,2 with 81 © B2 = 0, then ¢; ® ¢; = ¢; + ¢; — d1. Also, by
Theorem 2.3 the generator gg (d, d — |B]) of I?,g satisfies that
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2 2 2 1 1 1 0 2

L0,0) L0 Lo,1) INERY

2 2 2 1 2 2 2 0

Fig. 11. The identity and the generators of SP(c(Q2), $).

d—j,d) if k =2 < 28I,
k-gp(d.d—|B) = , o
d,d+j—18) if k=2i4+1<2|B]+1.

That is, in some cases it is easy to compute the sum of two elements of the sandpile group of c(Qy).

Example 5.10. If d = 1, we have that SP(c(Qq)) = Zs3, SP(c(Q1),s) = {(1, 0), (0, 1), (1, 1)}, (1, 0)
and (0, 1) are generators SP(c(Qy)), and (1, 1) is the identity of SP(c(Q1)).

If d = 2, we have that SP(c(Q2)) = Z% @ Zs, SP(c(Q2), s) is generated by the recurrent configu-
rations {I'(1,0) = (2,1,2,1), [0y = (2,2,1,1), I'1,1) = (2,0,2,0)},and Io,0) = (2,2,2,2) is
the recurrent configuration that plays the role of the identity in SP(c(Q,)) see Fig. 11.

Furthermore,
Koo =1{2,1,2,1),(1,2,1,2),(2,2,2,2)} and
Ko =1{2,2,1,1),(1,1,2,2),(2,2,2,2)}
form two subgroups of SP(c(Q,)) isomorphics to Zs, and
I~((1,1) ={(,0,0,2),(1,2,2,1),(2,1,1,2),(0,2,2,0), (2,2, 2,2)}
forms one subgroup isomorphic to Zs, and SP(c(Q3), s) = I~<(1,0) (&) I~<(o,1) ® I~((1,1).

Remark 5.11. It is clear that
SP(cn(Qo),s) ={()|0<i<n—1} =Z,

and (i) ® (j) = (i + j(mod n)). Also, it is not difficult to see that e,(q,).s) = kmax - N1,d, where
kmax = max{i|n-i < n+d— 1}is the identity of SP(c,(Qq), s). Furthermore, if n > 1 and

Kg = 71 0 [ (SP(ca(K2(IB1)), $)) /71 (SP(ca(Qo), 9)).

then SP(c,(Qq), s) = @ﬁe{o,ud IA<;;.

For instance, if d = 2 and n = 3, then SP(c3(Q)) = Z3 & Zg @ Z7,SP(c3(Q), ) is generated by
the recurrent configurations {(2, 2, 2, 2), (3, 0, 3, 0), (0, 0, 3, 3), (0, 3, 3, 0)}, and (3, 3, 3, 3) is the
recurrent configuration that plays the role of the identity in SP(c3(Q2)). Furthermore,

Koo =1{(2.2,2,2), (4,4,4,4), (3,3,3.3)}
forms a subgroup of SP(c(Q>), s) of order 3,

Ka.0=1(3,0,3,0),(2,1,2,1),(1,2,1,2), (0,3,0,3), (3, 3, 3,3)}, and
12(0,‘1) = {(0’ 07 3’ 3)’ (2’ 27 1? 1)7 (17 1’ 27 2)’ (37 37 O’ 0)’ (3’ 37 3’ 3)}
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form two subgroups of SP(c(Q>), s) of order 5, and

IA<(1,0) =1{(0,3,3,0),(2,1,1,2),(2,4,4,2),(4,2,2,4),(1,2,2,1),
(3,0,0,3), (3,3,3,3)}
forms a subgroup of SP(c(Q,), s) of order 7.

Note that the construction of the K # subgroups is not canonical, because 71 ((0)) = (0, 0, 0, 0) +
e (Qy).s) and 11 ((2)) = (2, 2,2, 2).

Remark 5.12. If IF(d) is the number of invariant factors of SP(c(Qg)), then

d . . 6 ifd =4,
IF(d) = max Z )| pisaprime number; = Ld%lJ d ifd 4
p2i+1 i=0  \1+3i .

3<p<2d+1

Furthermore, it is not difficult to see that

. IF(d) 1

lim — = —.

d—oo 24 3
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