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Abstract

The construction of topological index maps for equivariant families of Dirac operators requires factoring
a general smooth map through maps of a very simple type: zero sections of vector bundles, open embed-
dings, and vector bundle projections. Roughly speaking, a normally non-singular map is a map together with
such a factorisation. These factorisations are models for the topological index map. Under some assump-
tions concerning the existence of equivariant vector bundles, any smooth map admits a normal factorisation,
and two such factorisations are unique up to a certain notion of equivalence. To prove this, we generalise the
Mostow Embedding Theorem to spaces equipped with proper groupoid actions. We also discuss orienta-
tions of normally non-singular maps with respect to a cohomology theory and show that oriented normally
non-singular maps induce wrong-way maps on the chosen cohomology theory. For K-oriented normally
non-singular maps, we also get a functor to Kasparov’s equivariant KK-theory. We interpret this functor as
a topological index map.
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1. Introduction

The claim that Kasparov theory for commutative C∗-algebras may be described using corre-
spondences came up already in the 1980s (see [3,4,8]). But detailed proofs only appeared much
more recently and only for special situations (see [5,23]). This article prepares for a description
of bivariant K-theory by geometric cycles in [11]. In fact, it was part of a first draft of [11]. We
split it to make the results more easily accessible.

Correspondences combine the functoriality of K-theory for proper maps and its wrong-way
functoriality for K-oriented maps. The construction of wrong-way functoriality in [8] is an ana-
lytic one, however, and a purely topological construction of wrong-way functoriality in equivari-
ant bivariant K-theory does not seem to exist in the same generality as the analytic construction.
In order to analyse equivariant topological wrong-way functoriality, we introduce a category of
K-oriented equivariant normally non-singular maps and a covariant functor (wrong-way func-
tor) from this category to equivariant Kasparov theory. We show for many proper groupoids
that K-oriented, equivariant, smooth, normally non-singular maps are equivalent to K-oriented,
equivariant, smooth maps in the usual sense. This depends on the existence of enough equivariant
vector bundles.

The construction of wrong-way elements for smooth K-oriented maps in [8] uses a factorisa-
tion into a smooth K-oriented embedding and a smooth K-oriented submersion. For embeddings,
the construction of wrong-way elements is purely topological, combining the Thom isomor-
phism for the normal bundle with the ∗-homomorphism on C0-functions induced by the open
embedding of a tubular neighbourhood. The wrong-way element for a K-oriented submersion
f :X → Y is the KK-class Df of the family of Dirac operators along the fibres of f . Hence we
call the construction in [8] analytic wrong-way functoriality.

The Atiyah–Singer Index Theorem for families computes the action of Df on K-theory. It may
be strengthened to a topological description of the class Df itself. This topological model for Df

only uses Thom isomorphisms and functoriality for open embeddings. Like the Atiyah–Singer
topological index map, it is based on an embedding ι of X into R

n. Then (ι, f ) :X → Y × R
n is

an embedding as well. Let V be the normal bundle of (ι, f ) and let |V | be its total space. This vec-
tor bundle is K-oriented because f is K-oriented. Hence the Thom isomorphism provides a nat-
ural class in KK∗(C0(X),C0(|V |)). A tubular neighbourhood for the embedding (ι, f ) provides
an open embedding |V | ↪→ Y × R

n, which induces a ∗-homomorphism C0(|V |) → C0(Y × R
n).

Finally, Bott periodicity yields an invertible element in KK∗(C0(Y ×R
n),C0(Y )). The Kasparov

product of these three ingredients is a class f ! in KK∗(C0(X),C0(Y )) – the topological wrong-
way element of f . The functoriality of the analytic wrong-way construction implies

f ! = Df in KK∗
(
C0(X),C0(Y )

)
.

In particular, f ! depends neither on the chosen embedding ι nor on the chosen tubular neigh-
bourhood for (ι, f ).

Now consider the equivariant situation where a groupoid G with object space Z acts on X.
If we assume that G is proper and acts fibrewise smoothly and that f is G -equivariantly K-
oriented, then the Dirac operators along the fibres of f define an equivariant class Df ∈
KKG∗ (C0(X),C0(Y )). For the topological index map, we need an embedding of X into the to-
tal space |E| of a G -equivariant vector bundle E over Y . If such an embedding exists, we may
also assume that E is G -equivariantly K-oriented. Then the normal bundle of the embedding
is G -equivariantly K-oriented, so that a Thom isomorphism applies, and an equivariant tubular
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neighbourhood theorem provides an open embedding from the total space of the normal bundle
into |E|. Thus we may construct a topological wrong-way element f ! ∈ KKG∗ (C0(X),C0(Y )) ex-
actly as above. The same argument as in the non-equivariant case shows that f ! is equal to Df . In
the special case of bundles of compact groups, this construction is already carried out by Victor
Nistor and Evgenij Troitsky in [19].

The above construction motivates the definition of a normally non-singular map. In a first
approximation, a G -equivariant normally non-singular map from X to Y consists of a G -vector
bundle V over X, a G -vector bundle EY over Y , and an open embedding f from the total space
of V to the total space of EY . Two additional assumptions are necessary for certain technical
purposes: the G -vector bundle over Y should be the pull-back of a G -vector bundle over Z – we
call such G -vector bundles trivial – and the G -vector bundle over X should be a direct summand
in a trivial G -vector bundle (subtrivial).

We define an appropriate notion of equivalence of normally non-singular maps, based on
isotopy of open embeddings and lifting along trivial G -vector bundles, and we construct a com-
position and an exterior product that turn equivalence classes of normally non-singular maps into
a symmetric monoidal category. For all these considerations, it is irrelevant whether the maps in
question are smooth.

Let G be a proper groupoid with object space Z and let X and Y be bundles of smooth man-
ifolds over Z with fibrewise smooth actions of G . If there is a G -equivariant smooth embedding
of X into a G -vector bundle over Z, then any smooth G -equivariant map X → Y is the trace of an
essentially unique smooth normally non-singular map. There are, however, proper groupoids with
no non-constant G -vector bundles over Z. For them, we lack normally non-singular maps to Z,
so that smooth maps need not admit the factorisation required for a normally non-singular map.
This is why the theory of normally non-singular maps is needed in [11]. Under some technical
assumptions, smooth normally non-singular maps are essentially equivalent to ordinary smooth
maps. A general theory of correspondences based on smooth maps would need such technical
assumptions in all important theorems. When we replace smooth maps by normally non-singular
maps, the theory goes through much more smoothly.

A simple counterexample of a smooth map with no normal factorisation is the following.
Let A be a matrix in Gl(2,Z). Form the locally trivial bundle of torus groups T

2 over the cir-
cle S

1 with monodromy induced by A. This defines a compact groupoid GA with Haar system.
If A is hyperbolic, then it turns out that any GA-equivariant vector bundle over S

1 carries a triv-
ial action of GA. The morphism space of GA with the smooth translation action of GA cannot
embed equivariantly in any GA-vector bundle over S

1 because the translation action is non-
trivial.

As a consequence, the GA-equivariant index in K∗
GA

(S1) of the fibrewise Dolbeault operators

on the fibres C/Z2 of GA cannot be computed along the lines of the Atiyah–Singer procedure:
since there is no equivariant embedding of GA into an equivariant vector bundle over S

1, new
ideas would be needed to construct a topological index map in this case. There are similar coun-
terexamples where G is a compact group and X is a non-compact smooth G -manifold that is not
of finite orbit type. In this case, Mostow’s Embedding Theorem does not apply and we do not
know how to construct a topological index map.

Whereas the functoriality of wrong-way elements is a difficult issue in [7,8], it is straightfor-
ward here thanks to our restrictive notion of normally non-singular map. For us, the difficulty is to
lift smooth maps to normally non-singular maps; once this lifting is achieved, smooth structures
become irrelevant. Furthermore, the equality in Kasparov theory of the analytic and topological
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wrong-way elements is a strong version of the Atiyah–Singer Index Theorem, whose proof is
essentially equivalent to the proof that analytic wrong-way maps are functorial.

And whereas special features of bivariant K-theory are needed to construct the analytic wrong-
way functoriality for smooth submersions in [8], the topological wrong-way functoriality for
K-oriented normally non-singular maps only uses Thom isomorphisms and functoriality for open
embeddings. Therefore, we first discuss the category of normally non-singular maps without ori-
entations and without reference to any cohomology theory. Then we introduce orientations with
respect to any equivariant multiplicative cohomology theory and construct wrong-way maps in
this generality. Finally, we specialise to K-theory and compare our construction with the analytic
wrong-way maps for smooth K-oriented submersions. The generalisation to arbitrary equivariant
cohomology theories should be useful, for instance, to construct natural bivariant Chern charac-
ters.

Since analysis plays no role in the construction of our bivariant cohomology theories, we do
not need spaces to be locally compact – paracompact Hausdorff is good enough. Our notion of
a (numerably) proper groupoid combines Abels’ numerably proper group actions [1] with Haar
systems. Without assuming local compactness, it ensures that pull-backs of equivariant vector
bundles along equivariantly homotopic maps are isomorphic; that equivariant vector bundles
carry invariant inner products; and that extensions of equivariant vector bundles split. These are
reasons why we need G -spaces to be numerably proper and paracompact.

The restriction to proper groupoids looks like a severe limitation of generality at first sight
because it seems to exclude a description of KKG∗ (C0(X),C) for an infinite discrete group G
and a smooth manifold X with a proper smooth action of G . A direct approach would require
G -equivariant normally non-singular maps from X to the point, which rarely exist. Instead, we
consider RKKG∗ (E G;C0(X),C) for a universal proper G -space E G . This group is isomorphic to
KKG∗ (C0(X),C) if G acts properly on X (see [16]), and it requires G � E G -equivariant normally
non-singular maps from E G × X to E G . Thus we replace the discrete group G by the proper
groupoid G � E G , and a smooth G -manifold by a bundle of smooth manifolds over E G with a
fibrewise smooth action of G .

In Section 2, we discuss the class of groupoids that we will be working with, define actions,
proper actions, equivariant vector bundles and prove various basic results about them. In par-
ticular, we introduce a class of numerably proper groupoids which behave nicely even without
assuming local compactness.

Section 3 contains the main geometric results of this article. We prove embedding theorems
for bundles of smooth manifolds, equivariant with respect to a proper groupoid satisfying some
conditions about equivariant vector bundles.

In Section 4, we introduce equivariant normally non-singular maps and define an equivalence
relation and a composition for them. We study some properties of the resulting category of nor-
mally non-singular maps and use the embedding theorem to relate it to the homotopy category
of smooth maps.

In Section 5, we assume, in addition, that we are given a multiplicative cohomology theory on
the category of G -spaces. We discuss the resulting notions of orientation and Thom isomorphisms
for oriented G -vector bundles, and we use the latter to construct wrong-way maps on cohomology
for oriented normally non-singular maps.

Finally, Section 6 discusses wrong-way elements of K-oriented normally non-singular maps in
bivariant K-theory. We briefly recall the analytic wrong-way functoriality by Connes and Skan-
dalis and compare it to our topological analogue.
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2. Preliminaries on groupoids and their actions

The authors at first only had locally compact groupoids with Haar system in mind. But it
is interesting to allow also non-locally compact groups such as loop groups or the projective
unitary group PU(H) for a Hilbert space H. The category of free and proper actions of PU(H)

seems a good setting to study twisted K-theory. This is why we allow more general topological
groupoids in our constructions, as long as this creates no serious additional difficulties. We have
not explored extensions to non-Hausdorff, locally Hausdorff groupoids as in [27].

Definition 2.1. Let G be a topological groupoid with object space Z and range and source maps
r, s : G ⇒ Z.

