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a b s t r a c t

Fixed point theorems for operators of a certain type on partial metric spaces are given.
Orbitally continuous operators on partial metric spaces and orbitally complete partial
metric spaces are defined, and fixed point theorems for these operators are given.
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1. Introduction and preliminaries

The existence and uniqueness of fixed points of operators has been a subject of great interest since the work of Banach
in 1922 [1]. Results for operators on spaces of various types, for example metric spaces, quasi-metric spaces (see e.g. [2,3]),
conemetric spaces (see e.g. [4,5]), Menger (statistical metric) spaces (see e.g. [6]), and fuzzy metric spaces (see e.g [7]), have
already been obtained. A new space called a partial metric space (PMS) has been introduced by Matthews [8,9]. Matthews
proved a fixed point theorem on this space, which is an analogy of the Banach fixed point theorem. Later, somemore results
on fixed point theory on PMS were published [10–14].

The definition of a partial metric space is given by Matthews (see [8]) as follows:

Definition 1. Let X be a nonempty set and let p : X × X → R+ satisfy

(P1) x = y ⇔ p(x, x) = p(y, y) = p(x, y)
(P2) p(x, x) ≤ p(x, y)
(P3) p(x, y) = p(y, x)
(P4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z)

(1.1)

for all x, y and z ∈ X . Then the pair (X, p) is called a partial metric space and p is called a partial metric on X .

One can easily show that the function dp : X × X → R+ defined as

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) (1.2)

satisfies the conditions of a metric on X; therefore it is a (usual) metric on X . Note also that each partial metric p on
X generates a T0 topology τp on X , whose base is a family of open p-balls


Bp(x, ϵ) : x ∈ X, ϵ > 0


where Bp(x, ϵ) =

{y ∈ X : p(x, y) ≤ p(x, x) + ϵ} for all x ∈ X and ϵ > 0.
On a partial metric space the concepts of convergence, the Cauchy sequence, completeness and continuity as defined as

follows [8].

∗ Corresponding author. Tel.: +90 3125868753; fax: +90 3125868091.
E-mail addresses: erdalkarapinar@yahoo.com, ekarapinar@atilim.edu.tr (E. Karapınar), ierhan@atilim.edu.tr (İ.M. Erhan).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.05.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82362513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.05.013
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:erdalkarapinar@yahoo.com
mailto:ekarapinar@atilim.edu.tr
mailto:ierhan@atilim.edu.tr
http://dx.doi.org/10.1016/j.aml.2011.05.013


E. Karapınar, İ.M. Erhan / Applied Mathematics Letters 24 (2011) 1894–1899 1895

Definition 2.
(1) A sequence {xn} in the PMS (X, p) converges to the limit x if and only if p(x, x) = limn→∞ p(x, xn).
(2) A sequence {xn} in the PMS (X, p) is called a Cauchy sequence if limn,m→∞ p(xn, xm) exists and is finite.
(3) A PMS (X, p) is called complete if every Cauchy sequence {xn} in X converges with respect to τp to a point x ∈ X such

that p(x, x) = limn,m→∞ p(xn, xm).
(4) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ϵ > 0, there exists δ > 0 such that F(Bp(x0, δ))

⊆ BP(Fx0, ϵ).

The following lemma on partial metric spaces can be derived easily (see e.g. [8,9,13]).

Lemma 3.
(1) A sequence {xn} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy sequence in the metric space (X, dp).
(2) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover

lim
n→∞

dp(x, xn) = 0 ⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm). (1.3)

2. The main results

We start with an easy lemma which has a crucial role in the proof of the main results.

Lemma 4 (See e.g. [15]). Assume that xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y)
for every y ∈ X.

Proof. First note that limn→∞ p(xn, z) = p(z, z) = 0. By the triangle inequality we have

p(xn, y) ≤ p(xn, z) + p(z, y) − p(z, z) = p(xn, z) + p(z, y)

and

p(z, y) ≤ p(z, xn) + p(xn, y) − p(xn, xn) ≤ p(xn, z) + p(xn, y).

Hence

0 ≤ |p(xn, y) − p(z, y)| ≤ p(xn, z).

Letting n → ∞ we conclude our claim. �

In this section we give some fixed point theorems for operators of different types on partial metric spaces. Our first
theorem has an analog on metric spaces (see [16]).

Theorem 5. Let (X, p) be a partial metric space. Let T : X → X be a map for which the inequality

ap(Tx, Ty) + b[p(x, Tx) + p(y, Ty)] + c[p(x, Ty) + p(y, Tx)] ≤ sp(x, y) + rp(x, T 2x) (2.1)

holds for all x, y in X where the constants a, b, c, r and s satisfy

0 ≤
s − b
a + b

< 1, a + b ≠ 0, a + b + c > 0, c > 0, c − r ≥ 0. (2.2)

Then T has at least one fixed point in X.

