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a b s t r a c t

In this work we propose a hybrid algorithm for a class of Vehicle Routing Problems with homogeneous

fleet. A sequence of Set Partitioning (SP) models, with columns corresponding to routes found by a

metaheuristic approach, are solved, not necessarily to optimality, using a Mixed Integer Programming

(MIP) solver, that may interact with the metaheuristic during its execution. Moreover, we developed a

reactive mechanism that dynamically controls the dimension of the SP models when dealing with large

size instances. The algorithm was extensively tested on benchmark instances of the following Vechicle

Routing Problem (VRP) variants: (i) Capacitated VRP; (ii) Asymmetric VRP; (iii) Open VRP; (iv) VRP with

Simultaneous Pickup and Delivery; (v) VRP with Mixed Pickup and Delivery; (vi) Multi-depot VRP;

(vii) Multi-depot VRP with Mixed Pickup and Delivery. The results obtained were quite competitive with

those found by heuristics devoted to specific variants. A number of new best solutions were obtained.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Vehicle Routing Problem (VRP) is a classical Combinatorial
Optimization (CO) problem that was proposed in the late 1950s
and it is still one of the most studied in the field of Operations
Research (OR). The great interest in the VRP is due to its practical
importance, as well as the difficulty of solving it.

However, solving the VRP is far from a simple task since the
problem is NP-hard [1], which implies that no algorithm capable
of finding optimal solutions in polynomial time is known. There
has been lot of advances in the development of exact algorithms
for dealing with the VRP, particularly those based on mathema-
tical programming techniques. Unfortunately, to date, even the
best exact algorithms can be very time consuming and seldom
solve VRP instances with more than 150 customers. Combining
(meta)heuristic and exact methods appears to be a very promis-
ing alternative in solving many CO problems. The interest in
hybrid approaches has rapidly grown especially due to several
encouraging results obtained by the fusion of these two methods
(see [2]). The interaction between mathematical programming
techniques and metaheuristics led to a new class of optimization
algorithms called matheuristics. Nevertheless, the application of
these kinds of approaches have not received much attention yet
from the VRP literature (see [3–5]).
ll rights reserved.
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Most VRP heuristics usually focus on a particular type of
problem. A relatively small number of works have suggested
unified heuristic procedures for dealing with several variants (see,
for example, [6–9]). Seen from a practical point of view, these
non-specific approaches are highly relevant. For instance, VRP
commercial packages must be prepared to face real-life problems
of different classes. Cordeau et al. [10] even state that when
talking about attributes for good heuristics, one should take into
account not only the solution quality (accuracy) and computa-
tional time (speed), but also the simplicity and flexibility factors.

Given the above, one of the interests of this work is to propose
a general hybrid algorithm for solving different VRPs. However,
because of the huge number of existing variations it becomes
virtually impossible to tackle all of them here. Therefore, it was
thought advisable to turn attention only to a subset of variants,
namely the following ones: (i) Capacitated VRP (with or without
route duration limits), (ii) Asymmetric CVRP, (iii) Open VRP, (iv)
VRP with Simultaneous Pickup and Delivery, (v) VRP with Mixed
Pickup and Delivery, (vi) Multi-depot VRP, (vii) Multi-depot VRP
with Mixed Pickup and Delivery.

The developed hybrid algorithm combines an exact procedure
based on the Set Partitioning (SP) formulation with an Iterated
Local Search (ILS) based heuristic. This strategy is quite similar
to the classical two-phase petal algorithm (see [11]). The idea is
to store a pool of routes generated during the heuristic execu-
tion and then solve a SP problem in order to extract the best
combination of routes. However, unlike traditional petal algo-
rithms and other SP based approaches to VRPs [12,13,4], the
proposed hybrid algorithm includes some enhanced strategies.
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The first one is the cooperation between a Mixed Integer Pro-
gramming (MIP) solver and the ILS heuristic (while solving the SP
problem). This scheme was successfully applied in a previous
work [14] to solve the Heterogeneous Fleet VRP (HFVRP) but its
efficiency in terms of scalability was limited to approximately 200
customers. To overcome this limitation we introduce a new
second strategy, which includes a reactive mechanism that
dynamically controls the dimension of the SP models when
dealing with large size instances that still allows for taking
advantage of the exact procedure. As a result, new improved
solutions were found for instances with up to 480 customers.

The remainder of this paper is organized as follows. Section 2
briefly describes the VRPs considered in this work. Section 3
explains the proposed hybrid algorithm. Section 4 contains the
results obtained and a comparison with those reported in the
literature. Section 5 presents the concluding remarks of this work.
2. A brief description of the VRPs considered in the present
work

In this section we present a formal description of the VRPs
considered here and we also point the best known algorithms,
to our knowledge, for each variant. A complete literature review
regarding such variants can be found in [15].

2.1. Capacitated Vehicle Routing Problem (CVRP)

The CVRP is considered to be the classical version of the VRP.
A formal definition of the problem is as follows. Let G¼ ðV ,EÞ be a
complete graph with a set of vertices V ¼ f0, . . . ,ng, where the
vertex 0 represents the depot and the remaining ones the
customers. Each edge fi,jgAE has a non-negative cost cij and each
customer iAV 0 ¼ V\f0g has a demand di. Let C ¼ f1, . . . ,mg be the
set of homogeneous vehicles with capacity Q. The CVRP consists
in constructing a set of up to m routes in such a way that: (i) every
route starts and ends at the depot; (ii) all demands are accom-
plished; (iii) the vehicle’s capacity is not exceeded; (iv) a custo-
mer is visited by only a single vehicle; (v) the sum of costs is
minimized. Some versions of this problem include route duration
constraints. In such cases, there might be a travel time tij for each
edge fi,jgAE and a service time si for each customer iAV 0. Among
the best known heuristic algorithms are those Pisinger and Røpke
[6], Mester and Bräysy [16], Nagata and Bräysy [17], Zachariadis
and Kiranoudis [18] and Vidal et al. [9].

2.2. Asymmetric Capacitated Vehicle Routing Problem (ACVRP)

The ACVRP is a generalization of the CVRP where the cost
between a pair of vertices is not necessarily symmetric, i.e., cij

need not be equal to cji, 8i,jAV . Although this variant is more
likely to be found in practice when compared to the CVRP (due to
the existence of one-way streets in most urban zones), there are
very few works that dealt with the ACVRP in the literature (see
[19,3,20]).

2.3. Open Vehicle Routing Problem (OVRP)

The OVRP is a variant of the CVRP where the vehicles need not
return to the depot after visiting the last customer of a given
route. Any OVRP instance can be converted to an ACVRP instance
by simply setting ci0 ¼ 0,8iAV . Most authors also state that the
primary objective is to minimize the number of vehicles, while
the secondary objective is to minimize the sum of the travel costs.
The most competitive heuristics are those of Pisinger and Røpke
[6], Fleszar et al. [21], Repoussis et al. [22] and Zachariadis and
Kiranoudis [23].

2.4. Vehicle Routing Problem with Simultaneous Pickup and Delivery

(VRPSPD)

The VRPSPD is a generalization of the CVRP in which a
customer iAV 0 has both a delivery demand di and also a pickup
demand pi. The heuristics of Subramanian et al. [24], Zachariadis
and Kiranoudis [25] and Souza et al. [26] together produced the
best known results.

2.5. Vehicle Routing Problem with Mixed Pickup and Delivery

(VRPMPD)

The VRPMPD (a.k.a. the VRP with mixed backhauls) is a
particular case of the VRPSPD, in which customers either have a
pickup or a delivery demand but not both, i.e., if di40, then pi ¼ 0
and vice versa. The best known heuristics are those of Røpke and
Pisinger [7] and Gajpal and Abad [27].

2.6. Multi-depot Vehicle Routing Problem (MDVRP)

Let G be the set of depots. The MDVRP is a generalization of the
CVRP where more than one depot may be considered, that is,
9G9Z1. Also, the vehicle must start and end at the same depot.
Typically, the number of vehicles per each depot is given as an
input data. Pisinger and Røpke [6] and Vidal et al. [9] developed
the best heuristic approaches for the MDVRP.

2.7. Multi-depot Vehicle Routing Problem with Mixed Pickup and

Delivery (MDVRPMPD)

The MDVRPMPD generalizes the VRPMPD by allowing 9G9Z1
depot(s). The best known algorithm is the one of Røpke and
Pisinger [7].
3. The hybrid algorithm

The proposed hybrid algorithm, called ILS-RVND-SP, essen-
tially combines an ILS based heuristic, called ILS-RVND, and a SP
approach. In this section we present a description of both the
methods and how we merged them to efficiently tackle the seven
variants considered in this work.