A G -space is a topological space X with a continuous action of G ; this means that X comes
with a continuous map � :X → Z, its anchor map, and a homeomorphism

G ×s,� X
∼=−→ G ×r,� X, (g, x) �→ (g, g · x),

subject to the usual associativity and unitality conditions for groupoid actions.
A G -map between two G -spaces is a continuous G -equivariant map.

Definition 2.2. Let G be a topological groupoid and let X be a G -space. A G -space over X is a G -
space with a G -map to X. We define the transformation groupoid G �X such that a G �X-space
is nothing but a G -space over X. Its object space is X, its morphism space G ×s,� X; its range
and source maps are r(g, x) = g · x and s(g, x) = x; and its composition is (g1, x1) · (g2, x2) :=
(g1 · g2, x2).

Definition 2.3. A G -map f :X → Y is called an embedding if it is a homeomorphism onto its
range, equipped with the subspace topology from Y . An embedding is called closed or open if
f (X) is closed or open in Y , respectively. We reserve the arrow ↪→ for open embeddings.

Definition 2.4. Let G be a topological groupoid. A G -vector bundle over a G -space X is a vector
bundle with G -action such that the bundle projection, addition, and scalar multiplication are G -
equivariant. We denote the total space of a G -vector bundle V over X by |V | (this is a G -space),
the bundle projection |V | � X by πV , and the zero section X � |V | by ζV (these are G -maps).
We reserve the arrows � and � for vector bundle projections and zero sections.

Definition 2.5. Since any G -space X comes with an anchor map � :X → Z, we may pull back
a G -vector bundle E over Z to one on X, which we denote by EX; its total space is |EX| :=
X ×Z |E|. A G -vector bundle over X is called trivial if it is isomorphic to EX for some G -vector
bundle E over Z; direct summands of trivial G -vector bundles are called subtrivial.

Open embeddings and G -vector bundles are the two ingredients in normally non-singular
maps. For technical reasons, we often require G -vector bundles to be trivial or subtrivial.

Example 2.6. Let G be a group, so that Z is a single point. A G -vector bundle over Z is a finite-
dimensional representation of G . Hence a vector bundle over a G -space X is trivial if and only if
it is of the form X ×R

n with G acting by g · (x, ξ) := (gx,πgξ) for some linear representation π

of G on R
n.
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Example 2.7. Let G = T be the circle group. Let X := T̂ ∼= Z with the trivial action of G . Let V

be the constant rank-one vector bundle over X with G acting by the character χ at χ ∈ T̂. This
equivariant vector bundle is not subtrivial because it involves infinitely many different represen-
tations of T.

Example 2.8. If G is trivial and X is paracompact with finite covering dimension, then every
vector bundle over X is subtrivial.

We recall some equivalent definitions of proper maps, which apply even to non-Hausdorff
spaces:

Definition 2.9. (See [6, I.10.2].) Let X and Y be topological spaces. A continuous map f :X → Y

is called proper if it satisfies the following equivalent conditions:

• For every topological space U , the map f × IdU :X × U → Y × U is closed.
• f is closed and for each y ∈ Y , the pre-image f −1(y) is quasi-compact.
• f is closed and for each quasi-compact subset K ⊆ Y , the pre-image f −1(K) is quasi-

compact.

From now on, all topological spaces, including all topological groupoids, are assumed to be
paracompact and Hausdorff. Since paracompact spaces are normal, the Tietze Extension The-
orem applies and allows us to extend continuous scalar-valued functions from closed subsets.
Even more, we may continuously extend continuous sections of vector bundles or vector bundle
homomorphisms that are defined on closed subsets. We are going to define a notion of proper
groupoid action that provides similar G -equivariant extension results.

Definition 2.10. A compactly supported probability measure on a space X is a positive, unital,
linear functional on the space C(X) of continuous functions X → C that factors through the
restriction map C(X) → C(K) for some compact subset K ⊆ X.

Under our standing assumptions on topological spaces, the restriction map to C(K) in Defini-
tion 2.10 is surjective by the Tietze Extension Theorem, so that a compactly supported probability
measure on X uniquely determines a regular Borel probability measure on K ⊆ X.

Definition 2.11. A topological groupoid G is called (numerably) proper if there is a family of
compactly supported probability measures (μz)z∈Z on the fibres Gz := r−1(z) of the range map
r : G → Z with the following properties:

• (μz)z∈Z is G -invariant in the sense that g∗(μs(g)) = μr(g) for all g ∈ G ;
• let suppμ be the closure of

⋃
z∈Z suppμz ⊆ G ; the map r : suppμ → Z is proper;

• (μz)z∈Z depends continuously on z in the sense that, for each f ∈ C(G), the function z �→∫
Gz f (g)dμz(g) on Z is continuous.

A G -space X is called proper if the groupoid G � X is proper.

If we replace the second condition above by the requirement that each μz have full support
Gz, we get a Haar system on G in the sense of [22]. Our definition is inspired by the definition of
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numerably proper group actions by Herbert Abels [1]. We use measures instead of functions to
avoid assumptions about Haar systems.

Equip the ∗-algebras C(G) and C(Z) with the topology of uniform convergence on compact
subsets (the compact-open topology) and the action of G by left translations. Definition 2.11
implies that there is a well-defined positive, unital, G -equivariant, continuous, linear map

μ : C(G) → C(Z), (μf )(z) :=
∫

Gz

f (g)dμz(g).

Continuity means that for each compact subset K ⊆ Z, there is a compact subset L ⊆ G such
that (μf )|K only depends on f |L. This holds with L := suppμ ∩ GK , which is compact because
of the assumed properness of r : suppμ → Z. In addition, we require the latter map to be closed.

Example 2.12. Let Z be a topological space and let G := Z × Z be the pair groupoid, equipped
with the subspace topology. Let z0 ∈ Z. Then G is numerably proper with μz := δ(z,z0). The
resulting map μ : C(Z × Z) → C(Z) is induced by the embedding Z → Z × Z, z �→ (z, z0).

Theorem 2.13. Let G be a groupoid and let X be a numerably proper G -space. Then the map

G ×s,� X → X × X, (g, x) �→ (g · x, x), (2.14)

is proper. For each x ∈ X, the map G�(x) → X, g �→ g · x, is proper. Thus the stabiliser Gx
x is

compact and the orbit G ·x is closed and homeomorphic to the homogeneous space G�(x)/Gx
x via

the map gGx
x �→ gx.

Proof. Replacing G by G �X, we may assume that the groupoid G itself is numerably proper and
that X = Z. Let S := suppμ ⊆ G . Since μ is G -invariant, S is invariant under left multiplication
with elements in G , that is, G · S = S. Hence S = s−1(S(0)) for some subset S(0) ⊆ Z. If z ∈ Z,
then μz 	= 0 and hence S ∩ Gz 	= ∅. Therefore, there is g ∈ S with r(g) = z. This means that
G · S(0) = Z. It follows that S · S−1 = G : any g ∈ G may be written as g = g1 · g−1

2 with s(g1) =
s(g2) ∈ S0. By assumption, the map r|S :S → Z is proper. The following argument only uses the
existence of a subset S ⊆ G with S · S−1 = G such that r|S is proper.

Since the exterior product f × g of two proper maps f and g is again proper, the map

Y × S × S → Y × Z × Z, (y, g1, g2) �→ (
y, r(g1), r(g2)

)
, (2.15)

is closed for any topological space Y . Now let A ⊆ Y × G be closed. Its pre-image A′ in Y ×
S ×s,s S under the continuous map (y, g1, g2) �→ (y, g1 ·g−1

2 ) is closed in Y ×S ×S. The set A′′
of (y, r(g1), r(g2)) with (y, g1, g2) ∈ A′ is closed because the map in (2.15) is closed. Since any
g ∈ A is of the form g1 · g−1

2 for some g1, g2 ∈ S, A′′ is the image of A under IdY × r × s. Thus
the map IdY × r × s is closed for all topological spaces Y , that is, r × s is a proper map.

Let z ∈ Z. The subset Gz ⊆ G is closed, so that the restriction of (r, s) to Gz remains proper.
Since s is constant on Gz, this means that r : Gz → Z is a proper map. Equivalently, the pre-
image Gz

z of z is compact and the map is closed. In particular, the image G · z is closed in Z. The
induced map Gz/Gz

z → Gz is continuous, closed, and bijective, hence it is a homeomorphism. �
Conversely, if the map in (2.14) is proper, then the groupoid is numerably proper under some

additional assumptions:



H. Emerson, R. Meyer / Advances in Mathematics 225 (2010) 2840–2882 2847
Lemma 2.16. Let G be a locally compact groupoid with Haar system and let X be a locally
compact G -space. Assume that the orbit space G\X is paracompact. If the map G ×s,� X →
X × X, (g, x) �→ (g · x, x), is proper, then X is a numerably proper G -space.

Proof. For each x ∈ X, let Ux be a relatively compact open neighbourhood. Since G has a Haar
system, so has G � X; hence the projection p :X → G\X is open (see [22, Proposition 2.2.1]).
The subsets p(Ux) form an open covering of G\X. By paracompactness, we may find a locally
finite covering (Wi)i∈I of G\X that refines the covering p(Ux)x∈X . For each i ∈ I , choose x ∈ X

with Wi ⊆ p(Ux) and let Ui := p−1(Wi) ∩ Ux . Let U := ⋃
i∈I Ui . By construction, p(Ui) = Wi

and hence p(U) = G\X, that is, G · U = X; moreover, each Uj is relatively compact, so that
(A,Uj ) := {g ∈ G | g ·A∩Uj 	= ∅} is relatively compact for compact A ⊆ X and i ∈ I . Since the
covering (Wi)i∈I is locally finite, (A,U) is relatively compact as well for all compact subsets A

of X.
There is a continuous function ϕ :X → [0,∞) with ϕ(x) 	= 0 if and only if x ∈ U . Let � :X →

Z be the anchor map and let (λz)z∈Z be a Haar system for G . Then

μx
(
x,g, x′) := ϕ

(
x′) · λ�(x)(g) for x, x′ ∈ X, g ∈ G�(x)

�(x′) with g · x′ = x

defines a G -invariant continuous family of compactly supported positive Borel measures on the
fibres of the range map of G �X. The measures μx are not yet probability measures, but they are
non-negative and non-zero and hence may be normalised to probability measures, dividing by
the G -invariant, positive, continuous function x �→ ∫

ϕ(g−1x)dλ�(x)(g); this function is positive
because G · U = X. �
Proposition 2.17. Let G be a topological groupoid, let X be a numerably proper G -space, and
let Y ⊆ X be a closed G -invariant subset. Then the following kinds of objects may be extended
from Y to X:

• scalar-valued G -invariant continuous functions;
• G -equivariant continuous sections of G -vector bundles;
• G -equivariant vector bundle homomorphisms between G -vector bundles.

Proof. Scalar-valued G -invariant continuous functions are G -equivariant sections of a constant
G -vector bundle, and G -equivariant vector bundle homomorphisms between two G -vector bun-
dles V1 and V2 are G -equivariant sections of the G -vector bundle Hom(V1,V2). Hence it suffices
to prove: if V is a G -vector bundle on X and σ is a G -equivariant continuous section of V |Y ,
then there is a G -equivariant continuous section σ̄ :X → |V | extending σ .