Proof. Take an arbitrary x0 ∈ X . Define the sequence

xn+1 = Txn, n = 0, 1, 2, . . . . (2.3)

Substituting x = xn and y = xn+1 in (2.1) we obtain

ap(Txn, Txn+1) + b[p(xn, Txn) + p(xn+1, Txn+1)] + c[p(xn, Txn+1) + p(xn+1, Txn)] ≤ sp(xn, xn+1) + rp(xn, T 2xn)

which implies

ap(xn+1, xn+2) + b[p(xn, xn+1) + p(xn+1, xn+2)] + c[p(xn, xn+2) + p(xn+1, xn+1)] ≤ sp(xn, xn+1) + rp(xn, xn+2).

Rewriting this inequality as

(a + b)p(xn+1, xn+2) + (c − r)p(xn, xn+2) + cp(xn+1, xn+1) ≤ (s − b)p(xn, xn+1),

and using the fact that

(c − r)p(xn, xn+2) + cp(xn+1, xn+1) ≥ 0
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we obtain

p(xn+1, xn+2) ≤ kp(xn, xn+1),

where k =
s−b
a+b and clearly 0 ≤ k < 1. Thus,

p(xn+1, xn+2) ≤ kp(xn, xn+1) ≤ k2p(xn−1, xn) ≤ · · · ≤ kn+1p(x0, x1). (2.4)

Wewill show that {xn} is a Cauchy sequence.Without loss of generality assume that n > m. Then, using (2.4) and the triangle
inequality for partial metric (P4) we have

0 ≤ p(xn, xm) ≤ p(xn, xn−1) + p(xn−1, xn−2) + · · · + p(xm+1, xm)

− [p(xn−1, xn−1) + p(xn−2, xn−2) + · · · p(xm+1, xm+1)]

≤ p(xn, xn−1) + p(xn−1, xn−2) + · · · + p(xm+1, xm)

≤ [kn−1
+ kn−2

+ · · · km]p(x0, x1)

= km
1 − kn−m

1 − k
p(x0, x1).

Hence, limn,m→∞ p(xn, xm) = 0, that is, {xn} is a Cauchy sequence in (X, p). By Lemma 3, {xn} is also Cauchy in (X, dp). In
addition, since (X, p) is complete, (X, dp) is also complete. Thus there exists z ∈ X such that xn → z in (X, dp); moreover,
by Lemma 3,

p(z, z) = lim
n→∞

p(z, xn) = lim
n,m→∞

p(xn, xm) = 0 (2.5)

implies

lim
n→∞

dp(z, xn) = 0. (2.6)

We will show next that z is the fixed point of T . Notice that due to (2.5), we have p(z, z) = 0. Substituting x = xn and
y = z in (2.1) we obtain

ap(Txn, Tz) + b[p(xn, Txn) + p(z, Tz)] + c[p(z, Txn) + p(xn, Tz)] ≤ sp(z, xn) + rp(xn, T 2xn)

which implies

ap(xn+1, Tz) + b[p(xn, xn+1) + p(z, Tz)] + c[p(z, xn+1) + p(xn, Tz)] (2.7)

≤ sp(z, xn) + rp(xn, xn+2). (2.8)

Taking the limit as n → ∞, using (2.5) and noting Lemma 4, we obtain

(a + b + c)p(z, Tz) ≤ 0.

Since a + b + c > 0, we then have

0 ≤ (a + b + c)p(z, Tz) ≤ 0

which implies p(z, Tz) = 0. Using (1.2), we end up with

0 ≤ dp(z, Tz) = 2p(z, Tz) − p(z, z) − p(Tz, Tz) = −p(Tz, Tz) ≤ 0,

and hence, dp(z, Tz) = 0, that is, z = Tz, which completes the proof. �

We next define orbitally continuous maps on partial metric spaces and orbitally complete partial metric spaces. In fact,
fixed point theories for certain orbitally continuous maps on metric spaces and orbitally complete metric spaces have been
investigated by Ćirić [17]. On partial metric spaces we define these concepts as follows.

Definition 6.

(1) Let (X, p) be a PMS. A map T : X → X is called orbitally continuous if

lim
i→∞

p(T nix, z) = p(z, z) (2.9)

implies

lim
i→∞

p(TT nix, Tz) = p(Tz, Tz) (2.10)

for each x ∈ X .
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(2) A PMS (X, p) is called orbitally complete if every Cauchy sequence {T nix}∞i=1 converges in (X, p), that is, if

lim
i,j→∞

p(T nix, T njx) = lim
i→∞

p(T nix, z) = p(z, z). (2.11)

We need the following lemma in order to proceed with the fixed point theorems of orbitally continuous maps.