3.1. The ILS-RVND heuristic

In this section we briefly explain the general idea of the ILS-
RVND heuristic. A highly detailed description of ILS-RVND can be
found in [15,28]. An earlier version of this heuristic was applied in
a parallel fashion by Subramanian et al. [24] to solve the VRPSPD
and it is still remains as one of the best heuristic approaches, in
terms of solution quality, proposed for the problem. Modified
versions of ILS-RVND were also successfully applied to solve
single-vehicle routing problems such as the Minimum Latency
Problem (a.k.a. the Delivery Man Problem or the Cumulative
Traveling Salesman Problem) [29] and the Traveling Salesman
Problem with Mixed Pickup and Delivery [30].

The ILS-RVND heuristic is a multi-start procedure that uses
insertion heuristics in the constructive phase, a Variable Neighbor-
hood Descent with Random neighborhood ordering (RVND) in the
local search phase and simple moves as perturbation mechanisms.

The insertion strategies are the Sequential Insertion Strategy
(SIS) and the Parallel Insertion Strategy (PIS), while the insertion
criteria are based on the Nearest Feasible Insertion Criterion (NFIC)
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and on a Modified Cheapest Feasible Insertion Criterion (MCFIC).
At each iteration, the method randomly chooses a strategy and a
criterion. In the case of NFIC, the cost of inserting a customer k after
a customer i is simply given by cik. As for MCFIC, the cost of
inserting a customer k between customers i and j is given by
ðcikþckj�cijÞþgðc0kþck0Þ. The parameter g controls the level of
incentive of inserting customers located far from the depot.

The RVND is composed of well-known VRP inter-route neigh-
borhood structures, namely those based on l-interchanges [31]
and Cross-exchange [32]; and also by specific ones, namely
ShiftDepot and SwapDepot. With respect to the l-interchanges,
we consider Shift(l,0), lAf1;2g, and Swap(l1,l2), l1,l2Af1;2g.
As a result, five distinct neighborhood structures can be identified,
i.e., Shift(1,0), Shift(2,0), Swap(1,1), Swap(1,2) and Swap(2,2).
In Shift(l,0), l consecutive customers are moved from a route r1

to a route r2. In Swap(l1,l2), l1 consecutive customers from
a route r1 are interchanged with l2 consecutive customers from
a route r2. The Cross operator in our case consists of interchanging
a segment from a route r1 with a segment from a route r2.
ShiftDepot and SwapDepot were incorporated in the present work
and they consist, respectively, of moving and swapping routes
from a depot to another one. The best improvement strategy was
adopted and the neighborhoods are explored exhaustively. Every
time a route is modified due to an inter-route move an intra-route
local search is performed using classical Traveling Salesman
Problem neighborhood structures, more precisely, Reinsertion,
Or-opt2 [33], Or-opt3 [33], 2-opt [34] and Exchange. Reinsertion
consists of transferring a customer from its current position to
another one in the same route. Or-opt2 and Or-opt3 make use of
the same rationale but involve two and three consecutive custo-
mers, respectively. In 2-opt, two nonadjacent arcs are removed and
another two are added in such a way that a new route is generated.
Exchange is the intra-route version of Swap(1,1).

The perturbation mechanisms consist of performing multiple
Swap(1,1) or Shift(1,1) moves. The Shift (1,1) consists of moving a
customer from a route r1 to a route r2 and vice versa.

The ILS-RVND structure was slightly modified in order to store
routes during its execution. Every time a local search is performed,
the routes associated to the local optimal solution s may be added
to a pool of routes (RoutePool). The method decides whether to
add or not such routes based on the average number of customers
per route ðn=vÞ and on the deviation between the current best
solution sn and s (see Section 3.3). If this deviation, given by
ðf ðsÞ�f ðsnÞÞ=f ðsnÞ, where f ð�Þ is the cost function, is smaller than a
threshold value (tolerance) then the routes of s are added to
RoutePool. The input parameters of ILS-RVND are MaxIter, Max-

IterILS, s0, RoutePool, v and tolerance. The first parameter indicates
the number of iterations, the second one is the maximum number
of consecutive perturbations without improvements and the third
one is an initial solution. Of course, if s0 is provided then the
procedure that generates an initial solution is skipped.

3.2. A set partitioning approach

Let R be the set of all possible routes of all vehicle types,
RiDR be the subset of routes that contain customer iAV 0. Define
yj as the binary variable associated to a route jAR, and cj as its
cost. Consider the following basic SP formulation F1:

Min
X

jAR
cjyj ð1Þ

subject to
X

jARi

yj ¼ 1 8iAV 0, ð2Þ

yjAf0;1g 8jAR: ð3Þ
The objective function (1) minimizes the sum of the costs by
choosing the best combination of routes. Constraints (2) state that
a single route from the subset Ri visits customer iAV 0. Since the
enumeration of set R is an impractical task, ILS-RVND-SP only
considers a subset of this set, usually limited to a few thousand
routes. Formulation F1 is mainly suitable for variants such as the
Fleet Size and Mix VRP [14] because the number of vehicles of
each type is not predefined. Let RuDR be the set of routes
associated with vehicle type uAM or with depot uAG and let mu

be an upper bound on the number of vehicles of a given type or
available at a given depot. In order to deal with MDVRPs one can
add the following constraints:
X

jARu

yjrmu 8uAG: ð4Þ

Let v be the number of vehicles. For the remaining variants, one
must include the constraint that ensure that the number of routes
in the solution is equal to the number of vehicles available, i.e.,
X

jAR
yj ¼ v: ð5Þ

It is important to mention that there are some instances of VRPs
with homogeneous fleet that do not specify the number of
vehicles, but ILS-RVND-SP fixes this value by using the number
of vehicles of the current best solution. Although the solution
space is reduced, this helps the problem to be solved more
efficiently.

The pseudocode of the SP procedure is illustrated in Algorithm 1.
Input parameter MaxSPTime corresponds to the time limit imposed
to the Mixed Integer Programming (MIP) solver. It is assumed that
the MIP solver uses a branch-and-bound or a branch-and-cut
procedure. The algorithm starts by verifying if the number of
vehicles should be minimized (e.g. OVRP) and if the number of
vehicles of sn is larger than the estimated lower bound on the

number of vehicles (vmin ¼ dð
P

iAV 0diÞ=Qe). If so, solution sn is

stored in s0 and the number of vehicles is decreased by one unit

(lines 2–3). Next, the SP_Model is created (line 4) according to the
VRP variant and the Cutoff value is initialized (line 5). The SP
problem is given to a MIP solver (line 6), which calls the ILS-RVND
heuristic whenever an incumbent solution is found (Procedure
IncumbentCallback). If the solution sn is improved in the Incum-
bentCallback, the Cutoff value is updated, but sn is not given back to
the solver since it may contain a route that does not belong to the
subset of routes R of the SP model. The solver is interrupted if:

(i) an optimal solution is found; (ii) LB4Cutoff ; (iii) MaxSPTime is
exceeded. If the primary objective is to minimize the number of
vehicles and the solution sn is infeasible, then the number of
vehicles is incremented by one unit, sn is restored and the MIP
solver is called again (lines 7–10).

Algorithm 1. SP.
1:
 Procedure SP(sn, RoutePool, MaxSPTime, v);

2:
 if v must be minimized and v4vmin then

3:
 v’v�1; s0’sn;

4:
 SP_Model’CreateSetPartitioningModelðRoutePool, vÞ;

5:
 Cutoff’f ðsnÞ; fOnly if v¼ vmin: Otherwise, Cutoff’1g
6:
 sn’MIPSolverðSP_Model,sn, Cutoff , MaxSPTime,

IncumbentCallbackðsnÞÞ;

7:
 if v must be minimized and and sn is infeasible then

8:
 sn’s0; v’vþ1;

9:
 Update SP_Model fIncreasing one vehicleg;

10:
 sn’MIPSolverðSP_Model,sn,Cutoff ,MaxSPTime,

IncumbentCallbackðsnÞÞ;

11:
 return sn;

12:
 end SP.
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3.3. The hybrid algorithm
Table 1
Values of the parameters used by ILS-RVND-SP.

Parameter Value

N 150

A 11

MaxIter-a 50

MaxIter-b 100

MaxIterILS-a nþ0;5� v
One of the challenges of designing a unified hybrid solution
approach is to ensure that the MIP model is computationally
tractable, regardless of the instance. For example, a SP model that
exceeds the time limit only to solve its linear relaxation (e.g. due
to an excessive number of routes) is not a suitable improving
mechanism. On the other hand, a SP model that contains rela-
tively few routes, is easily solved, but seldom finds improved
solutions. Hence, it is necessary that the SP models generated
throughout the algorithm find a balance between computational
tractability and improvement potential. Experiments carried out
in many instances with distinct characteristics indicated that the
following simple pieces of data are crucial for estimating the
dimension (number of routes) of a properly balanced SP model:
(i) number of customers and (ii) the average number of customers
per route.