Since V is locally trivial, each y ∈ Y has a neighbourhood Uy on which V is trivial, so that a
section on Uy is equivalent to a family of scalar-valued functions. Since X is paracompact, it is
completely regular, that is, scalar-valued functions on Y extend to scalar-valued functions on X.
Therefore, σ extends to a section of V on Uy . Since X is paracompact, there is a partition of
unity subordinate to the covering of X by the sets X \ Y and Uy for y ∈ Y . This allows us to
piece the local sections on Uy and the zero section on X \ Y together to a continuous section
h :X → |V | that extends σ . But h need not be G -equivariant. We let

σ̄ (x) :=
∫
�(x)

g · (h(
g−1x

))
dμx(g),
G
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where � :X → Z is the anchor map and (μx)x∈X is a family of probability measures as in Defi-
nition 2.11. This is a G -equivariant continuous section of V . Since h|Y = σ is G -equivariant and
each μx is a probability measure, σ̄ |Y = σ . �
Corollary 2.18. Let G act properly on X. If two G -vector bundles restrict to isomorphic G -vector
bundles on a closed G -invariant subset Y , then they remain isomorphic on some G -invariant open
neighbourhood of Y .

Proof. Use Proposition 2.17 to extend a G -equivariant vector bundle isomorphism on Y to X.
The subset where it is invertible is open and G -invariant. �
Proposition 2.19. Let G be a topological groupoid and let X be a numerably proper G -space.
Then any G -vector bundle over X has a G -invariant inner product.

Proof. Since X is paracompact, there is a non-equivariant continuous family of inner prod-
ucts (hx)x∈X on the fibres of a G -vector bundle (compare the proof of Proposition 2.17). Then∫

G�(x) g · hg−1x dμx(g) is a G -invariant inner product. �
Corollary 2.20. Let G be a topological groupoid and let X be a numerably proper G -space. Then
any extension of G -vector bundles over X splits.

Proof. Let V ′ � V � V ′′ be an extension of G -vector bundles over X. The fibrewise orthogonal
complement of V ′ with respect to a G -invariant inner product on V provides a G -equivariant
section for the extension, so that V ∼= V ′ ⊕ V ′′. �
Proposition 2.21. Let G be a topological groupoid, let X be a numerably proper G -space, and
let (Ui)i∈I be a covering of X by G -invariant open subsets. Then there is a G -invariant partition
of unity (ϕi)i∈I subordinate to the covering.

Proof. The space X is paracompact by our standing assumption, so that there is a partition of
unity (ϕ′

i )i∈I subordinate to the covering. Let

ϕi(x) :=
∫

G�(x)

g · ϕ′
i

(
g−1x

)
dμx(g) for x ∈ X.

These functions are still positive and satisfy
∑

ϕi = 1 because the measures μx are probability
measures. Moreover, they are continuous and G -invariant. Since ϕi is supported in the G -orbit of
the support of ϕ′

i , we also get ϕi(x) = 0 for x /∈ Ui . �
Proposition 2.22. Let G be a topological groupoid, let X and Y be G -spaces, let V be a G -vector
bundle over Y , and let f0, f1 :X ⇒ Y be homotopic G -maps, that is, ft = f |X×{t} for t = 0,1
for a G -map f :X × [0,1] → Y . Then the G -vector bundles f ∗

0 (V ) and f ∗
1 (V ) are isomorphic.

Even more, there is a choice of isomorphism that is canonical up to G -equivariant homotopy.

Proof. We are going to prove the following claim. Let V be a G -vector bundle over X′ := X ×
[0,1] and let V0 denote its restriction to X × {0}; then the space of G -equivariant vector bundle



H. Emerson, R. Meyer / Advances in Mathematics 225 (2010) 2840–2882 2849
isomorphisms V ∼= V0 × [0,1] that extend the identity map V0 → V0 over X × {0} is non-empty
and connected. We get the assertion of the proposition when we apply this to the vector bundle
f ∗(V ) over X × [0,1] and restrict to 1 ∈ [0,1].

Let π1,π2 :X′ ×Z X′ ⇒ X′ be the coordinate projections. The G -vector bundles π∗
1 V

and π∗
2 V on X′ ×Z X′ become isomorphic on the diagonal. Corollary 2.18 shows that they

remain isomorphic on some G -invariant open neighbourhood U of the diagonal. This provides a
G -equivariant continuous family of isomorphisms γx1,x2 :Vx1 → Vx2 for (x1, x2) ∈ U .

For each x ∈ X there is �x > 0 such that ((x, s), (x, t)) ∈ U for all s, t ∈ [0,1] with |t − s| �
�x because [0,1] is compact. As in the proof of Proposition 2.17, we may construct a G -invariant
continuous function � :X → [0,1] such that the above holds with �x = �(x). We abbreviate
γs,t := γ(x,s),(x,t) for x ∈ X, s, t ∈ [0,1]. We get a well-defined isomorphism V(x,0) → V(x,t) for
any t ∈ [0,1] by composing γj�(x),(j+1)�(x) for 0 � j < �t/�(x)� and γ�t/�(x)��(x),t . This defines
a G -vector bundle isomorphism V0 × [0,1] ∼= V that extends the identity map over X × {0}.

Two such isomorphisms differ by composing with a G -vector bundle automorphism of V0 ×
[0,1]; this is a continuous path in the group of G -vector bundle automorphisms of V0. Any
such path is homotopic to a constant path by reparametrisation. Hence the set of vector bundle
isomorphisms under consideration is connected as asserted. �
2.1. From groupoids to proper groupoids

A good source of examples of proper groupoids are the transformation groupoids G := G �

E G, where E G is a universal numerably proper action of a group or groupoid G. Replacing G

by G loses no information as far as equivariant vector bundles are concerned. Now we explain
this observation in more detail.

Definition 2.23. A numerably proper G -space E G is universal if any numerably proper G -space
admits a G -map to it and if any two parallel G -maps to E G are (G -equivariantly) homotopic.

This weak universal property characterises E G uniquely up to G -homotopy equivalence. Fur-
thermore, E G = Z if and only if G is numerably proper.

For a locally compact groupoid G, there is a locally compact, universal proper G-space by a
construction due to Gennadi Kasparov and Georges Skandalis [14] (see [26, Proposition 6.13] for
the groupoid case); it makes no difference whether we use numerably proper actions or proper
actions here by Lemma 2.16.

Let E G be a universal proper G-space and let G be the crossed product groupoid G := G� E G.
Then a G -space is nothing but a G-space equipped with a G-equivariant map to E G. As a G-
space, E G carries a canonical map to the object space Z of G, which we use to pull back a
G-space X to a G -space X ×Z E G.

Lemma 2.24. E G ×Z X is canonically G-equivariantly homotopy equivalent to X if X is a
proper G-space.

Proof. By the Yoneda Lemma, it suffices to show that the canonical projection E G ×Z X → X

induces a bijection on the sets of G-homotopy classes of G-maps Y → � for any proper G-
space Y . But G-homotopy classes of G-maps Y → E G ×Z X are just pairs consisting of a
G-homotopy class of a G-map from Y to E G and one from Y to X. Since there is a unique
G-homotopy class of G -maps Y → E G, we get the desired bijection. �
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Corollary 2.25. If G is a locally compact groupoid, then the set of isomorphism classes of
G-vector bundles over a proper G-space X is in bijective correspondence with the set of iso-
morphism classes of G-vector bundles over X ×Z E G.

With this identification, trivial G � E G-vector bundles over X ×Z E G agree with the G-
equivariant vector bundles on X which are pulled back from E G under the classifying map
X → E G.

Furthermore, since the classifying map χ is unique up to G-homotopy, and pull-backs of G-
vector bundles along G-homotopic maps are isomorphic by Proposition 2.22, this more general
notion of trivial G-vector bundle does not depend on the choice of the auxiliary map χ ; since
any two universal proper G-spaces are homotopy equivalent, it does not depend on the choice
of E G either.

3. Equivariant embeddings of bundles of smooth manifolds

3.1. Full vector bundles and enough vector bundles

We define full G -vector bundles and what it means to have enough G -vector bundles over a
G -space. These definitions emerged out of the work of Wolfgang Lück and Bob Oliver [15].

Definition 3.1. (See [9].) Let G be a topological groupoid and let X be a numerably proper G -
space. There are enough G -vector bundles on X if for every x ∈ X and every finite-dimensional
representation of the stabiliser Gx

x , there is a G -vector bundle over X whose fibre at x contains
the given representation of Gx

x .
A G -vector bundle V on X is full if for every x ∈ X, the fibre of V at x contains all irreducible

representations of the stabiliser Gx
x .

If there is a full G -vector bundle over X, then X has enough G -vector bundles.

Example 3.2. We always have the constant G -vector bundles X × R
n � X for n ∈ N with the

trivial representation of G on Rn. Such a G -vector bundle is full if and only if G acts freely on X.
A groupoid G � E G for a groupoid G is free if and only if G is torsion-free in the sense that

the isotropy groups Gz
z for z ∈ Z contain no compact subgroups.

Example 3.3. Let G be a compact group. Any finite-dimensional representation of a closed
subgroup of a compact group can be embedded in the restriction of a finite-dimensional represen-
tation of the group itself [21, Theorem 3.1]. Hence any G -space has enough G -vector bundles:
trivial G -vector bundles suffice. By Lemma 3.8, a full G -vector bundle on a G -space can only
exist if the size of stabilisers is uniformly bounded. This necessary condition is not yet sufficient.

Example 3.4. We examine a class of compact Lie groupoids that may or may not have enough
equivariant vector bundles (see also [19]). Let K be the Lie group T

n = (R/Z)n for some n ∈ N.
A locally trivial group bundle G over the circle Z := R/Z with fibre K is determined uniquely
up to isomorphism by an isomorphism σ :K → K : we have G = K × [0,1]/∼ with (k,0) ∼
(σ (k),1) for all k ∈ K . The automorphism group of T

n is isomorphic to Gl(n,Z), so that we
now write GA for the group bundle associated to A ∈ Gl(n,Z).
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Before we study when such groupoids have enough equivariant vector bundles, we mention
another equivalent construction. Given A ∈ Gl(n,Z), we may also form a crossed product Lie
group K �A Z. The trivial action of K and the translation action of Z on R combine to an action
of K �A Z on R. This is a universal proper action of K �A Z. The resulting transformation
groupoid is Morita equivalent to the groupoid GA because Z acts freely and properly on R.

A GA-equivariant vector bundle over the circle is equivalent to a K-equivariant vector bundle
over [0,1] together with an appropriate identification of the fibres at 0 and 1. But K-equivariant
vector bundles over [0,1] are all trivial, so that we just get a finite-dimensional representation π

of K on some vector space V together with an invertible map τ :V → V that satisfies τπk =
πA(k)τ for all k ∈ T

n. Equivalently, τ is an invertible intertwiner π ∼= π ◦ A.
Taking multiplicities, we interpret the representation π as a finitely supported function

fπ : K̂ ∼= Z
n → Z. The automorphism σA :K → K dualises to a map σ̂A : K̂ → K̂ , which is

represented by the transpose of the matrix A. If π admits a map τ as above, then the asso-
ciated function fπ must be A-invariant as a function on Z

n. Conversely, if fπ is A-invariant,
then there is an isomorphism π ∼= π ◦ A; two such isomorphisms differ by a unitary intertwiner
of π , and these unitary intertwiners form a connected group. Since homotopic τ give isomor-
phic GA-vector bundles, we conclude that isomorphism classes of GA-vector bundles correspond
bijectively to A-invariant functions K̂ → Z with finite support. Such functions descend to the
space of A-orbits, and they vanish on infinite orbits. This yields the free Abelian group spanned
by the characteristic functions of finite A-orbits in K̂ .

It follows immediately from this discussion that GA has enough equivariant vector bundles if
and only if all A-orbits in K̂ are finite. More precisely, an irreducible representation χ of the
stabiliser K of a point in Z occurs in a GA-equivariant vector bundle over Z if and only if χ has
a finite A-orbit.