Lemma 7 (See e.g. [15]). Let (X, p) be a complete PMS. Then:

(A) If p(x, y) = 0, then x = y.
(B) If x ≠ y, then p(x, y) > 0.

Proof of (A). Let p(x, y) = 0. By (P3), we have p(x, x) ≤ p(x, y) = 0 and p(y, y) ≤ p(x, y) = 0. Thus, we have

p(x, x) = p(x, y) = p(y, y) = 0.

Hence, by (P2), we have x = y. �

Proof of (B). Suppose that x ≠ y. By definition p(x, y) ≥ 0 for all x, y ∈ X . Assume that p(x, y) = 0. By part (A), x = ywhich
is a contradiction. Hence, p(x, y) > 0 whenever x ≠ y. �

In what follows, we state and prove an analog of the fixed point theorem for orbitally continuous maps on orbitally
complete metric spaces given by Ćirić in 1974 (see [17]).

Theorem 8. Let T : X → X be an orbitally continuous map on an orbitally complete PMS (X, p). If T satisfies

min{p(Tx, Ty), p(x, Tx), p(y, Ty)} ≤ ap(x, y) (2.12)

for some a < 1 and all x, y in X, then the sequence {T nx} converges to a fixed point of T for each x in X.

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} as follows:

xn+1 = Txn, n = 0, 1, 2, . . . .

Clearly, if xn = xn+1 for some n ∈ N, then T has a fixed point. Therefore, we assume that xn ≠ xn+1 for all n ∈ N. Hence, by
Lemma 7, we have p(xn, xn+1) > 0 for all n ∈ N. Substituting x = xn and y = xn+1 in (2.12) we obtain

min{p(Txn, Txn+1), p(xn, Txn), p(xn+1, Txn+1)} ≤ ap(xn, xn+1) (2.13)

which implies

min{p(xn+1, xn+2), p(xn, xn+1)} ≤ ap(xn, xn+1). (2.14)

Now, if min{p(xn+1, xn+2), p(xn, xn+1)} = p(xn, xn+1), it follows that

p(xn, xn+1) ≤ ap(xn, xn+1)

which is impossible since a < 1. Then we must have

min{p(xn+1, xn+2), p(xn, xn+1)} = p(xn+1, xn+2)

and hence

p(xn+1, xn+2) ≤ ap(xn, xn+1). (2.15)

Then, for n > m by using (P4) and using (2.15), we have

0 ≤ p(xn, xm) ≤ p(xn, xn−1) + p(xn−1, xn−2) + · · · + p(xm+1, xm)

− [p(xn−1, xn−1) + p(xn−2, xn−2) + · · · + p(xm+1, xm+1)]

≤ p(xn, xn−1) + p(xn−1, xn−2) + · · · p(xm+1, xm)

≤ [an−1
+ an−2

+ · · · am]p(x0, x1)

= am
1 − an−m

1 − a
p(x0, x1).

Thus,

lim
m,n→∞

p(xn, xm) = 0,

so we conclude that {xn} = {T nx0} is Cauchy in PMS (X, p), and since (X, p) is orbitally complete, then {T nx0} converges to
a limit, say z ∈ X , such that

lim
m,n→∞

p(T nx0, Tmx0) = lim
n→∞

p(T nx0, z) = p(z, z) = 0. (2.16)
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Now, we will show that z is a fixed point of T . Since T is orbitally continuous and noting (2.16) we observe that

lim
n→∞

p(T nx0, z) = p(z, z) ⇒ lim
n→∞

p(TT nx0, Tz) = p(Tz, Tz). (2.17)

Also, taking the limit as n → ∞ and using Lemma 4 with (2.17) we obtain

p(z, Tz) ≤ p(z, T n+1x0) + p(T n+1x0, Tz) − p(T n+1x0, T n+1x0)

≤ p(z, xn+2) + p(T n+1x0, Tz) − p(xn+2, xn+2), (2.18)

which implies that

p(z, Tz) ≤ p(Tz, Tz).

However, from (P2), this is possible only if

p(z, Tz) = p(Tz, Tz). (2.19)

Using (2.12), (2.19) and (2.16) we have

min{p(Tz, Tz), p(z, Tz), p(z, Tz)} ≤ ap(z, z)
p(Tz, Tz) = p(z, Tz) ≤ ap(z, z) = 0.