With respect to (i), we developed two strategies for ILS-RVND-
SP. The first one, called ILS-RVND-SP-a, is executed when the
number of customers is less than or equal to a parameter N . The
idea of ILS-RVND-SP-a is very straightforward: the SP procedure is
run only once at the end of the algorithm, after the ILS-RVND
heuristic, as performed in [14]. The second one, called ILS-RVND-
SP-b, is executed when n4N . In this case, the SP procedure is
called after each iteration of the ILS-RVND heuristic. Both strate-
gies are completely independent, as well as some of their
parameters, namely: MaxIter-a, MaxIter-b, MaxIterILS-a, MaxIter-

ILS-b, TDev-a, TDev-b. The parameter TDev is described next.
With respect to (ii), we do the following. Let A be a parameter.

It has been observed that when the ratio between the number of
customers and the number of vehicles is smaller than A¼ 11, the
SP models tend to become harder. In such cases, we only add the
routes of a solution to the SP model if its deviation when
compared to the incumbent solution is smaller than a given
threshold TDev. However, this parameter is difficult to tune,
especially in ILS-RVND-SP-b. To overcome this issue we imple-
mented a reactive approach that dynamically adjusts its value
throughout the execution of the algorithm, as will be further
explained.

The pseudocode of ILS-RVND-SP and ILS-RVND-SP-a will be
omitted since they are quite simple. Algorithm 2 shows the
pseudocode of ILS-RVND-SP-b. Firstly, tolerance (threshold devia-
tion) is set to a given value according to the average number of
customers per route (lines 2–5). In the main loop (lines 7–24),
the ILS-RVND heuristic is executed with a single iteration (line 8)
and the SP procedure is repeatedly called while there is any
improvement over the best current solution (lines 10–21). When
no improvement is observed, the non-permanent routes (short-
term memory), in this case those generated on that particular
iteration, are removed from RoutePool (line 16). After each call to
the SP procedure, the algorithm may update the value of toler-

ance, in case n=voA, according to the following conditions. If the
SP model is solved at the root node, meaning that the problem is
easy, then tolerance is increased by one-tenth of TDev-b (lines 17–18).
If the time limit is exceeded then tolerance is decreased by one-
tenth of TDev-b (lines 19–20). If there is any improvement at the
end of a given iteration, the incumbent solution sn is updated and
the associated routes are permanently added (long-term memory)
to RoutePool (lines 22–24). Such routes are never removed from the
pool.
Algorithm 2. ILS-RVND-SP-b.
1:
 Procedure ILS-RVND-SP-b(MaxIter�b, MaxIterILS�b,

RoutePool, v, TDev�b, MaxSPTime);

2:
 if n=voA then

3:
 tolerance’TDev�b;

4:
 else

5:
 tolerance’1;

6:
 iter’0; sn’|; s0’NULL;

7:
 while iteroMaxIter�b do

8:
 s ’ ILS-RVND(1, MaxIterILS�b, s0, RoutePool, v,

tolerance);

9:
 improvement’ true;

10:
 while improvement do

11:
 s0’SPðs,RoutePool,MaxSPTime,vÞ;

12:
 if f ðs0Þo f ðsÞ then

13:
 s’s0;

14:
 else

15:
 improvement’ false;

16:
 Remove non-permanent routes from RoutePool;

17:
 if n=voA and Time4MaxSPTime then

18:
 tolerance’tolerance�0:1� TDev�b;

19:
 if n=voA and Problem solved at the root node then

20:
 tolerance’toleranceþ0:1� TDev�b;

21:
 iter’iterþ1;

22:
 if f ðsÞo f ðsnÞ or sn is empty then

23:
 sn’s;

24:
 Add routes associated to sn permanently to the pool;

25:
 return sn;
4. Computational results

The algorithm ILS-RVND-SP was coded in Cþþ and the tests
were executed on an Intels CoreTM i7 with 2.93 GHz and 8 GB of
RAM running under Ubuntu Linux 64 bits. CPLEX 12.2 was used as
a MIP solver. The computational experiments were carried out
using a single thread and the algorithm was executed 10 times for
each instance.

Table 1 shows the values of the parameters used by ILS-RVND-
SP, which were calibrated after preliminary experiments. The
most crucial parameters are N and A. The values adopted for the
remaining ones are not so critical, which is reflected in the round
numbers chosen.

In the following tables, Instance denotes the test-problem, n is
the number of customers, 9G9 is the number of depots, v is the
number of vehicles available per depot, BKS represents the Best
Known Solution (BKS) reported in the literature, Best Sol., Avg. Sol.

and Time (s) indicate, respectively, the best solution, the average
solution and the average computational time in seconds associated
to the corresponding work, Gap denotes the gap, given by
MaxIterILS-b 2000

Tdev-a 0.05

Tdev-b 0.005

g Random value of the set

f0:00,0:05,0:10, . . . ,1;70g [24]

MaxSPTime (s) 60
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100� ððzILS-RVND-SP�zBKSÞ=zBKSÞ, between the best solution found by
ILS-RVND-SP and the BKS, Avg. Gap corresponds to the gap between
the average solution found by ILS-RVND-SP and the best known
solution, Scaled time (s) is the approximate average scaled time in
seconds of each machine using the factors suggested by the bench-
marks of Dongarra [35], when solving a system of equations of order
1000, with respect to our i7 2.93 GHz (5839 Mflop/s). The BKSs are
highlighted in boldface and the improved solutions are underlined.

4.1. CVRP

The developed hybrid algorithm was tested on the instances of
the A, B, E, M, P series and all known optimal solutions were easily
determined. Table 2 only shows the results obtained on the three
open instances of the M-series, namely: M-n151-k12, M-n200-k16
and M-n200-k17. The proposed algorithm was found capable of
improving the result of the second one and to equal the BKSs of the
first and third ones. Table 3 contains the results found on the
instances suggested in [36] and a comparison with those reported in
[13], [6] (ALNS 50K) and [16,17,9]. ILS-RVND-SP was successful to
equal the BKS in 13 of the 14 instances and the average gap between
the average solutions found by ILS-RVND-SP and the BKSs was
0.08%. Table 4 illustrates a comparison, in terms of average solution
between the results obtained by ILS-RVND-SP and those found in [6]
Table 2
Results found for the open instances of the M-series.

Instance n v BKS ILS-RVND-SP

Best Sol.

M-n151-k12 150 12 1015a 1015
M-n200-k16 199 16 1285b 1278
M-n200-k17 199 17 1275a 1275

a Value presented in [38].
b Value obtained in [5].

Table 3
Results found for the CVRP instances proposed in [36].

Instance n v BKS Rochat and

Taillard

Pisinger and

Røpke

Mester and

Bräysy

Na

Br

Best

Sol.

Time Best

Sol.

Timea

(s)

Best

Sol.

Timeb

(s)

Be

So

C1 50 5 524.61e 524.61 – 524.61 21 524.61 0.2 5
C2 75 10 835.26 835.26 – 835.26 36 835.26 5.5 8
C3 100 8 826.14 826.14 – 826.14 78 826.14 1.0 8
C12 100 10 819.56 819.56 – 819.56 73 819.56 0.2 8
C11 120 7 1042.11 1042.11 – 1042.11 113 1042.11 1.1 10
C4 150 12 1028.42 1028.42 – 1029.56 160 1028.42 10.2 10
C5 199 17 1291.29 1291.45 – 1297.12 219 1291.29 2160.0 12

C6 50 6 555.43 555.43 555.43 21 555.43 4.2 5
C7 75 11 909.68 909.68 – 909.68 36 909.68 0.8 9
C8 100 9 865.94 865.94 – 865.94 78 865.94 0.8 8
C14 100 11 866.37 866.37 – 866.37 73 866.37 1.7 8
C13 120 11 1541.14 1541.14 – 1542.86 113 1541.14 13.5 15
C9 150 14 1162.55 1162.55 – 1163.68 160 1162.55 25.8 11
C10 199 18 1395.85 1395.85 – 1405.88 219 1401.12 52.2 13

Scaled Time (s) – 54.48 68.08

a Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
b Average of 10 runs on a Pentium IV 2.8 GHz (2444 Mflop/s).
c Average of 10 runs on an Opteron 2.4 GHz (3485 Mflop/s).
d Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz.
e Optimality proved.
(ALNS 50K) and [17,18] for the instances proposed in [37]. It can be
seen that the ILS-RVND-SP outperformed the algorithm developed
in [6], but it is not as effective as those presented in [17,9] in terms
of average solution quality. Yet, the average gap between the
average solutions found by ILS-RVND-SP and the BKSs was only
0.55%, a value smaller than the one obtained by the general heuristic
proposed in [6]. On the other hand, in spite of obtaining slightly
lower quality solutions, we believe that the proposed algorithm is
simpler than those developed in [17,9,18].
4.2. ACVRP

ILS-RVND-SP was tested in the ACVRP instances suggested in
[19]. The capacity of the vehicle is the same (Q¼1000) and the
number of customers varies between 33 and 70. Pessoa et al. [20]
also considered the same data set of [19] but with different
capacities (150, 250 and 500). The instances with Q¼150 are not
considered, since they can be easily solved using F1 (most feasible
routes contain very few customers and it is practical to perform a
complete enumeration), thus leading to a total of 24 instances.
Table 5 shows the results found for the ACVRP instances. All the
known optimal solutions were consistently found by ILS-RVND-
SP. Regarding the two instances where the optimal solutions is
Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

1015.5 0.00 0.05 37.12

1285.8 �0.54 0.06 772.01

1279.9 0.00 0.38 513.00

Avg. �0.18 0.17 440.71

gata and

äysy

Vidal et al. ILS-RVND-SP

st

l.