If n = 1, so that GA is a bundle of circles, then σ ∈ {Id,−1} = Gl(1,Z) and any A-orbit is
finite, so that we do not yet get counterexamples. If n = 2 and A ∈ Gl(2,Z), we must distin-
guish the elliptic, parabolic, and hyperbolic cases. If A is elliptic, that is, A has two different
eigenvalues of modulus 1, then all A-orbits on Z

2 are finite because A is unitary in some scalar
product; hence there are enough GA-vector bundles. The same happens for A = 1. Otherwise,

if A is parabolic and not 1, then A is conjugate to the matrix
(

1 1
0 1

)
. The resulting action on Z

2

fixes the points (m,0) and has infinite orbits otherwise. Finally, if A is hyperbolic, that is, A has
eigenvalues of modulus different from 1, then the only finite orbit is {0}.

As a consequence, GA for A ∈ Gl(2,Z) has enough equivariant vector bundles if and only if A

is elliptic or A = 1. If A is hyperbolic, then all GA-vector bundles over Z carry the trivial action
of K , and so there are not enough equivariant vector bundles. If A is parabolic, then there are
many, but not enough non-equivalent irreducible GA-vector bundles over Z.

We now return to the general theory of equivariant vector bundles.

Lemma 3.5. Let f :X → Y be a G -map. If Y has enough G -vector bundles, so has X. If V is a
full G -vector bundle over Y , then f ∗(V ) is a full G -vector bundle over X.

Proof. Pick x ∈ X and a representation � of its stabiliser Gx
x . There is a representation �̂ of

Gf (x)

f (x)
⊇ Gx

x whose restriction to Gx
x contains � (see [21, Theorem 3.1]). Hence the pull-back

of a full G -vector bundle over Y is a full G -vector bundle over X. The first assertion is proved
similarly. �
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As a result, if Z has enough G -vector bundles or a full G -vector bundle, then so have all
G -spaces. Furthermore, so have all G′-spaces for G′ ⊆ G .

Lemma 3.6. The property of having enough G -vector bundles or a full G -vector bundle is invari-
ant under Morita equivalence in the sense that if G1 and G2 are equivalent groupoids, then Z1

has enough G1-vector bundles (respectively a full G1-vector bundle) if and only if Z2 has enough
G -vector bundles (respectively a full G2-vector bundle).

For proper, locally compact groupoids, this is an immediate consequence of [9, Theorem
6.14], which asserts that Z has enough G -vector bundles if and only if σ -C∗(G) ⊗ K has an
approximate unit of projections. The latter condition is obviously Morita invariant. Similarly for
having a full G -vector bundle: this holds if and only if σ -C∗(G) ⊗ K contains a full projection.
We omit the argument for non-locally compact groupoids.

Remark 3.7. We usually replace a non-proper groupoid G by G � E G as explained in Section 2.1.
Since any numerably proper G -space X is G -equivariantly homotopy equivalent to E G × X

(Lemma 2.24) the category of G � E G -vector bundles over E G × X is equivalent to the cate-
gory of G -vector bundles over X by Proposition 2.22. It follows that there is a full G -vector
bundle over X if and only if there is a full G � E G -vector bundle over X × E G , and there are
enough G -vector bundles over X if and only if there are enough G � E G -vector bundles over
X × E G .

Some cases where the existence of enough G -vector bundles or of a full G -vector bundle are
known are listed in [9, §6.2]. These include the following cases.

• A constant vector bundle X × R
n is full if and only if G acts freely on X (Example 3.2).

• If G is a closed subgroup of an almost connected locally compact group, then there are
enough G-vector bundles on any proper G-space.
It suffices to prove this if G itself is almost connected because this property is inherited by
closed subgroups. We may restrict attention to E G = G/K for a maximal compact subgroup
K ⊆ G by Lemma 3.5. The latter is Morita equivalent to the compact group K , which has
enough equivariant vector bundles on a point (see Example 2.6 and Lemma 3.6).

• There is a full G � X-vector bundle on X if G is a discrete group and X is a finite-
dimensional proper G-space with uniformly bounded isotropy groups; this result is due to
Wolfgang Lück and Bob Oliver [15, Corollary 2.7].

• Let X be a smooth and connected G -manifold. Suppose that G acts faithfully on X in the
sense that if g ∈ Gz

z acts identically on the fibre Xz, then g = 1. We claim that there are
enough G -vector bundles over X. (Example 3.4 shows that this may fail if the action is not
faithful.)
Equip X with a G -invariant Riemannian metric. Recall that an isometry of a connected
Riemannian manifold that fixes a point x ∈ X and such that the induced map on TxX is
the identity must act as the identity map on X. Hence differentiation gives an embedding
Gx

x → O(n,R) for n = dimX. Since Gx
x is compact its image is a closed subgroup. The basic

representation theory of the orthogonal groups now implies that any irreducible representa-
tion of a subgroup of Gx

x occurs in TxX
⊗k ⊗T∗

xX
⊗l for some k, l ∈ N, and we are done since

these obviously extend to G -vector bundles over X.
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If the stabilisers are finite and of uniformly bounded size, then the sum of TxX
⊗k ⊗ T∗

xX
⊗l

for all k, l ∈ N with k, l � N for some N is a full G -vector bundle.
• There is a full G -vector bundle on any G -space if G is an orbifold groupoid (see [9, Exam-

ple 6.17]).

The following lemma shows that many groupoids cannot have a full equivariant vector bundle.

Lemma 3.8. If there is a full G -vector bundle on X of rank n ∈ N, then the stabilisers Gx
x for

x ∈ X are finite with at most (n − 1)2 + 1 elements.

Proof. Since G is proper, the stabiliser Gx
x is a compact group. Having only finitely many

irreducible representations, it must be finite. The sum of the dimensions of its irreducible repre-
sentations is at most n by assumption, and the sum of their squares is the size of Gx

x . Since there
is always the trivial representation of dimension 1, we get |Gx

x | − 1 � (n − 1)2. �
3.2. Subtrivial equivariant vector bundles

Recall that a G -vector bundle V over X is called subtrivial if it is a direct summand of a
trivial G -vector bundle. Swan’s Theorem asserts that all vector bundles over paracompact topo-
logical spaces of finite covering dimension are subtrivial. Equivariant versions of this theorem
need additional assumptions. Here we give several sufficient conditions for a G -vector bundle
to be subtrivial. The necessary and sufficient condition in Lemma 3.9 requires the existence of a
trivial vector bundle with special properties and, therefore, tends to be impractical. Theorem 3.10
requires the existence of a full equivariant vector bundle on Z; this covers, in particular, many
proper actions of discrete groups (Theorem 3.11). Finally, Theorem 3.12 requires enough equiv-
ariant vector bundles on Z and a cocompact action of G on X; this covers actions of compact
groups on compact spaces.

A similar pattern will emerge for equivariant embeddings: there are several similar sufficient
conditions for these to exist.

Lemma 3.9. Let X be a G -space with anchor map � :X → Z. Assume that the orbit space G\X
has finite covering dimension. A G -vector bundle V over X is subtrivial if and only if there is a
G -vector bundle E over Z such that, for each x ∈ X, there is a Gx

x -equivariant linear embedding
Vx → E�(x) = EX

x .

Proof. The necessity of the condition is obvious. Assume now that there is a G -vector bundle E

over Z with the required property. Hence there is an injective Gx
x -equivariant linear map φ :Vx →

EX
x for each x ∈ X. This extends to a continuous equivariant embedding over the orbit of x

(explicitly by v �→ gφ(g−1v) for v ∈ Vgx ) by Theorem 2.13.
This map then extends to a G -equivariant linear map ηx :V → EX by Proposition 2.17. Since

injectivity is an open condition, ηx is still injective in some G -invariant open neighbourhood Ux

of x.
Thus we get a covering of X by G -invariant open subsets on which we have G -equivariant

linear embeddings of V into EX . We may view this covering as an open covering of G\X. It
has a refinement with finite Lebesgue number because G\X has finite covering dimension. That
is, there are finitely many families U0, . . . , Un of disjoint, G -invariant open subsets of X with⋃n ⋃

Uj = X. Since nothing obstructs combining our embeddings on disjoint open subsets,
j=0



2854 H. Emerson, R. Meyer / Advances in Mathematics 225 (2010) 2840–2882
we get equivariant embeddings ηj :V |Uj
→ EX|Uj

on Uj := ⋃
Uj for j = 0, . . . , n. Proposi-

tion 2.21 provides a G -invariant partition of unity on X subordinate to the covering (Uj )j=0,...,n.
The resulting linear map

⊕
ϕj · ηj :V → (EX)n+1 is a G -equivariant embedding.

The G -vector bundle EX admits a G -invariant inner product by Proposition 2.19. This provides
an orthogonal direct sum decomposition V ⊕ V ⊥ ∼= EX . �
Theorem 3.10. Let X be a G -space. Assume that G\X has finite covering dimension and that
there is a full G -equivariant vector bundle on Z. Then any G -vector bundle over X is subtrivial.

Proof. Let n be the rank of a G -vector bundle V over X; let � :X → Z be the anchor map; and
let E be a full G -equivariant vector bundle over Z. Since E�(x) for x ∈ X contains all irreducible

representation of G�(x)

�(x) and hence of Gx
x , the fibres of the G -vector bundle �∗(E)n over X contain

all representations of Gx
x of rank at most n. Hence the assumptions of Lemma 3.9 are satisfied,

and we get the assertion. �
Theorem 3.11. Let G be a discrete group and let X be a finite-dimensional, proper G -CW-
complex with uniformly bounded isotropy groups. Let Y be a G -space over X. Then any G � X-
vector bundle over Y is subtrivial; that is, any G -vector bundle over Y is a direct summand in
the pull-back of a G -vector bundle over X.

Proof. This follows from Theorem 3.10 and [15, Corollary 2.7], which provides the required
full equivariant vector bundle on X. �
Theorem 3.12. If X is a cocompact G -space and there are enough G -vector bundles on Z, then
any G -vector bundle over X is subtrivial.

Proof. Let V be a G -vector bundle over X and let � :X → Z be the anchor map. Then
G�(x)

�(x) ⊇ Gx
x for all x ∈ X. By assumption, any representation of G�(x)

�(x) occurs in some G -vector

bundle over Z. Hence any representation of Gx
x occurs in EX

x for some G -vector bundle E over Z

by [21, Theorem 3.1]. Therefore, for each x ∈ X there is a G -vector bundle E(x) over Z and a
G -equivariant linear map f (x) :V → E(x)X that is injective over some G -invariant open neigh-
bourhood Ux of x, compare the proof of Lemma 3.9. Since G\X is compact, there is a finite set
F ⊆ X such that the open neighbourhoods Ux for x ∈ F cover X. Now use a partition of unity
as in the proof of Lemma 3.9 to embed V into

⊕
x∈F E(x)X . �

See Example 2.7 for an example of an equivariant vector bundle that is not subtrivial. More
examples where G is a bundle of compact groups are described in [19].

3.3. Smooth G -manifolds

Definition 3.13. Let � :X → Z be a space over Z. A chart on X is a homeomorphism ϕ from
an open subset U of X onto V × R

n for some open subset V ⊆ Z and some n ∈ N, such that
π1 ◦ϕ = �. Two charts are compatible if the coordinate change map is fibrewise smooth. A bundle
of smooth manifolds over Z is a space X over Z with a maximal compatible family of charts
whose domains cover X (see also [10, §7]; this does not quite imply that the bundle is locally
trivial unless its total space is compact).
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Definition 3.14. (See [10, §7].) A smooth G -manifold is a bundle of smooth manifolds over Z

on which G acts continuously by fibrewise smooth maps.

We also consider bundles of smooth manifolds with boundary.
A smooth G -manifold with boundary is defined like a smooth G -manifold, but also allow-

ing charts taking values in a half-space V × R
n−1 × [0,∞) for V ⊆ Z. If X is a smooth

G -manifold with boundary, then its boundary ∂X is a smooth G -manifold. Furthermore, there
is a collar neighbourhood around the boundary, that is, the embedding ∂X → X extends to a
G -equivariant open embedding ∂X ×[0,1) ↪→ X. Therefore, we may form a smooth G -manifold
without boundary

X◦ := X ∪∂X (−∞,0] × ∂X.