(2.20)

Thus, (2.20) implies p(Tz, Tz) = p(z, Tz) = p(z, z) = 0 and by (P1) we obtain z = Tz which completes the proof. �

Example 9. Let X = [0, 1]. Define p : X × X → R+ as

p(x, y) = max{x, y}

with

T : X → X, Tx =
x
2

Clearly, (X, p) is a partial metric space. Now, let x ≤ y. Then p(x, Tx) = x, p(y, Ty) = y, p(Tx, Ty) =
y
2 and p(x, y) = y.

Hence, we have

min{p(x, Tx), p(y, Ty), p(Tx, Ty)} = min

x, y,

y
2


.

If min

x, y, y

2


=

y
2 , then

min{p(x, Tx), p(y, Ty), p(Tx, Ty)} =
y
2

≤
1
2
p(x, y).

If min

x, y, y

2


= x, then obviously x ≤

y
2 and

min{p(x, Tx), p(y, Ty), p(Tx, Ty)} = x ≤
1
2
p(x, y).

Then T satisfies the conditions of Theorem 8with a =
1
2 . Therefore, the sequence {T nx} =

 x
2n


converges to the fixed point

z = 0 of the operator T for every x ∈ X .

In the next theorem we consider an orbitally continuous operator satisfying a condition given by a rational expression.
This theorem also has an analog in metric spaces (see [18]).

Theorem 10. Let T : X → X be an orbitally continuous map on an orbitally complete PMS (X, p). If T satisfies

min{p(Tx, Ty)p(x, y), p(x, Tx)p(y, Ty)}
min{p(x, Tx), p(y, Ty)}

≤ ap(x, y) (2.21)

for some a < 1 and all x, y in X such that p(x, Tx) ≠ 0 and p(y, Ty) ≠ 0, then the sequence {T nx} converges to a fixed point of
T for each x in X.

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} as follows:

xn+1 = Txn, n = 0, 1, 2, . . .

It is clear that if xn = xn+1 for some n ∈ N, then T has a fixed point. Thus, we suppose that xn ≠ xn+1 for all n ∈ N. Hence,
by Lemma 7, we have p(xn, xn+1) > 0 for all n ∈ N. We substitute x = xn and y = xn+1 in (2.21) and obtain

min{p(Txn, Txn+1)p(xn, xn+1), p(xn, Txn)p(xn+1, Txn+1)}

min{p(xn, Txn), p(xn+1, Txn+1)}
≤ ap(xn, xn+1) (2.22)
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which implies

p(xn+1, xn+2)p(xn, xn+1)

min{p(xn+1, xn+2), p(xn, xn+1)}
≤ ap(xn, xn+1). (2.23)

Now, if min{p(xn+1, xn+2), p(xn, xn+1)} = p(xn+1, xn+2), it follows that

p(xn, xn+1) ≤ ap(xn, xn+1)

which is impossible since a < 1. Then we must have min{p(xn+1, xn+2), p(xn, xn+1)} = p(xn, xn+1) and hence

p(xn+1, xn+2) ≤ ap(xn, xn+1). (2.24)

Regarding the analogy with Theorem 8, we get

lim
n→∞

p(xn, z) = p(z, z) = 0, and p(Tz, z) = p(Tz, Tz). (2.25)

If p(Tz, z) = p(Tz, Tz) = 0, then by (P1) we have Tz = z. Suppose p(Tz, z) = p(Tz, Tz) > 0. Consider (2.21) for x = Tz and
y = z:

min{p(T 2z, Tz)p(Tz, z), p(Tz, T 2z)p(z, Tz)}
min{p(Tz, T 2z), p(z, Tz)}

≤ ap(Tz, z) (2.26)

Then we have

p(T 2z, Tz)p(Tz, z) ≤ ap(Tz, z)min{p(Tz, T 2z), p(z, Tz)}. (2.27)

If min{p(Tz, T 2z), p(z, Tz)} = p(Tz, T 2z), then since a < 1, we have a contradiction. Thus, min{p(Tz, T 2z), p(z, Tz)} =

p(z, Tz) and hence by (2.27)

p(T 2z, Tz)p(Tz, z) ≤ ap(z, Tz)p(z, Tz) ⇔ p(T 2z, Tz) ≤ ap(z, Tz). (2.28)

Notice that due to (P2) we always have

p(Tz, Tz) ≤ p(T 2z, Tz). (2.29)

Combining (2.28), (2.29) and (2.25), we get

p(Tz, z) = p(Tz, Tz) ≤ p(T 2z, Tz) ≤ ap(z, Tz)

which is possible only if p(Tz, z) = 0. Hence, by Lemma 7, we get Tz = z. �

The fixed point theorems presented in this work give conditions only for the existence of fixed points and not for the
uniqueness. In the case of (usual) metric space, these theorems give similar results, that is, the conditions only imply the
existence of fixed points.
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