Timec

(s)

Best.

Sol.

Timed

(s)

Best

Sol.

Avg.

Sol.

Gap

(%)

Avg. Gap

(%)

Time

(s)

24.61 4.3 524.61 25.8 524.61 524.61 0.00 0.00 1.48

35.26 22.3 835.26 57.6 835.26 835.26 0.00 0.00 13.52

26.14 17.1 826.14 76.2 826.14 826.14 0.00 0.00 12.49

19.56 8.1 819.56 50.4 819.56 819.56 0.00 0.00 5.23

42.11 21.0 1042.11 69.0 1042.11 1042.11 0.00 0.00 20.66

28.42 75.2 1028.42 172.2 1028.42 1028.73 0.00 0.03 53.48

91.45 302.1 1291.45 356.4 1291.45 1293.18 o0:01 0.13 625.17

55.43 5.1 555.43 28.8 555.43 556.49 0.00 0.19 0.93

09.68 38.9 909.68 65.4 909.68 910.00 0.00 0.03 5.05

65.94 23.5 865.94 68.4 865.94 865.94 0.00 0.00 7.61

66.37 13.2 866.37 71.4 866.37 866.37 0.00 0.00 7.12

41.14 106.9 1541.14 169.8 1541.14 1544.07 0.00 0.19 80.24

62.55 135.6 1162.55 151.8 1162.55 1164.11 0.00 0.13 82.50

95.85 390.6 1395.85 493.2 1395.85 1402.03 0.00 0.44 496.07

Avg. 0.00 0.08 100.83

49.62 72.24 100.83



Table 4
Results found for the CVRP instances proposed in [37].

Instance n v BKS Pisinger and

Røpke

Nagata and Bräysy Vidal et al. Zachariadis and

Kiranoudis

ILS-RVND-SP

Avg. Sol.a Timeb

(s)

Avg. Sol.a Timec

(s)

Avg. Sol.a Timed

(s)

Avg. Sol.a Timee

(s)

Best Sol. Avg. Sol. Gap

(%)

Avg. Gap

(%)

Time (s)

G17 240 22 707.76f,g 710.59 304 707.78 582.4 708.09 423.6 708.94 962.3 707.76 707.81 0.00 0.01 937.59

G13 252 26 857.19f,g 874.24 285 858.42 921.9 859.64 561.6 860.44 1189.3 857.19 860.00 0.00 0.33 910.35

G9 255 14 579.71g 590.33 437 581.46 1043.3 581.79 973.2 584.66 929.4 583.24 585.21 0.61 0.95 1720.76

G18 300 27 995.13f,g 1007.84 387 995.91 1465.9 998.44 993.6 997.74 1718.6 995.65 997.85 0.05 0.27 2297.62

G14 320 30 1080.55f,g 1103.53 393 1080.84 1239.3 1082.41 847.2 1083.55 1187.4 1080.55 1082.15 0.00 0.15 1513.32

G10 323 16 736.26g 751.36 616 739.56 1617.5 739.86 1551.6 739.86 1271.4 741.96 744.17 0.77 1.07 3229.35

G19 360 33 1365.60g 1377.88 449 1366.70 2115.6 1367.83 1674.6 1370.77 1824.2 1366.29 1367.25 0.05 0.12 2917.31

G15 396 33 1337.92g 1366.23 468 1344.32 1872.2 1343.52 2349.0 1344.41 1658.8 1347.13 1349.23 0.69 0.85 3265.68

G11 399 18 912.84g 926.57 761 916.27 2337.5 916.44 2736.6 919.52 1392.2 921.46 922.93 0.94 1.11 5978.97

G20 420 38 1818.32g 1834.70 488 1821.65 2824.7 1822.02 2293.8 1829.57 1199.3 1821.16 1823.52 0.16 0.29 4997.31

G16 480 37 1612.50g 1645.67 549 1622.26 2616.2 1621.02 3496.2 1623.42 1848.5 1624.55 1627.76 0.75 0.95 4835.12

G12 483 19 1102.69g 1125.22 911 1108.21 3561.9 1106.73 5740.2 1110.65 1282.3 1113.30 1116.52 0.96 1.25 10 410.70

G5 200 5 6460.98 6482.49 629 6460.98 164.7 6460.98 153.6 6460.98 989.6 6460.98 6460.98 0.00 0.00 978.69

G1 240 9 5623.47g 5662.57 93 5632.05 3393 5627.00 700.8 5637.99 907.7 5657.74 5671.65 0.61 0.86 994.59

G6 280 7 8412.88h 8543.30 876 8413.41 830.3 8412.90 502.8 8412.90 1091.6 8412.90 8412.90 0.00 0.00 2455.56

G2 320 10 8404.61g 8487.94 672 8440.25 1726.2 8446.65 1245.0 8457.92 1249.4 8447.92 8449.82 0.52 0.54 2659.68

G7 360 9 10 102.70g 10 265.15 941 10 186.93 2179.7 10 157.63 1376.4 10 192.47 1885.5 10 195.58 10 195.60 0.92 0.92 4410.84

G3 400 10 11 036.22 11 052.72 1015 11 036.22 2606.8 11 036.22 1679.4 11 036.22 1164.0 11 036.22 11 036.22 0.00 0.00 6064.98

G8 440 10 11 635.30g 11 766.07 1011 11 691.54 5776.7 11 646.58 2440.2 11 674.43 1657.4 11 710.47 11 774.40 0.65 1.20 7541.75

G4 480 10 13 592.88f 13 748.50 1328 13 618.55 3841.6 13 624.52 2620.2 13 632.59 1019.0 13 624.53 13 624.53 0.23 0.23 10 644.50

Avg. Gap

(%)

1.34 Avg. Gap

(%)

0.27 Avg. Gap

(%)

0.26 Avg. Gap

(%)

0.42 Avg. 0.40 0.55 3938.23

Scaled Time (s) 343.57 1274.79 935.93 632.98 3938.23

a Average of 10 runs.
b Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
c Average of 10 runs on an Opteron 2.4 GHz (3485 Mflop/s).
d Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz.
e Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).
f Found in [17].
g Found in [9].
h Found in [16].

Table 5
Results found for the ACVRP instances proposed in [19,20].

Instance n v BKS ILS-RVND-SP

Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

A034-02f 34 2 1406a 1406 1406.00 0.00 0.00 0.57

A034-04f 34 4 1773a 1773 1773.00 0.00 0.00 0.47

A034-08f 34 8 2672a 2672 2672.00 0.00 0.00 0.47

A036-03f 36 3 1644a 1644 1644.00 0.00 0.00 0.64

A036-05f 36 5 2110a 2110 2110.00 0.00 0.00 0.61

A036-10f 36 10 3338a 3338 3338.00 0.00 0.00 5.67

A039-03f 39 3 1654a 1654 1654.00 0.00 0.00 0.69

A039-06f 39 6 2289a 2289 2289.00 0.00 0.00 0.60

A039-12f 39 12 3705a 3705 3705.00 0.00 0.00 0.77

A045-03f 45 3 1740a 1740 1740.00 0.00 0.00 1.06

A045-06f 45 6 2303a 2303 2303.00 0.00 0.00 0.88

A045-11f 45 11 3544a 3544 3544.00 0.00 0.00 2.46

A048-03f 48 3 1891a 1891 1891.00 0.00 0.00 1.26

A048-05f 48 5 2283a 2283 2289.50 0.00 0.28 1.79

A048-10f 48 10 3325a 3325 3325.60 0.00 0.02 1.29

A056-03f 56 3 1739a 1739 1740.00 0.00 0.06 2.09

A056-05f 56 5 2165a 2165 2165.00 0.00 0.00 3.53

A056-10f 56 10 3263a 3263 3264.50 0.00 0.05 2.26

A065-03f 65 3 1974a 1974 1974.00 0.00 0.00 3.08

A065-06f 65 6 2567a 2567 2571.70 0.00 0.18 3.30

A065-12f 65 12 3902a 3902 3904.90 0.00 0.07 3.41

A071-03f 71 3 2054a 2054 2054.00 0.00 0.00 4.46

A071-05f 71 5 2475b 2457 2457.90 �0.73 �0.69 6.72

A071-10f 71 10 3486b 3486 3492.90 0.00 0.20 5.61

Avg. �0.03 0.01 2.24

a Optimality proved.
b Value presented in [20].
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Table 6
Results found for the OVRP instances proposed in [36,39,45].