Moreover, the coordinate projection (−∞,0] × ∂X → (−∞,0] extends to a smooth G -invariant
function h :X◦ → R with h(x) > 0 for all x ∈ X \ ∂X.

We let TX denote the vertical tangent bundle of a bundle of smooth manifolds X (with bound-
ary); on the domain of a chart U ∼= V ×Rn−1 ×[0,∞) for V ⊆ Z, we have TX|U ∼= V ×Rn. The
projection TX � X, the addition TX×Z TX → TX, and the scalar multiplication R×TX → TX

in TX are fibrewise smooth.
If X is a smooth G -manifold, then G acts on TX by fibrewise smooth maps, that is, TX is a

smooth G -manifold. Furthermore, TX is a G -vector bundle over X.

Definition 3.15. A Riemannian metric on a bundle of smooth manifolds is a fibrewise smooth
inner product on the vertical tangent bundle.

The same argument as in the proof of Proposition 2.19 shows that a fibrewise smooth G -vector
bundle over a smooth G -manifold carries a fibrewise smooth inner product. Thus any smooth G -
manifold carries a Riemannian metric. Even more, this metric may be chosen complete ([10,
Lemma 7.7] shows how to achieve completeness).

Example 3.16. If G is a compact group, then a smooth G -manifold is a smooth manifold with a
smooth G -action. Here the tangent space and Riemannian metrics have their usual meanings.

Recall that we always replace a non-compact group G by the proper groupoid G � E G. If X

is a smooth manifold with a smooth G-action, then X × E G is a smooth G � E G-manifold. Its
tangent space is TX × E G, and a Riemannian metric is a family of Riemannian metrics on X

parametrised by points of E G. This exists even if X carries no G-invariant Riemannian metric.

Definition 3.17. A smooth embedding between two smooth G -manifolds X and Y is a G -
equivariant embedding f :X → Y (homeomorphism onto its image) which is, in addition, fi-
brewise smooth with injective fibrewise derivative Df : TX → f ∗(TY); the cokernel of Df is
called the normal bundle of f .

If X and Y have boundaries, then for an embedding f :X → Y we require also that f (∂X) =
f (X) ∩ ∂Y and that f (X) is transverse to ∂Y . The normal bundle Nf in the case of manifolds-
with-boundary is defined in the same way.
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Theorem 3.18. Let X and Y be smooth G -manifolds with boundary. Let f :X → Y be a smooth
G -equivariant embedding with normal bundle Nf . There is a smooth open embedding f̂ : Nf →
Y with f̂ ◦ ζNf

= f ; that is, f̂ is a fibrewise diffeomorphism onto its range.

Proof. We generalise the well-known argument in the non-equivariant case (see [25, pp. 9–60]).
For simplicity, we only prove the result where X and Y have no boundaries. Equip Y with a
G -invariant complete Riemannian metric. It generates a G -equivariant exponential map and a
G -equivariant section for the vector bundle extension TX � f ∗(TY) � Nf . We compose this
section with the exponential map to get a fibrewise smooth G -map h : Nf → Y .

On the zero section of Nf , the map h is injective and its fibrewise derivative is invertible. We
claim that there is an open neighbourhood U ′ of the zero section in Nf such that h is injective
and has invertible derivative on U ′ – we briefly say that h is invertible on U ′. To begin with, the
subset where Dh is invertible is open and hence an open neighbourhood U ′′ of the zero section
in Nf .

The restriction of h to U ′′ is a fibrewise local diffeomorphism. In local charts, we may esti-
mate h(x′, ν′) − h(x′′, ν′′) from below using (Dh)−1. Therefore, each (x, ν) ∈ Nf has an open
neighbourhood U(x, ν) ⊆ U ′′ on which h is injective.

Let x ∈ X. Then there are �1(x) > 0 and an open neighbourhood U1(x) of x in X such
that all (x1, ν1) with x1 ∈ U1(x) and ‖ν1‖ < �1(x) belong to U(ζNf

x). Since f :X → Y is an
embedding, there is an open subset V (x) of Y with f −1(V (x)) = U1(x). There are a smaller
open neighbourhood U2(x) of x in X and �2(x) ∈ (0, �1(x)) with y ∈ V (x) whenever there is
x2 ∈ U2(x) such that d(f (x2), y) < �2(x); here d denotes the fibrewise distance with respect to
the Riemannian metric on Y .

Let U3(x) ⊆ Nf be the set of all (x3, ν3) ∈ Nf with x3 ∈ U2(x) and ‖ν3‖ < �2/2. We claim
that h is invertible on U ′ := ⋃

x U3(x). The invertibility of Dh follows because U ′ ⊆ U ′′. As-
sume that (x, ν), (x′, ν′) ∈ U ′ satisfy h(x, ν) = h(x′, ν′). Choose x̄, x̄′ ∈ X with (x, ν) ∈ U3(x̄)

and (x′, ν′) ∈ U3(x̄
′). We may exchange (x, ν) and (x′, ν′) if necessary, so that �2(x̄) � �2(x̄

′).
The triangle inequality and the definition of U3(x̄) yield

d
(
f (x), f

(
x′)) � d

(
f (x),h(x, ν)

) + d
(
h
(
x′, ν′), f (

x′)) < �2(x̄).

Hence f (x′) ∈ V (x̄), so that x′ ∈ U1(x̄). Since ‖ν‖,‖ν′‖ < �1(x̄) as well, both (x, ν) and (x′, ν′)
belong to U(ζNf

x̄). Hence (x, ν) = (x′, ν′) as desired.
We have constructed a neighbourhood of the zero section in Nf on which h is invertible. Next

we claim that there is a G -invariant smooth function � :X → (0,∞) such that U ′ contains the
open neighbourhood

U� := {
(x, ν) ∈ Nf

∣∣ ‖ν‖ < �(x)
}
.

Then f̂ (x, ν) := h(x, ν�(x)/(1 +‖ν‖)) has the required properties. We first construct a possibly
non-equivariant function � with U� ⊆ U ′, using that X is paracompact by our standing assump-
tion on all topological spaces. Then we make � G -equivariant by averaging as in the proof of
Proposition 2.17. Since the average is bounded above by the maximum, the averaged function
still satisfies U� ⊆ U ′ as needed. �
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3.4. Embedding theorems

Recall that a G -space for a compact group G has finite orbit type if only finitely many
conjugacy classes of subgroups of G appear as stabilisers. This condition is closely related to
equivariant embeddability:

Theorem 3.19. (See George Mostow [18], Richard Palais [20].) Let G be a compact group. A G -
space admits a G -equivariant embedding into a linear representation of G if and only if it has
finite orbit type and finite covering dimension and is locally compact and second countable.

Example 3.20. Let G = T and consider the disjoint union

X :=
∞⊔

n=1

T/
{
exp(2π ik/n)

∣∣ k = 0, . . . , n − 1
}
,

on which T acts by multiplication in each factor. All the finite cyclic subgroups appear as sta-
bilisers in X. But a linear representation of T can only contain finitely many orbit types by [21,
Theorem 4.4.1]. Hence there is no injective T-equivariant map from X to any linear representa-
tion of T.

Now let G be a numerably proper groupoid. Let X be a smooth G -manifold with anchor map
� :X → Z. Subject to some conditions, we will construct a smooth embedding of X into the
total space of a G -vector bundle over Z. This is the natural way to extend Mostow’s Embedding
Theorem to proper groupoids. We may also ask for embeddings into Rn with some linear rep-
resentation as in [13]. But such embeddings need not exist because a general locally compact
group need not have any non-trivial finite-dimensional representations. And even if they exist,
linear actions on R

n are never proper, so that we leave the world of proper actions with such
embedding theorems.

Lemma 3.21. Let X be a smooth G -manifold with anchor map � :X → Z. Assume that G\X has
finite covering dimension.

Then X admits a fibrewise smooth equivariant embedding into the total space of an equivari-
ant vector bundle over Z if and only if there is a G -vector bundle E over Z such that, for any
x ∈ X, the fibre E�(x) contains

• a vector whose stabiliser in G�(x)

�(x) is equal to Gx
x ;

• the representation of Gx
x on the vertical tangent bundle TxX.

Proof. We must construct a G -equivariant smooth embedding f :X → E′ for some G -vector
bundle E′ over Z; then the Tubular Neighbourhood Theorem 3.18 provides an open smooth
embedding f̂ : Nf ↪→ E′.

If there is a G -equivariant smooth embedding X → E, then E has the two properties required
above. Conversely, we will construct a G -equivariant smooth embedding X → E2n ⊕ R

n for
some n ∈ N assuming the existence of a vector bundle E as above.

Let E be a G -vector bundle over Z. A G -equivariant smooth map f̂ :X → E is equivalent to
a G -equivariant smooth section of the vector bundle EX .
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First we construct such a section locally near a single orbit. Let x ∈ X and let z := �(x) ∈ Z.
Then Xz := �−1(z) is a smooth manifold, on which the stabiliser Gz

z of z acts by diffeomor-
phisms. The group Gz

z is compact because G is proper, and Gx
x is a closed subgroup of Gz

z .
Our assumptions on G and X imply that there is a G -invariant Riemannian metric on the

fibres of X. The action of Gz
z on Xz is isometric for this fibrewise Riemannian metric, so

that it factors through a Lie group. Therefore, the orbit Gz
z · x is an embedded submanifold

of Xz; let N be its normal bundle and let Nx be the fibre of this normal bundle at x. Then
N = Gz

z ×Gx
x

Nx . The exponential map provides a Gz
z -equivariant diffeomorphism between N and

an open neighbourhood of the orbit Gz
zx in Xz.

A Gz
z -equivariant section of EN is equivalent to a Gx

x -equivariant section of ENx because
N = Gz

z ×Gx
x

Nx . This is equivalent to a Gx
x -equivariant map Nx → Ez because we work in a single

fibre, where E is constant. By assumption, there is a vector e ∈ Ez whose stabiliser is exactly Gx
x ,

and there is a linear Gx
x -invariant embedding l : Nx ⊆ TxX → Ez. Then the Gx

x -equivariant map
Nx → Ez ⊕ Ez that maps ν �→ (e, l(ν)) leads to a Gz

z -equivariant map f̂x : N → Ez ⊕ Ez that
is injective and has injective derivative on the Gz

z -orbit of x. We check injectivity: suppose that
ν, ν′ ∈ N are points with the same image in Ez ⊕ Ez. They need not be in the same fibre of N,
of course, so let ν be in the fibre over gx and ν′ be in the fibre over g′x. If they have the same
image, then ge = g′e and hence gx = g′x because by assumption the stabiliser of e is exactly Gx

x .
Thus ν and ν′ are in the same fibre of N. But our map is clearly an embedding on each fibre of N
because it is conjugate to the map on Nx we started with. Hence ν = ν′.

It follows that there is a Gz
z -invariant open neighbourhood Wx of x in Xz on which f̂x is a

smooth embedding.
So far, we have worked on a single fibre Xz. Next we use a smooth version of Proposition 2.17

to extend our map to a G -equivariant, fibrewise smooth, continuous map f̂x :X → E ⊕ E that is
a smooth embedding on the orbit of x. We claim that it remains a smooth embedding on some
G -invariant neighbourhood of x. The proof of this observation is similar to the corresponding
argument in the proof of the Tubular Neighbourhood Theorem 3.18. Hence we omit further
details.