Instance n vmin BKS vbest Pisinger and Røpke Fleszar et al. Repoussis et al. Zachariadis and Kiranoudis ILS-RVND-SP

Best Sol. v Timea (s) Best Sol. v Timeb (s) Best Sol. v Timec (s) Best Sol. v Timed (s) Best Sol. v Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

C1 50 5 416.06e 5 416.06 5 23 416.06 5 1.0 416.06 5 98 416.06 5 28 416.06 5 416.06 0.00 0.00 1.78

F11 71 4 177.00e 4 177.00 4 104 178.66 4 6.2 177.00 4 264 177.00 4 132 177.00 4 177.21 0.00 0.12 4.41

C2 75 10 567.14e 10 567.14 10 53 567.14 10 2.3 567.14 10 143 567.14 10 72 567.14 10 567.14 0.00 0.00 6.44

C3 100 8 639.74e 8 641.76 8 128 641.40 8 9.5 639.74 8 330 639.74 8 97 639.74 8 639.81 0.00 0.01 15.67

C12 100 10 534.24e 10 534.24 10 118 534.40 10 6.7 534.24 10 363 534.24 10 47 534.24 10 534.24 0.00 0.00 5.74

C11 120 7 682.12 7 682.12 7 141 682.12 7 10.7 682.12 7 318 682.12 7 76 682.12 7 682.12 0.00 0.00 23.54

F12 134 7 769.55 7 770.17 7 359 769.66 7 75.4 769.55 7 753 769.55 7 278 769.55 7 770.00 0.00 0.06 40.51

C4 150 12 733.13 12 733.13 12 279 737.82 12 45.4 733.13 12 613 733.13 12 204 733.13 12 733.13 0.00 0.00 27.77

C5 199 16 893.39 16 896.08 16 237 905.96 16 17.1 894.11 16 1272 893.39 16 332 883:50 16 895.55 �1.11 0.24 1579.45

C6 50 5 412.96 6 412.96 6 31 412.96 6 75.8 412.96 6 215 – – – 412.96 6 412.96 0.00 0.00 1.24

C7 75 10 583.19 10 583.19 10 33 596.47 10 22.3 584.15 10 367 – – – 583.19 10 582.07 0.00 7.29

C8 100 8 644.63 9 645.16 9 114 644.63 9 587.6 644.63 9 510 – – – 644.63 9 644.95 0.00 0.05 9.21

C14 100 10 591.87 11 591.87 11 75 591.87 11 389 591.87 11 411 – – – 591.87 11 591.87 0.00 0.00 22.76

C13 120 7 904.04 11 909.80 11 116 904.94 11 1820.1 910.26 11 890 – – – 899:16 11 904:02 �0.54 0.00 37.35

C9 150 12 757.84 13 757.84 13 185 760.06 13 1094.1 764.56 13 933 – – – 757.91 13 759.38 0.01 0.20 38.93

C10 199 16 875.67 17 875.67 17 224 875.67 17 1252.4 888.46 17 1678 – – – 874:71 17 877.68 �0.11 0.23 472.91

Avg. �0.11 0.06 143.44

Scaled time (s) 75.59 100.75 25.68 61.38 143.44 (189.48f)

O1 200 5 6018.52 5 – – – – – – 6018.52 5 161.55g 6018.52 5 635 6018.52 5 6018.52 0.00 0.00 1270.81

O2 240 9 4557.38 9 – – – – – – 4583.70 9 219.09g 4557.38 9 832 4544:46 9 4551:74 �0.28 �0.12 1247.37

O3 280 7 7731.00 7 – – – – – – 7733.77 7 263.05g 7731.00 7 921 7721:16 7 7728:77 �0.13 �0.03 2008.76

O4 320 10 7253.20 10 – – – – – – 7271.24 10 297.71g 7253.20 10 1009 7215:48 10 7229:56 �0.52 �0.33 2663.24

O5 360 8 9193.15 8 – – – – – – 9254.15 8 487.85g 9193.15 8 1590 9180:93 8 9205.01 �0.13 0.13 5702.38

O6 400 9 9793.72 9 – – – – – – 9821.09 9 433.53g 9793.72 9 1108 9773:83 9 9784:52 �0.20 �0.09 5065.72

O7 440 10 10 347.70 10 – – – – – – 10 363.4 10 552.90g 10 347.70 10 1094 10 326:57 10 10 342:1 �0.20 �0.05 6140.55

O8 480 10 12 415.36 10 – – – – – – 12 428.2 10 590.78g 12 415.36 10 1273 12 389:43 10 12 393:4 �0.21 �0.18 6653.41

Avg. �0.21 �0.08 3844.03

Scaled time (s) – – 89.14 505.60 3844.03

a Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
b Best run on a Pentium M 2.0 GHz (1738 Mflop/s).
c Best run on a scaled to a Pentium II 400 MHz (262 Mflop/s).
d Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).
e Optimality proved.
f Average of 10 runs considering the following instances: C1, F11, C2, C3, C12, C11, F12, C4 and C5.
g Best run on a Pentium IV 2.8 GHz.
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Table 7
Results found for the VRPSPD instances proposed in [41].

Instance n v BKS Gajpal and Abad Zachariadis et al. Subramanian et al. ILS-RVND-SP

Best Sol. Timea (s) Best Sol. Timeb (s) Best Sol. Timec (s) Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

CMT1X 50 3 466.77d 466.77 5.00 469.80 2.1 466.77 2.3 466.77 466.77 0.00 0.00 2.08

CMT1Y 50 3 466.77d 466.77 5.00 469.80 3.8 466.77 2.3 466.77 466.77 0.00 0.00 1.97

CMT2X 75 6 684.21 684.21 41.25 684.21 5.4 684.21 6.4 684.21 684.78 0.00 0.08 12.79

CMT2Y 75 6 684.21 684.94 22.25 684.21 6.8 684.21 6.4 684.21 684.59 0.00 0.06 10.83

CMT3X 100 5 721.27d 721.40 377.50 721.27 11.9 721.27 12.1 721.27 721.46 0.00 0.03 17.69

CMT3Y 100 5 721.27d 721.40 43.75 721.27 11 721.27 12.3 721.27 721.50 0.00 0.03 17.61

CMT12X 100 5 662.22 663.01 36.25 662.22 9.3 662.22 10.3 662.22 663.44 0.00 0.18 9.07

CMT12Y 100 5 662.22 663.50 39.25 662.22 4.8 662.22 10.8 662.22 663.12 0.00 0.14 9.34

CMT11X 120 4 833.92 839.66 57.25 833.92 21.2 833.92 18.9 846.23 848.65 1.48 1.77 51.82

CMT11Y 120 4 833.92 840.19 52.75 833.92 14.4 833.92 19.0 846.23 848.74 1.48 1.78 48.63

CMT4X 150 7 852.46 854.12 131.75 852.46 29.6 852.46 30.9 852.46 853.02 0.00 0.07 98.03

CMT4Y 150 7 852.46 855.76 140.25 852.46 27.4 852.46 31.6 852.46 852.73 0.00 0.03 80.63

CMT5X 199 10 1029.25 1034.87 377.50 1030.55 62.8 1029.25 71.5 1029.25 1029.52 0.00 0.03 1786.74

CMT5Y 199 10 1029.25 1037.34 393.50 1030.55 47.7 1029.25 69.6 1029.25 1029.25 0.00 0.00 1726.18

CMT6X 50 7 555.43 555.43 14.00 – – – – 555.43 557.35 0.00 0.35 1.04

CMT6Y 50 7 555.43 555.43 13.75 – – – – 555.43 557.10 0.00 0.30 1.08

CMT7X 75 13 900.12 900.12 47.75 – – – – 900.12 901.02 0.00 0.10 4.55

CMT7Y 75 13 900.54 900.54 46.25 – – – – 900:12 901.08 �0.05 0.06 4.87

CMT8X 100 10 865.50 865.50 80.75 – – – – 865.50 865.50 0.00 0.00 7.36

CMT8Y 100 10 865.50 865.50 77.75 – – – – 865.50 865.50 0.00 0.00 7.74

CMT14X 100 11 821.75 821.75 78.50 – – – – 821.75 821.75 0.00 0.00 5.42

CMT14Y 100 11 821.75 821.75 74.75 – – – – 821.75 821.75 0.00 0.00 5.48

CMT13X 120 12 1542.86 1542.86 160.25 – – – – 1542.86 1543.54 �0.03 0.04 68.72

CMT13Y 120 12 1542.86 1542.86 160.25 – – – – 1542.86 1544.42 0.00 0.10 73.49

CMT9X 150 16 1161.54 1161.54 300.00 – – – – 1160:68 1161.77 �0.07 0.02 64.43

CMT9Y 150 16 1161.54 1161.54 291.75 – – – – 1160.68 1162.59 �0.07 0.09 80.86

CMT10X 199 20 1386.29 1386.29 773.50 – – – – 1373:40 1379:19 �0.93 �0.51 552.81

CMT10Y 199 20 1395.04 1395.04 757.50 – – – – 1373:40 1377:03 �1.55 �1.29 547.39

Avg. 0.01 0.12 189.24

Scaled time (s) 55.65 8.83 – 189.24 (276.67e)