We have constructed a G -equivariant smooth embedding f̂x :Ux → E ⊕ E on a G -invariant
neighbourhood Ux of x for each x ∈ X. We may add the constant map 1 with values in the
constant 1-dimensional bundle and rescale to get a smooth embedding f̂x from Ux into the unit
sphere bundle of E′ := E ⊕ E ⊕ R. Hence we assume in the following that f̂j is a smooth
embedding into the unit sphere bundle of E′. Now we patch these local solutions together to a
global one.

We view the G -invariant neighbourhoods Ux as an open covering of the orbit space G\X.
Since the latter is finite-dimensional, we may refine this covering to one with finite Lebesgue
number. Since our construction uses the same target vector bundle E′ for each x ∈ X, we may
combine our local solutions on disjoint open subsets without any problems. Thus we may assume
that we have a finite G -invariant covering U0, . . . ,Un of X and embeddings f̂j :Uj → E′. Propo-
sition 2.21 provides a G -invariant partition of unity ϕ0, . . . , ϕn on X subordinate to this covering.
We can arrange for the functions ϕn to be fibrewise smooth. We let f̂ := ⊕

ϕj f̂j :X → (E′)n+1.
This map is injective and a fibrewise immersion because all the maps f̂j are embeddings into the
unit sphere bundles of E′. �
Theorem 3.22. Let X be a smooth G -manifold. Assume that G\X has finite covering dimension,
and that there is a full G -vector bundle on Z. Then X admits a fibrewise smooth G -equivariant
embedding into the total space of a G -vector bundle over Z.
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Proof. Let E be a full G -vector bundle over Z and let n be the maximum of the ranks of TX

and E. As in the proof of Theorem 3.10, the fibres of the vector bundle En contain the induced
representations of Gx

x on TxX for all x ∈ X. Furthermore, any closed subgroup of Gx
x is the

stabiliser of a vector in the regular representation of Gx
x and hence of a vector in En

�(x); here
we use Lemma 3.8. Hence En satisfies the two assumptions of Lemma 3.21, which yields the
desired embedding. �
Theorem 3.23. Let G be a numerably proper groupoid with enough G -vector bundles over its
object space Z. Then any cocompact smooth G -manifold X admits a fibrewise smooth embedding
into the total space of a G -vector bundle over Z.

Proof. Argue as in the proof of Lemma 3.21, but using different vector bundles in the local
construction. The compactness of G\X ensures that this creates no problems, compare the proof
of Theorem 3.12. �
Example 3.24. We continue from Example 3.4 and consider the groupoid GA with A :=

(
2 1
1 1

)
.

In this case, GA acts trivially on any equivariant vector bundle over Z and hence on any space
that embeds equivariantly into one. But there are non-trivial smooth actions of GA on bundles
of smooth manifolds over Z. An obvious example is GA itself with the smooth action of GA by
translations.

3.5. The Factorisation Theorem

The factorisations in the following theorem motivate our definition of a normally non-singular
map.

Theorem 3.25. Let G be a (proper) groupoid, let X and Y be smooth G -manifolds, and let
f :X → Y be a smooth G -equivariant map. Suppose that

(a) Z has enough G -vector bundles and G\X is compact, or
(b) Z has a full G -vector bundle and G\X has finite covering dimension.

Then there are

• a smooth G -vector bundle V over X,
• a smooth G -vector bundle E over Z,
• a smooth, G -equivariant, open embedding f̂ : |V | → |EY |,

such that

f = πEY ◦ f̂ ◦ ζV . (3.26)

Furthermore, any G -vector bundle over X is subtrivial.

We call a factorisation of the form (3.26) a normal factorisation of f .
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Proof. Let � :X → |E| be a fibrewise smooth embedding into the total space of a G -vector
bundle over Z. This exists by Theorem 3.23 in the first case and by Theorem 3.22 in the second
case. Then the map

�′ :X → Y ×Z |E| = ∣∣EY
∣∣, �′(x) := (

f (x), �(x)
)

is a smooth equivariant embedding. The Tubular Neighbourhood Theorem 3.18 applied to �′
supplies the required factorisation of f . The subtriviality of G -vector bundles over X follows
from Theorems 3.12 and 3.10. �

We will discuss the amount of uniqueness of such factorisations in Theorem 4.36.

4. Normally non-singular maps

In this section, we study factorisations of maps as in Theorem 3.25. Recall that G is a numer-
ably proper groupoid with object space Z. The spaces X and Y are G -spaces.

Before we define normally non-singular maps, we mention a generalisation that we will use
later, which depends on an additional auxiliary structure. Let X �→ VectG (X) be a functor that
maps each G -space to a monoid VectG (X), which comes together with an additive functor to the
monoid of G -vector bundles over X. We think of VectG (X) as a monoid of G -vector bundles with
some additional structure, and of the functor above as a forgetful functor.

In this section, we let VectG (X) be the monoid of subtrivial G -vector bundles over X. The
subtriviality assumption will become important in [11], and it is mostly harmless because for
many G -spaces all G -vector bundles are subtrivial (see Section 3.2). When we study F-oriented
normally non-singular maps for an equivariant cohomology theory F, the only change will be
that VectG (X) is replaced by the monoid of subtrivial F-oriented G -vector bundles over X. This
example explains why we want to choose other monoids VectG (X) later. The whole theory carries
over to the more general case of an arbitrary monoid VectG (X) with a forgetful map to the monoid
of G -vector bundles.

We let [Vect0G (X)] be the Grothendieck group of VectG (X).

Definition 4.1. A normally non-singular G -map from X to Y consists of the following data:

• V , a subtrivial G -vector bundle over X, that is, V ∈ VectG (X);
• E, a G -vector bundle over Z, that is, E ∈ VectG (Z);
• f̂ : |V | ↪→ |EY |, an open embedding (that is, f̂ is a G -equivariant map from |V | onto an open

subset of |EY | = |E| ×Z Y that is a homeomorphism with respect to the subspace topology
from |EY |).

In addition, we assume that the dimensions of the fibres of the G -vector bundles V and E are
bounded above by some n ∈ N.

The trace of a normally non-singular map is the G -map

f := πEY ◦ f̂ ◦ ζV :X � |V | ↪→ ∣∣EY
∣∣ � Y.

Its degree is dimV − dimE if this locally constant function on X is constant (otherwise the
degree is not defined).
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The normally non-singular G -map (V ,E, f̂ ) is called a normally non-singular embedding if
E = 0, so that πEY = IdY and f = f̂ ◦ζV ; it is called a special normally non-singular submersion
if V = 0, so that ζV = IdX and f = πEY ◦ f̂ .

We need the vector bundle E over the target space to be trivial, even pulled back from Z, in
order for the composition of normally non-singular maps to work. This requires extending the
vector bundle over the target space from an open subset. This is easy for trivial bundles, and
impossible in general. The assumption that the vector bundle V be subtrivial may be dropped for
the purposes of this article. It becomes important in [11] in order to bring correspondences into
a standard form.

We abbreviate “normally non-singular G -map” to “normally non-singular map” if the
groupoid G is clear.

Definition 4.2. The stable normal bundle of a normally non-singular map (V ,E, f̂ ) is the class
[V ] − [EX] in [Vect0G (X)].

Notice that the degree of a normally non-singular map depends only on its stable normal
bundle.

We do not require any smooth structure on the spaces X and Y and, as a result, cannot ask
for f̂ to be a diffeomorphism. We pay for this lack of smoothness by making V and E part
of our data. The following simple examples clarify the relationship between smooth maps and
normally non-singular maps in the non-equivariant case. We will examine the equivariant case
in Section 4.5. Here we only remark that if G is a compact group, then a G -manifold X admits
a smooth normally non-singular map to a point if and only if it has finite orbit type, due to the
Mostow Embedding Theorem 3.19.

4.1. Examples of normally non-singular maps

Example 4.3. An open G -equivariant embedding X → Y is the trace of an obvious G -equivariant
normally non-singular map: both vector bundles V and E are the zero bundles.

Example 4.4. Let Y be a smooth manifold and let X ⊆ Y be a smooth submanifold. Let V

be its normal bundle. The Tubular Neighbourhood Theorem 3.18 provides an open embedding
f̂ : |V | ↪→ Y extending the embedding of X on the zero section. The triple (V ,0, f̂ ) is a normally
non-singular embedding from X to Y , whose trace is the inclusion map X → Y . Thus normally
non-singular embeddings generalise closed submanifolds.

Example 4.5. The constant map X → � is the trace of a special normally non-singular sub-
mersion if and only if X is homeomorphic to an open subset of R

n. Thus our special normally
non-singular submersions are very special indeed.

Example 4.6. Let f :X → Y be a smooth map between two smooth manifolds. Recall that any
smooth manifold is diffeomorphic to a smooth submanifold of R

n for sufficiently high n. If
h :X → R

n is such an embedding, then (f,h) :X → Y × R
n is an embedding as well. As in

Example 4.4, the Tubular Neighbourhood Theorem provides a diffeomorphism f̂ from |V | onto
an open subset of Y ×R

n, where V is the normal bundle of (f,h). Thus (V ,R
n, f̂ ) is a normally
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non-singular map from X to Y with trace f . Its stable normal bundle is f ∗[TY ] − [TX] because
TX ⊕ V ∼= f ∗(TY) ⊕ R

n.

Example 4.7. The map � → {0} ∈ [0,∞) from the one-point space to [0,∞) is not the trace of
a normally non-singular map from � to [0,∞). For this would entail an open embedding R

k ⊆−→
[0,∞) × R

l into a closed Euclidean half-space mapping 0 ∈ R
k to a point on the boundary. The

range of such an embedding would be an open neighbourhood of the origin in the closed half-
space, which is homeomorphic to R

k , and this is impossible by the Theorem of Invariance of
Domain.

Example 4.8. It is observed in [3] that normally non-singular maps between stratified singular
algebraic varieties are normally non-singular in the sense of Definition 4.1.

Example 4.9. We claim that a normally non-singular map X → � determines a smooth structure
on X × R

k for some k ∈ N, and vice versa. In the equivariant case, a normally non-singular
map from X to Z should therefore be viewed as a stable smooth structure on the fibres of X

compatible with the action of G .
Let (V ,E, f̂ ) be a normally non-singular map from a space X to the one-point space. That

is, V is a subtrivial vector bundle over X, E = R
n for some n ∈ N, and f̂ is an open embedding

of |V | into R
n. Let V ⊥ be another vector bundle over X such that V ⊕ V ⊥ ∼= X × R

k for some
k ∈ N. The total space |V | is an open subset of R

k and |V ⊕ V ⊥| is the total space of a vector
bundle over |V |. The total space of any vector bundle over a smooth manifold admits a canonical
smooth structure, by an easy argument with the holomorphically closed subalgebra C∞(X) in
C(X). Hence, the space X × R

k inherits a canonical smooth structure. Thus a normally non-
singular map from X to � determines a smooth structure on X × R

k for some k ∈ N.
Conversely, if X × R

k has a smooth structure, then there is a smooth embedding X × R
k →

R
n for some n ∈ N. Since X × R

k → X is a homotopy equivalence, the normal bundle to this
embedding is isomorphic to the pull-back pr∗X(V ) of a vector bundle V over X. Hence there is an
open embedding f̂ : |pr∗X(V )| ↪→ R

n, and since |pr∗X(V )| is the total space of the vector bundle
V ⊕ R

k , we can regard f̂ as an open embedding |V ⊕ R
k| ↪→ R

n, so that (V ⊕ R
k,R

n, f̂ ) is
a normally non-singular map. This suggests to view the set of equivalence classes of normally
non-singular maps from X to � as a structure set of stable smooth structures on X.

Example 4.10. Let X be a smooth manifold and let Y := X × X. The diagonal map X → X ×
X is a smooth embedding. Hence it is the trace of a normally non-singular embedding Φ =
(V ,0, f̂ ) as in Example 4.4. Here V is the vertical tangent bundle TX of X. Since different
smooth structures on X may yield non-isomorphic tangent bundles (see [17]), the stable normal
bundle [TX] ∈ K0(X) of Φ tells us something about the smooth structure on X and cannot be
recovered from the trace of Φ .