a Best run on a Xeon 2.4 GHz (1978 Mflop/s).
b Average of 10 runs on a T5500 1.66 GHz (2791 Mflop/s).
c Average of 50 runs on a cluster with 32 SMP nodes, where each node consists of two Intel Xeon 2.66 GHz (wall clock).
d Optimality proved.
e Average of 10 runs considering the following instances: CMT1X, CMT1Y, CMT2X, CMT2Y, CMT3X, CMT3Y,CMT12X, CMT12Y, CMT11X. CMT11Y, CMT4X, CMT4Y,

CMT5X and CMT5Y.

Table 8
Results found for the VRPSPD instances proposed in [43].

Instance n v BKS Souza et al. Zachariadis et al. Subramanian et al. ILS-RVND-SP

Best Sol. Timea (s) Best Sol. Timeb (s) Best Sol. Timec (s) Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

r101 100 12 1009.95d 1009.95 35.7 1009.95 28.7 1009.95 15.8 1009.95 1010.08 0.00 0.01 65.42

r201 100 3 666.20d 666.20 39.6 666.20 31.4 666.20 16.0 666.20 666.20 0.00 0.00 15.71

c101 100 16 1220.18d 1220.18 18.3 1220.18 18.5 1220.18 10.4 1220.18 1220.43 0.00 0.02 12.93

c201 100 5 662.07d 662.07 16.6 662.07 23.5 662.07 8.8 662.07 662.07 0.00 0.00 9.77

rc101 100 10 1059.32d 1059.32 12.8 1059.32 23.8 1059.32 11.1 1059.32 1059.32 0.00 0.00 16.89

rc201 100 3 672.92d 672.92 24.0 672.92 21.2 672.92 7.3 672.92 672.92 0.00 0.00 11.42

r1_2_1 200 23 3357.64 3357.64 175.8 3375.19 84.6 3360.02 66.2 3353:80 3355:04 �0.11 �0.08 1142.05

r2_2_1 200 5 1665.58d 1665.58 103.4 1665.58 72.7 1665.58 45.3 1665.58 1665.58 0.00 0.00 1425.88

c1_2_1 200 28 3629.89 3636.74 117.6 3641.89 57.0 3629.89 87.4 3628:51 3636.53 �0.04 0.18 2874.50

c2_2_1 200 9 1726.59 1726.59 127.8 1726.73 67.3 1726.59 65.0 1726.59 1726.59 0.00 0.00 1365.93

rc1_2_1 200 23 3306.00 3312.92 299.3 3316.94 83.4 3306.00 71.7 3303:70 3306.73 �0.07 0.02 1293.53

rc2_2_1 200 5 1560.00d 1560.00 77.5 1560.00 74.4 1560.00 44.7 1560.00 1560.00 0.00 0.00 1361.87

r1_4_1 400 54 9605.75e 9627.43 2928.3 9668.18 421.5 9618.97 481.6 9519:45 9539:56 �0.90 �0.69 9177.90

r2_4_1 400 10 3551.38 3582.08 768.6 3560.73 352.0 3551.38 459.2 3546:49 3549:49 �0.14 �0.05 9086.79

c1_4_1 400 63 11 098.21 11 098.21 1510.4 11 125.14 384.6 11 099.54 546.2 11 047:19 11 075:60 �0.46 �0.20 8016.83

c2_4_1 400 15 3546.10 3596.37 569.0 3549.20 341.1 3546.10 488.6 3539:50 3543:65 �0.19 �0.07 10 691.30

rc1_4_1 400 52 9520.06 9535.46 2244.2 9520.06 412.7 9536.77 513.4 9447:53 9478:12 �0.76 �0.44 10 867.10

rc2_4_1 400 11 3403.70 3422.11 3306.8 3414.90 264.7 3403.70 422.6 3403.70 3403.70 0.00 0.00 8326.18

Avg. �0.15 �0.07 3653.44

Scaled time (s) 329.35 73.53 – 3653.44

a Best run on an Intel Core 2 Duo 1.66 GHz (2791 Mflop/s).
b Average of 10 runs T5500 1.66 GHz ((2791 Mflop/s)).
c Average of 50 runs on a cluster with 32 SMP nodes, where each node consists of two Intel Xeon 2.66 GHz (wall clock).
d Optimality proved.
e Found in [24].

A. Subramanian et al. / Computers & Operations Research 40 (2013) 2519–25312526



A. Subramanian et al. / Computers & Operations Research 40 (2013) 2519–2531 2527
not known, the proposed algorithm was capable of improving the
BKS in one of them and to equal the best result in the other one.

4.3. OVRP

Table 6 presents the results found by ILS-RVND-SP in the set of
instances proposed in [36,39] and in the set of instances suggested
in [40], as well as a comparison with those pointed out in [6]
(ALNS 50K) and [21–23]. Regarding the set of instances introduced
in [36,39], ILS-RVND-SP was capable of obtaining the BKS in 12
cases and to improve another three solutions, but it failed to find
one BKS. Furthermore, ILS-RVND-SP also failed to always obtain
solutions with the minimum number of vehicles on instance C7.
The average gap between the average solutions obtained by ILS-
RVND-SP and the BKSs, disregarding instance C7, was 0.06%. As for
the eight instances suggested in [40], ILS-RVND-SP equaled the
result of one instance and improved the results of the remaining
Table 9
Results found for the VRPMPD instances proposed in [41].

Instance n v BKS Røpke and Pisinger Gajpal and A

Best Sol. Timea (s) Best Sol.

CMT1H 50 4 465.02c 465 51 465.02
CMT1Q 50 6 489.74c 490 41 489.74
CMT1T 50 7 520.06c 520 34 520.06
CMT2H 75 5 662.63 663 78 662.63
CMT2Q 75 7 732.76 733 65 732.76

CMT2T 75 9 782.77c 783 57 782.77
CMT3H 100 3 700.94c 701 186 701.31
CMT3Q 100 4 747.15c 747 128 747.15
CMT3T 100 5 798.07c 798 109 798.07
CMT12H 100 6 629.37c 629 150 629.37
CMT12Q 100 8 729.25c 729 108 729.46
CMT12T 100 9 787.52c 788 96 787.52
CMT11H 120 4 818 818 303 820.35

CMT11Q 120 6 939.36c 939 196 939.36
CMT11T 120 7 998.80 1000 164 998.80
CMT4H 150 6 829 829 345 831.39

CMT4Q 150 9 913.93 918 244 913.93
CMT4T 150 11 990.39 1000 212 990.39
CMT5H 200 9 992.37 983 514 992.37

CMT5Q 200 12 1118d 1119 381 1134.72

CMT5T 200 15 1227 1227 333 1232.08

CMT6H 50 7 555.43 555 31 555.43
CMT6Q 50 7 555.43 555 30 555.43
CMT6T 50 7 555.43 555 31 555.43
CMT7H 75 13 900 900 54 900.84

CMT7Q 75 14 900.69 901 53 900.69
CMT7T 75 14 903.05 903 52 903.05
CMT8H 100 10 865.50 866 95 865.50
CMT8Q 100 10 865.50 866 93 865.50
CMT8T 100 10 865.54 866 95 865.54
CMT14H 100 11 821.75 822 89 821.75
CMT14Q 100 11 821.75 822 85 821.75
CMT14T 100 11 826.77 827 86 826.77
CMT13H 120 12 1542.86 1543 125 1542.86
CMT13Q 120 12 1542.97 1543 120 1542.97

CMT13T 120 12 1542.97 1544 127 1542.97

CMT9H 150 16 1161d 1166 177 1161.63

CMT9Q 150 16 1161.51 1162 171 1161.51

CMT9T 150 16 1162.68 1164 178 1162.68

CMT10H 199 20 1383.78 1393 296 1383.78

CMT10Q 199 20 1386.54 1389 288 1386.54

CMT10T 199 20 1395d 1402 291 1400.22

Scaled time (s) 51.31

a Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s).
b Best run on a Xeon 2.4 GHz (1978 Mflop/s).
c Optimality proved.
d Found in [7] using another version of their algorithm.
ones. The average gap between the average solutions produced by
ILS-RVND-SP and the BKSs was �0.08%.

It is worth mentioning that on the last set of instances, the
ILS-RVND algorithm itself is sufficiently capable of obtaining, on
average, competitive results, in terms of computational time and
solution quality (see [15]), when compared to the best results
reported in [23]. Nevertheless, the solutions obtained by ILS-
RVND-SP are still much better than both of them, despite the
larger computational time.

4.4. VRPSPD

Table 7 contains the results obtained in the set of instances
suggested in [41] and a comparison with those reported in
[27,42,24]. It can be verified that the ILS-RVND-SP equaled 21 BKSs
and improved another five. Table 8 presents the results found on
the instances proposed in [43] and also those reported in [24–26].
bad ILS-RVND-SP

Timeb (s) Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

5.6 465.02 465.03 0.00 0.00 2.07

6.0 489.74 489.74 0.00 0.00 1.52

7.0 520.06 520.06 0.00 0.00 1.60

22.0 662.63 662.63 0.00 0.00 5.16

26.2 731:26 731:40 �0.20 �0.19 8.03

26.0 782.77 782.77 0.00 0.00 7.56

35.6 700.94 700.94 0.00 0.00 17.65

39.8 747.15 747.15 0.00 0.00 9.70

42.6 798.07 798.07 0.00 0.00 28.76

32.8 629.37 629.37 0.00 0.00 13.93

42.0 729.25 729.25 �0.03 �0.03 17.37

52.0 787.52 787.52 0.00 0.00 6.79

45.8 818.05 818.06 0.01 0.01 63.18

66.2 939.36 939.36 0.00 0.00 20.35

70.2 998.80 998.81 0.00 0.00 19.91

125.4 828.12 831.59 �0.11 0.31 80.24

153.0 915.27 915.27 0.15 0.15 58.92

166.8 990.39 990.39 0.00 0.00 50.42

351.4 978:74 978:74 �1.37 �1.37 1531.73

451.8 1104:87 1105:79 �1.17 �1.09 1627.78

460.8 1218:77 1220.24 �0.67 �0.55 1802.81

13.0 555.43 557.35 0.00 0.35 1.08

12.8 555.43 557.15 0.00 0.31 1.08

11.6 555.43 556.64 0.00 0.22 1.15

50.0 900.54 900.84 0.06 0.09 4.47

46.8 900.69 902.62 0.00 0.21 4.90

39.0 903.05 903.05 0.00 0.00 4.77

85.6 865.50 865.50 0.00 0.00 7.78

74.4 865.50 865.50 0.00 0.00 7.50

65.6 865.54 865.54 0.00 0.00 7.18

81.6 821.75 821.75 0.00 0.00 5.37

72.4 821.75 821.75 0.00 0.00 5.47

64.6 826.77 826.77 0.00 0.00 6.30

164.2 1542.86 1544.54 0.00 0.11 73.82

157.8 1542:86 1544.05 �0.01 0.07 69.87

152.8 1542:86 1544.11 �0.01 0.07 73.59

306.4 1160.68 1162.17 �0.03 0.10 77.95

289.6 1161:24 1161.69 �0.02 0.02 80.64

261.0 1162:55 1164.37 �0.01 0.15 83.29

791.0 1372:52 1377:23 �0.81 �0.47 550.45

730.2 1374:18 1379:47 �0.89 �0.51 537.66

658.6 1381:04 1388:17 �1.00 �0.49 501.65

Avg. �0.15 �0.06 178.13

51.28 178.13
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ILS-RVND-SP found 12 BKSs improved another six results. Further-
more, it is worth noting that the proposed algorithm had a
satisfactory performance on the large size instances, always produ-
cing, on average, competitive results. The average gap between the
average solutions produced by ILS-RVND-SP and the BKSs in the first
and second group of instances was 0.12% and �0.07% respectively.
Table 10
Results found for the old MDVRP instances proposed in [44].

Instance n v 9G9 BKS Pisinger and Røpke Vidal et a

Avg. Sol.a Timeb (s) Avg. Sol.a

p01 50 4 4 576.87d 576.87 29 576.87
p02 50 2 4 473.53d 473.53 28 473.53
p03 75 3 2 641.19e 641.19 64 641.19
p12 80 5 2 1318.95f 1319.13 75 1318.95
p04 100 8 2 1001.04g 1006.09 88 1001.23

p05 100 5 2 750.03e 752.34 120 750.03
p06 100 6 3 876.50f 883.01 93 876.50
p07 100 4 4 881.97g 889.36 88 884.43

p15 160 5 4 2505.42e 2519.64 253 2505.42
p18 240 5 6 3702.85e 3736.53 419 3702.85
p21 360 5 9 5474.84e 5501.58 582 5476.41

p13 80 5 2 1318.95f 1318.95 60 1318.95
p14 80 5 2 1360.12e 1360.12 58 1360.12
p16 160 5 4 2572.23f 2573.95 188 2572.23
p17 160 5 4 2709.09e 2709.09 179 2709.09
p19 240 5 6 3827.06f 3838.76 315 3827.06
p20 240 5 6 4058.07e 4064.76 300 4058.07
p08 249 14 2 4372.78h 4421.03 333 4397.42

p09 249 12 3 3858.66h 3892.50 361 3868.59

p10 249 8 4 3631.11h 3666.85 363 3636.08

p11 249 6 5 3546.06g 3573.23 357 3548.25

p22 360 5 9 5702.16e 5722.19 462 5702.16
p23 360 5 9 6078.75g 6092.66 443 6078.75

Avg. Gap (%) 0.40 Avg. Gap

Scaled time (s) 77.44

a Average of 10 runs.
b Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
c Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz.
d Optimality proved.
e First found in [44].
f First found in [46].
g First found in [6].
h First found in [9].

Table 11
Results found for the new MDVRP instances proposed in [44].

Instance n v 9G9 BKS Pisinger and Røpke Vidal et a

Avg. Sol.a Timeb (s) Avg. Sol.a

pr01 48 2 4 861.32d 861.32 30 861.32
pr07 72 3 6 1089.56d 1089.56 58 1089.56
pr02 96 4 4 1307.34e 1308.17 103 1307.34
pr03 144 6 4 1803.80f 1810.66 214 1803.80

pr08 144 6 6 1664.85e 1675.74 207 1665.05

pr04 192 8 4 2058.31f 2073.16 296 2059.36

pr09 216 9 6 2133.20f 2144.84 350 2134.17

pr05 240 10 4 2331.20f 2350.31 372 2340.29

pr06 288 12 4 2676.30f 2695.74 465 2681.93

pr10 288 12 6 2868.26f 2905.43 455 2886.59

Avg. Gap (%) 0.52 Avg. Gap

Scaled time (s) 86.38

a Average of 10 runs.
b Average of 10 runs on a Pentium IV 3.0 GHz (3181 Mflop/s).
c Average of 10 runs on an Opteron 2.4 GHz scaled for a Pentium IV 3.0 GHz.
d First found in [44].
e First found in [6].
f First found in [9].
4.5. VRPMPD

Table 9 illustrates the results found by ILS-RVND-SP on the
VRPMPD instances introduced in [41] and a comparison with
those reported in [7] (6R—normal learning) and [27]. ILS-RVND-
SP obtained the BKS in 25 instances and it managed to improve
l. ILS-RVND-SP

Timec (s) Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

13.8 576.87 576.87 0.00 0.00 2.80

12.6 473.53 473.53 0.00 0.00 2.27

25.8 641.19 641.19 0.00 0.00 7.25

31.2 1318.95 1318.95 0.00 0.00 6.14

116.4 1001.04 1001.04 0.00 0.00 51.76

63.6 750.03 750.21 0.00 0.02 31.54

68.4 876.50 876.50 0.00 0.00 25.70

93.0 881.97 881.97 0.00 0.00 21.88

115.2 2505.42 2505.42 0.00 0.00 48.59

271.2 3702.85 3702.85 0.00 0.00 1019.76

600.0 5474.84 5474.84 0.00 0.00 2544.57

34.2 1318.95 1318.95 0.00 0.00 3.06

33.0 1360.12 1360.12 0.00 0.00 19.11

118.2 2572.23 2572.23 0.00 0.00 247.77

128.4 2709.09 2710.21 0.00 0.04 1448.47

252.0 3827.06 3827.55 0.00 0.01 1214.57

262.2 4058.07 4058.07 0.00 0.00 544.80

600.0 4379.46 4393.70 0.15 0.48 1244.57

570.0 3859.54 3864.22 0.02 0.14 1431.88

589.2 3631.37 3634.72 0.01 0.10 1422.66

428.4 3546.06 3546.15 0.00 o0.01 1217.35

600.0 5702.15 5705.84 0.00 0.06 846.01

600.0 6078.75 6078.75 0.00 0.00 1019.15

(%) 0.07 Avg. 0.01 0.04 627.03

82.87 627.03

l. ILS-RVND-SP

Timec (s) Best Sol. Avg. Sol. Gap (%) Avg. Gap (%) Time (s)