4.2. Equivalence of normally non-singular maps

A smooth map between two smooth manifolds lifts to a normally non-singular map in many
different ways (see Example 4.6), but we expect all these liftings to be equivalent in a suitable
sense. Here we develop a suitable notion of equivalence.
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As above, let G be a numerably proper topological groupoid with object space Z and let X

and Y be G -spaces. Let

Φ0 := (V0,E0, f̂0) and Φ1 := (V1,E1, f̂1)

be normally non-singular G -maps from X to Y (see Definition 4.1).
First we define isomorphism and stable isomorphism of normally non-singular maps.

Definition 4.11. The normally non-singular G -maps Φ0 and Φ1 are called isomorphic if there
are G -vector bundle isomorphisms V0 ∼= V1 and E0 ∼= E1 that intertwine the open embeddings
f̂0 and f̂1.

Definition 4.12. Let E+ be a G -vector bundle over Z. The lifting of a normally non-singular map
Φ := (V ,E, f̂ ) along E+ is the normally non-singular G -map

Φ ⊕ E+ := (
V ⊕ (

E+)X
,E ⊕ E+, f̂ ×Z Id|E+|

)
.

Two normally non-singular maps Φ0 and Φ1 are called stably isomorphic if there are G -vector
bundles E+

0 and E+
1 over Z such that Φ0 ⊕ E+

0 and Φ1 ⊕ E+
1 are isomorphic.

The total spaces |V ⊕ (E+)X| and |E ⊕ E+| are G -equivariantly homeomorphic to |V | ×Z

|E+| and |E|×Z |E+|, respectively. Hence the open embedding f̂ ×Z Id|E+| has the right source
and target spaces. Lifting Φ first along E+

1 and then along E+
2 is equivalent to lifting Φ along

E+
1 ⊕ E+

2 , that is,

(
Φ ⊕ E+

1

) ⊕ E+
2

∼= Φ ⊕ (
E+

1 ⊕ E+
2

)
.

Hence stable isomorphism is an equivalence relation for normally non-singular maps. It is clear
that stably isomorphic normally non-singular maps have the same trace, the same stable normal
bundle, and the same degree.

Definition 4.13. An isotopy (or homotopy) between the normally non-singular G -maps Φ0
and Φ1 is a normally non-singular G ×[0,1]-map from X×[0,1] to Y ×[0,1] whose restrictions
to X × {t} for t = 0,1 are isomorphic to Φt .

Two normally non-singular maps are called isotopic if there is an isotopy between them.

Proposition 2.22 shows that an isotopy is isomorphic to a triple (V × [0,1],E, f̂ ) where V

and E are G -vector bundles over X and Z, respectively, and f̂ is an open embedding of |V | ×
[0,1] into |EY | × [0,1]. As a result, isotopic normally non-singular maps involve isomorphic
vector bundles V and E and thus have the same stable normal bundle and degree. Moreover,
their traces are homotopic.

Definition 4.14. Two normally non-singular maps from X to Y are called equivalent if they
have isotopic liftings, that is, their liftings along two suitable G -vector bundles over Z become
isotopic.
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Lemma 4.15. Both isotopy and equivalence of normally non-singular maps are equivalence
relations.

Proof. Isotopy is reflexive because we have constant isotopies, symmetric because we may re-
vert isotopies, and transitive because isotopies Φ0 ∼ Φ1 ∼ Φ2 assemble to an isotopy Φ0 ∼ Φ2.
Equivalence of normally non-singular maps is clearly reflexive and symmetric as well. If Φ1
and Φ2 are isotopic normally non-singular maps and E is a G -vector bundle over Z, then the
liftings Φ1 ⊕ E and Φ2 ⊕ E are isotopic as well via the lifting of the isotopy along E; and sta-
ble isomorphism of correspondences is an equivalence relation. This implies that equivalence of
correspondences is transitive. �
Example 4.16. Let (V ,E1, f̂1) be a normally non-singular map and let E2 be another G -
vector bundle over Z with EY

1
∼= EY

2 . Use this isomorphism to view f̂1 as an open embedding
f̂2 : |V | ↪→ |EY

2 |. We claim that the normally non-singular maps (V ,Ej , f̂j ) for j = 1,2 are
equivalent. Hence only EY and not E is relevant for the equivalence class of a normally non-
singular map.

To establish the claim, lift (V ,E1, f̂1) along E2 and (V ,E2, f̂2) along E1 to get isomorphic
G -vector bundles on Z. This leads to the normally non-singular maps

(
V ⊕ EX

2 ,E1 ⊕ E2, f̂
)
,

(
V ⊕ EX

2 ,E1 ⊕ E2, σ ◦ f̂
)
,

where σ is the coordinate flip on EY
1 ⊕ EY

2
∼= (EY

2 )2. We may ensure that σ is homotopic to
the identity map along G -vector bundle automorphisms by first lifting (V ,Ej , f̂j ) along Ej to
double both E1 and E2.

Example 4.17. Let X and Y be smooth manifolds. A smooth normally non-singular map from X

to Y is a triple (V ,R
n, f̂ ) as above (vector bundles over the one-point space are identified with R

n

here), where V carries a smooth structure and f̂ is a diffeomorphism from |V | onto an open
subset of Y × R

n. Smooth isotopies of smooth normally non-singular maps are defined similarly.
Liftings of smooth normally non-singular maps are again smooth normally non-singular maps.
Lifting and smooth isotopy generate an equivalence relation of smooth equivalence for smooth
normally non-singular maps.

Example 4.6 shows that any smooth map X → Y is the trace of a smooth normally non-
singular map. Furthermore, two smooth normally non-singular maps are smoothly equivalent if
and only if their traces are smoothly homotopic. We omit the argument because we will prove
more general statements in the equivariant case in Section 4.5. In particular, for a suitable class of
groupoids G and smooth G -manifolds X and Y , we will show that every smooth map f :X → Y

is normally non-singular in an essentially unique way.

Example 4.18. Let X be a smooth manifold and let � be the one-point space. According to the
last example, all smooth normally non-singular maps from X to � are equivalent because there is
a unique map X → �. The stable normal bundle of such a smooth normally non-singular map is
−[TX] ∈ KO0(X). If another smooth structure on X yields a different tangent bundle in KO0(X),
then the resulting normally non-singular map is not equivalent to a smooth normally non-singular
map for the old smooth structure.
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4.3. Composition of normally non-singular maps

Let Φj = (Vj ,Ej , f̂j ) for j = 1,2 be normally non-singular maps from X to Y and from Y

to U , respectively; let f1 :X → Y and f2 :Y → U be their traces. We are going to define a
normally non-singular map Φ2 ◦ Φ1 = (V ,E, f̂ ) from X to U whose trace is f = f2 ◦ f1. Let

V := V1 ⊕ f ∗
1 (V2) ∈ VectG (X), E := E1 ⊕ E2 ∈ VectG (X).

The open embedding f̂ : |V | ↪→ |EU | is the composition of the open embedding

Id|E1| ×Z f̂2 :
∣∣EY

1 ⊕ V2
∣∣ ∼= |E1| ×Z |V2| ↪→ |E1| ×Z

∣∣EU
2

∣∣ ∼= |E1| ×Z |E2| ×Z U ∼= ∣∣EU
∣∣

with an open embedding |V | ↪→ |EY
1 ⊕V2| that we get by lifting f̂1 along the non-trivial G -vector

bundle V2 over Y . This lifting operation is slightly more subtle than for trivial G -vector bundles
and is only defined up to isotopy.

The open embedding f̂1 : |V1| → |EY
1 | is a map over Y when we view |V1| as a space over Y

via πEY
1

◦ f̂1 : |V1| ↪→ |EY
1 | � Y . This allows us to form a G -map f̂1 ×Y Id|V2|, which is again an

open embedding and has the right target space |EY
1 |×Y |V2| ∼= |EY

1 ⊕V2|. Its domain |V1|×Y |V2|
is the total space of the pull-back of the G -vector bundle V2 to |V1| along πEY

1
◦ f̂1. Since the

zero section ζV1 :X � |V1| and bundle projection πV1 : |V1| � X are inverse to each other up to
a natural G -homotopy, πEY

1
◦ f̂1 is G -equivariantly homotopic to πEY

1
◦ f̂1 ◦ ζV1 ◦πV1 = f1 ◦πV1 .

The homotopy invariance of pull-backs of vector bundles (Proposition 2.22) provides a G -vector
bundle isomorphism between the corresponding two pull-backs of V2, which is unique up to
isotopy. Since the total space of (f1 ◦πV1)

∗(V2) is |V |, we get a homeomorphism |V | → |V1|×Y

|V2| that, when composed with the open embeddings f̂1 ×Y Id|V2| and Id|E1| ×Z f̂2, provides the
required open embedding

f̂ : |V |
∼= |V1| ×Y |V2|

f̂1×Y Id|V2| ∣∣EY
1 ⊕ V2

∣∣ Id|E1|×Zf̂2 ∣∣EU
∣∣.

Our construction shows that f̂ is unique up to isotopy.

Theorem 4.19. Equivalence classes of normally non-singular maps with the above composition
form a category. The trace and the degree of a normally non-singular map define functors to the
homotopy category of G -maps and to the group Z.

Proof. The same recipe as above defines the composition of isotopies. Hence products of iso-
topic normally non-singular maps remain isotopic. Moreover, if we lift one of the factors along a
G -vector bundle over Z, the product will only change by a lifting along the same G -vector bundle
over Z. Hence products of equivalent normally non-singular maps remain equivalent. Thus the
composition of equivalence classes of normally non-singular maps is well-defined.

The stable normal bundle is additive for composition:

νΦ ◦Φ := [V ] − [
EX

] = [V1] − [
EX

] + f ∗([V2] − [
EY

]) =: νΦ + f ∗(νΦ ). (4.20)
2 1 1 1 2 1 1 1
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Hence the degree is additive as well. It is also clear that the trace of the product is the product of
the traces.

The identity on X is the normally non-singular map (0,0, IdX) with |V | = |E| = X. It behaves
like an identity by definition of the composition.

It is routine to check that the composition of normally non-singular maps is associative. The
products (Φ1 ◦ Φ2) ◦ Φ3 and Φ1 ◦ (Φ2 ◦ Φ3) both involve G -vector bundles isomorphic to V1 ⊕
f ∗

1 (V2) ⊕ f ∗
1 (f ∗

2 (V3)) and E1 ⊕ E2 ⊕ E3 – here we use f ∗
1 (f ∗

2 (V3)) ∼= (f2f1)
∗(V3); the open

embeddings in both products are composites of liftings of f̂1, f̂2, and f̂3 along the same G -vector
bundles V2 ⊕ f ∗

3 (V3), E1 ⊕ V3, E1 ⊕ E2; here we use the following observation about lifting in
stages:

Let V ′ and V ′′ be G -vector bundles over a G -space Y and let (V ,E, f̂ ) be a normally non-
singular map from X to Y . First lift f̂ along V ′ to an open embedding∣∣V ⊕ f ∗(V ′)∣∣ ↪→ ∣∣EY ⊕ V ′∣∣
as above, then lift the latter along V ′′ to an open embedding∣∣V ⊕ f ∗(V ′) ⊕ f ∗(V ′′)∣∣ ↪→ ∣∣EY ⊕ V ′ ⊕ V ′′∣∣;
the result is isotopic to the lifting of f̂ along V ′ ⊕ V ′′.

We leave it to the reader to check this observation and to fill in the remaining details of the
proof of associativity. �
Definition 4.21. Let Nor(G) denote the category whose objects are G -spaces and whose mor-
phisms are normally non-singular G -maps with the above composition.