10.2 861.32 861.32 0.00 0.00 1.24

20.4 1089.56 1089.56 0.00 0.00 3.87

45.6 1307.34 1308.53 0.00 0.09 12.39

114.6 1803.81 1804.09 0.00 0.02 55.04

123.0 1664.85 1665.08 0.00 0.01 393.98

313.2 2058.31 2060.93 0.00 0.13 779.30

366.0 2133.20 2135.37 0.00 0.10 1070.41

573.6 2331.20 2338.12 0.00 0.30 1337.10

600.0 2680.77 2685.23 0.17 0.33 2297.66

600.0 2874.28 2882.41 0.21 0.49 3009.53

(%) 0.13 Avg. 0.04 0.15 896.05

93.72 896.05
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the result of another 12. The developed algorithm outperformed
both the algorithms suggested in [7,27] in terms of solution
quality. The average gap between the average solutions obtained
by ILS-RVND-SP and the BKSs was �0.06%.
4.6. MDVRP

Tables 10 and 11 present a comparison, in terms of average
solution, between the results found by ILS-RVND-SP and those
determined in [6] (ALNS 50K) and [9] on the old and new set of
instances presented in [44], respectively. The latter two clearly
outperformed the first one in terms of solution quality. The
average gap between the average solutions found by ILS-RVND-
SP and the BKSs for the old and new benchmark sets was,
respectively, 0.04% and 0.15%.
4.7. MDVRPMPD

Table 12 presents the results found by ILS-RVND-SP and those
pointed out in [7] (6R—no learning) on the set of instances
proposed in [41]. With respect to the solution quality, the
developed algorithm clearly had a better performance, equaling
17 BKSs and improving the result of another 16. The average gap
between the average solutions and the BKSs was �0.10%.
Table 12
Results found for the MDVRPMPD instances proposed in [41].

Instance n v 9G9 BKS Røpke and Pisinger

Best Sol. Avg. Sol.a Tim

GJ01Q 50 4 4 528 528 528 36

GJ01T 50 4 4 569 569 569 34

GJ02H 75 4 2 440 440 440 51

GJ02Q 75 4 2 450 450 451 43

GJ02T 75 4 2 464 464 464 37

GJ03H 100 5 3 581 581 583 81

GJ03Q 100 5 3 605 605 608 71

GJ03T 100 5 3 624 624 626 65

GJ04H 100 2 8 790 790 797 112

GJ04Q 100 2 8 875 875 876 94

GJ04T 100 2 8 962 962 969 85

GJ05H 100 2 5 678 678 680 168

GJ05Q 100 2 5 700 702 705 133

GJ05T 100 2 5 733 733 738 118

GJ06H 100 3 6 745 747 751 116

GJ06Q 100 3 6 794 794 800 100

GJ06T 100 3 6 851 851 853 90

GJ07H 100 4 4 733 733 734 117

GJ07Q 100 4 4 802 803 807 94

GJ07T 100 4 4 854 855 862 88

GJ08H 249 2 14 3327 3327 3373 581

GJ08Q 249 2 14 3762 3774 3810 479

GJ08T 249 2 14 4134 4134 4170 431

GJ09H 249 3 12 3005 3006 3028 646

GJ09Q 249 3 12 3355 3355 3393 535

GJ09T 249 3 12 3677 3677 3718 492

GJ010H 249 4 8 2927 2930 2963 644

GJ010Q 249 4 8 3242 3245 3267 513

GJ010T 249 4 8 3485 3485 3524 472

GJ011H 249 5 6 2855 2880 2905 609

GJ011Q 249 5 6 3155 3165 3192 511

GJ011T 249 5 6 3390 3390 3421 469

Avg. Gap (%) 0.66

Scaled time (s) 55.48

Found in [7] using another version of their algorithm.
a Average of 10 runs.
b Average of 10 runs on a Pentium IV 1.5 GHz (1311 Mflop/s).
5. Concluding remarks

This work presented an algorithm that hybridizes an Iterated
Local Search based heuristic and a Set Partitioning formulation. Its
design favored the flexibility, allowing its application in the
solution of several VRP variants. Moreover, we believe that the
developed hybrid approach is relatively simple and easy to
implement. The key aspects of the proposed methodology are
the interaction between a solver and a metaheuristic approach
while solving a given MIP model and an efficient scheme of
dynamically controlling the size of the SP models when solving
large size instances. These ideas can be employed to efficiently
solve a large class of combinatorial optimization problems.

The ILS-RVND-SP algorithm was evaluated in hundreds of
well-known instances of the variants considered in this work,
with up to 480 customers. The same parameter tuning was
adopted and the results obtained were quite competitive with
those found by heuristics devoted to specific variants. Table 13
shows the summary of the results found by ILS-RNVD-SP. In this
table Avg. Gap corresponds to the average gap between the
average solutions and the BKSs, #Instances is the number of
instances of a particular benchmark, #Improv denotes the number
of solutions improved and #Ties represents the number of ties. It
can be seen that 52 new best solutions were found and that the
Avg. Gap was always smaller than 0.55%.
ILS-RVND-SP

eb (s) Best Sol. Avg. Sol. Gap % Avg. Gap (%) Time (s)

528.30 528.30 0.06 0.06 3.12

569.43 569.43 0.08 0.08 2.98

440.00 440.00 0.00 0.00 2.95

449.72 449.72 �0.06 �0.06 2.60

464.13 464.13 0.03 0.03 2.50

579:45 579:45 �0.27 �0.27 9.54

605.25 605.25 0.04 0.04 8.95

624.44 624.44 0.07 0.07 10.94

789:19 789:30 �0.10 �0.09 31.69

874.78 874.79 �0.03 �0.02 41.89

962.25 962.65 0.03 0.07 37.95

676:81 676:91 �0.18 �0.16 22.24

700.15 700.15 0.02 0.02 19.55

733.17 733.18 0.02 0.02 39.31

742:18 742:18 �0.38 �0.38 32.28

793.85 793.87 �0.02 �0.02 25.00

850.82 850.82 �0.02 �0.02 27.19

732.73 732.73 �0.04 �0.04 24.66

801.91 801.94 �0.01 �0.01 38.58

853.54 853.54 �0.05 �0.05 20.64

3320:39 3342.91 �0.20 0.48 1435.21

3745:18 3769.01 �0.45 0.19 1288.57

4110:78 4120:27 �0.56 �0.33 1272.63

2990:92 3005.52 �0.47 0.02 1478.35

3351:18 3361.23 �0.11 0.19 1362.18

3656:03 3661:62 �0.57 �0.42 1316.84

2894:71 2905:23 �1.10 �0.74 1452.52

3220:79 3226:79 �0.65 �0.47 1315.68

3470:70 3477:99 �0.41 �0.20 1281.92

2842:79 2845:71 �0.43 �0.33 1357.58

3138:64 3143:33 �0.52 �0.37 1267.12

3360:48 3367:63 �0.87 �0.66 1181.56

Avg. �0.22 �0.10 497.54

497.54



Table 13
Summary of ILS-RVND-SP results.

Variant #Instances #Improv #Ties Avg. Gap (%) Avg. Time (s)

CVRPa 3b, 14c, 20d 1b, 0c, 0d 2b, 13c, 5d 0.17b, 0.08c, 0.55d 17.41b, 100.83c, 3938.23d

ACVRPa 24e 1e 23e 0.01e 2.24e

OVRPa 16f,8g 3f, 7g 12f, 1g 0.06f, �0.08g 143.44f, 3844.03g

VRPSPDa 28h, 18i 5h, 7i 21h, 11i 0.12h, �0.07i 189.24h, 3653.44i

VRPMPDa 42h 12h 29h
�0.06h 178.13h

MDVRPa 23j, 10k 0j, 0k 20j, 8k 0.04j, 0.15k 627.03j, 896.05k

MDVRPMPDa 33h 16h 17h
�0.10h 497.54h

Total 239 52 162

a Core i7 2.93 GHz (single thread).
b M-series open instances.
c Christofides et al. [36].
d Golden et al. [37].
e Fischetti et al. [19] and Pessoa et al. [20].
f Christofides et al. [36] and Fisher [39].
g Li et al. [40].
h Salhi and Nagy [41].
i Montané and Galv~ao [43].
j Cordeau et al. (old) [44].
k Cordeau et al. (new) [44].
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As for future work, we intend to extend the range of application
of ILS-RVND-SP by tackling variants with additional constraints
such as time windows, backhauls and site/time dependence.
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