Remark 4.22. Normally non-singular embeddings and special normally non-singular submer-
sions form subcategories, that is, products of normally non-singular embeddings are normally
non-singular embeddings and products of special normally non-singular submersions are special
normally non-singular submersions.

Remark 4.23. An open embedding ϕ :X ↪→ Y yields a normally non-singular map ϕ! :=
(0,0, ϕ) that is both a normally non-singular embedding and a special normally non-singular
submersion. This construction is a functor, that is, IdX! is the identity normally non-singular
map on X and ϕ1! ◦ ϕ2! = (ϕ1 ◦ ϕ2)! for open embeddings ϕ2 :X ↪→ Y and ϕ1 :Y ↪→ U .

Example 4.24. Let V be a G -vector bundle over X. The zero section ζV :X � |V | is the trace of
a normally non-singular embedding (V ,0, IdV ) if V is subtrivial. We still denote this normally
non-singular embedding by ζV .

The projection πV : |V | � X is the trace of a special normally non-singular submersion if V is
trivial. If V is only subtrivial, then there is a canonical normally non-singular map with trace πV .
Let V ⊕ V ⊥ ∼= EX for a G -vector bundle E over Z. Then the relevant normally non-singular
map is (π∗

V (V ⊥), ι,E), where π∗
V (V ⊥) denotes the pull-back of V ⊥ to V , which has total space

|V ⊕ V ⊥|, and ι : |V ⊕ V ⊥| ∼=−→ |EX| is the isomorphism. We also denote this normally non-
singular map by πV .

The equivalence classes of these normally non-singular maps ζV :X → |V | and πV : |V | → X

are inverse to each other: both composites are liftings of the identity map along E. The details
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are a good exercise to get familiar with composing normally non-singular maps. The equivalence
class of πV cannot depend on V ⊥ and E because inverses are unique. Checking this directly is
another good exercise.

4.4. Exterior products and functoriality

Now we study exterior products of normally non-singular maps and show that Nor(G � X) is
a contravariant homotopy functor in X.

The exterior product of two G -spaces is their fibre product over the object space Z, equipped
with the induced action of G . Let Φj = (Vj ,Ej , f̂j ) for j = 1,2 be a normally non-singular map
from Xj to Yj . Then we get a normally non-singular G -map

Φ1 ×Z Φ2 := (
π∗

1 V1 ⊕ π∗
2 V2,E1 ⊕ E2, f̂1 ×Z f̂2

)
from X := X1 ×Z X2 to Y := Y1 ×Z Y2, where πj :X → Xj for j = 1,2 are the canonical

projections. The total spaces of π∗
1 V1 ⊕ π∗

2 V2 and (E1 ⊕ E2)
Y are |V1| ×Z |V2| and |EY1

1 | ×Z

|EY2
2 |, so that f̂1 ×Z f̂2 has the right domain and target.
Taking the trace commutes with exterior products, that is, if f1 and f2 are the traces of Φ1

and Φ2, then Φ1 ×Z Φ2 has trace f1 ×Z f2. Taking the stable normal bundle commutes with
exterior products as well: if N1 and N2 are the stable normal bundles of Φ1 and Φ2, then the
stable normal bundle of Φ1 ×Z Φ2 is π∗

1 (N1) ⊕ π∗
2 (N2). The degree of Φ1 ×Z Φ2 is the sum of

the degrees of Φ1 and Φ2.

Remark 4.25. By definition, exterior products of normally non-singular embeddings remain
normally non-singular embeddings, and exterior products of special normally non-singular sub-
mersions remain special normally non-singular submersions.

Proposition 4.26. The exterior product ×Z is an associative, symmetric and monoidal bifunctor
Nor(G) × Nor(G) → Nor(G) with unit object Z, that is, there are natural isomorphisms

X1 ×Z X2 ∼= X2 ×Z X2,

(X1 ×Z X2) ×Z X3 ∼= X1 ×Z (X2 ×Z X3),

Z ×Z X ∼= X ∼= X ×Z Z, (4.27)

which satisfy various coherence conditions, so that Nor(G) becomes a symmetric monoidal cat-
egory (see [24]).

Proof. The exterior product preserves isotopy because we can form exterior products of iso-
topies. Since it commutes with liftings as well, it descends to a well-defined operation on
equivalence classes. Functoriality of exterior products with respect to composition of normally
non-singular maps is routine to check. It is obvious that there are G -equivariant homeomorphisms
as in (4.27) that satisfy the coherence conditions for a symmetric monoidal category and that are
natural with respect to G -maps. But G -equivariant homeomorphisms are normally non-singular,
and the homeomorphisms in (4.27) are natural with respect to normally non-singular maps as
well. �
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Remark 4.28. The exterior product is not a product operation in Nor(G) in the sense of category
theory. The coordinate projections from Y1 ×Z Y2 to Y1 and Y2 need not be traces of normally
non-singular maps.

Lemma 4.29. The disjoint union operation is a coproduct in the category Nor(G):

NorG (X1 � X2, Y ) ∼= NorG (X1, Y ) × NorG (X2, Y )

for all G -spaces X1, X2, and Y . The empty G -space is an initial object.

Proof. Since the embeddings Xj ↪→ X1 � X2 for j = 1,2 are open, they are normally non-
singular G -maps and thus induce a natural map

NorG (X1 � X2, Y ) → NorG (X1, Y ) × NorG (X2, Y ). (4.30)

Conversely, let Φj = (Vj ,Ej , f̂j ) be normally non-singular maps from Xj to Y for j = 1,2.
We may lift Φ1 along E2 ⊕R and Φ2 along E1 ⊕R, so that both now involve the G -vector bundle
E1 ⊕ E2 ⊕ R over Z. By an isotopy, we can arrange that the R-components of the liftings of Φ1
and Φ2 have values in (0,1) and (1,2), respectively, so that their ranges are disjoint. After these
modifications, f̂1 � f̂2 becomes an open embedding on |V1| � |V2|, so that we get a normally
non-singular map Φ1 � Φ2 from X1 � X2 to Y . Hence the map in (4.30) is surjective. The same
construction may be applied to isotopies, so that Φ1 � Φ2 is isotopic to Φ ′

1 � Φ ′
2 if Φj is isotopic

to Φ ′
j for j = 1,2. When we lift Φ1 along E′

1 and Φ2 along E′
2, then we lift Φ1 � Φ2 along

E′
1 ⊕ E′

2. Hence Φ1 � Φ2 is equivalent to Φ ′
1 � Φ ′

2 if Φj is equivalent to Φ ′
j for j = 1,2. Thus

the map in (4.30) is injective as well.
More or less by convention, there is, up to equivalence, a unique normally non-singular G -map

from the empty G -space to any other G -space. �
Let X and Y be two G -spaces and let h :X → Y be a G -map. If U is another G �Y -space, then

h∗(U) := X ×Y U is a G � X-space, equipped with a canonical map ĥ :h∗(U) → U . We pull a
normally non-singular G �Y -map (V ,E, f̂ ) from U1 to U2 back to a normally non-singular map
(ĥ∗(V ),h∗(E), IdX ×Y f̂ ) from h∗(U1) to h∗(U2); here we use that the total spaces of ĥ∗(V ) and
h∗(E)h

∗(U2) are X ×Y U1 ×U1 |V | ∼= X ×Y |V | and X ×Y U2 ×Y |E| ∼= X ×Y |EU2 |, respectively.
This construction yields a functor

h∗ :Nor(G � Y) → Nor(G � X), (V,E, f̂ ) �→ (
ĥ∗(V ),h∗(E), IdX ×Y f̂

)
.

It is symmetric monoidal (see [24]) because the canonical homeomorphisms

h∗(U1) ×X h∗(U2) ∼= h∗(U1 ×Y U2)

for two G �Y -spaces U1 and U2 are natural with respect to normally non-singular maps and com-
patible with the unit, commutativity, and associativity isomorphisms in the symmetric monoidal
categories Nor(G � Y) and Nor(G � X).

Thus X �→ Nor(G � X) is a functor from the category of G -spaces to the category of sym-
metric monoidal categories.
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Lemma 4.31. The functor X �→ Nor(G � X) is a homotopy functor, that is, G -homotopic maps
h0, h1 :X ⇒ Y induce equivalent functors Nor(Y ) → Nor(X).

Proof. Let h :X×[0,1] → Y ×[0,1] be a homotopy between h0 and h1 and let Φ be a normally
non-singular G � Y -map. Then the normally non-singular map h∗(Φ) is an isotopy between the
normally non-singular maps h∗

0(Φ) and h∗
1(Φ). �

We may also view Nor(G) as a functor of G , both with respect to strict groupoid homomor-
phisms (continuous functors) and Hilsum–Skandalis morphisms. Since we will not need this
here, we omit the proof.

Finally, we consider certain forgetful functors.
Let h :X → Y be a G -map. Recall that a G � X-space is nothing but a G -space with a G -map

to X. Composing the latter with h, we may view a G � X-space as a G � Y -space. In particular,
for Y = Z this views a G � X-space as a G -space. For vector bundles, it makes no difference
whether we require G � X-, G � Y -, or just G -equivariance. Hence it would appear that we
get a forgetful functor from Nor(G � X) to Nor(G � Y). But there is one technical problem:
a (sub)trivial G � X-vector bundle need not be (sub)trivial as a G � Y -vector bundle.

Example 4.32. Let X be a G -space. Any G -vector bundle over X is trivial as a G � X-vector
bundle, but not necessarily as a G -vector bundle.

Proposition 4.33. Let h :X → Y be a G -map between two G -spaces. If any G -vector bundle
over X is subtrivial as a G �Y -vector bundle, then there is a forgetful functor h∗ :Nor(G �X) →
Nor(G � Y).

Proof. Let Φ = (V ,E, f̂ ) be a normally non-singular G � X-map. Then E is a G � X-vector
bundle over X. By assumption, it is subtrivial as a G �Y -vector bundle, that is, there are G -vector
bundles E′ and E′′ over X and Y , respectively, with E ⊕ E′ ∼= h∗(E′′). We lift Φ along E′ and
put

h∗(Φ) := (
V ⊕ (

E′)X
,E′′, f̂ ×Y Id|E′|

)
.

We leave it to the reader to observe that this construction is independent of the auxiliary choices
of E′ and E′′, descends to equivalence classes (compare Example 4.16), and is functorial. �
Remark 4.34. We can avoid the problem with subtriviality of vector bundles if we use another
monoid VectG (X) of G -vector bundles: instead of subtrivial G �X-vector bundles, use only those
bundles that are direct summands in G � X-vector bundles pulled back from Y .

4.5. Smooth normally non-singular maps

Now we extend the discussion of smooth normally non-singular maps in Example 4.17 to
the equivariant case. In general, neither existence nor uniqueness up to equivalence of normal
factorisations for smooth maps is clear: we need additional technical assumptions. Let X and Y

be smooth G -manifolds. We assume that there is a smooth normally non-singular map X → Z

(see Theorem 3.25 for sufficient conditions) and that the tangent bundle over Y is subtrivial or
that, for some reason, all G -vector bundles over X are subtrivial.
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Definition 4.35. A smooth isotopy of normally non-singular maps from X to Y is a normally
non-singular G × [0,1]-map (V ,E, f̂ ) from X × [0,1] to Y × [0,1] such that V has a fibrewise
smooth structure and f̂ is a fibrewise diffeomorphism onto its range as a map over Z.

We may reparametrise a smooth isotopy so that its higher derivatives at 0 and 1 vanish. This
allows to glue together smooth isotopies, showing that smooth isotopy is an equivalence relation.
Combining smooth isotopy and lifting, we get the relation of smooth equivalence. This is an
equivalence relation as well.

Theorem 4.36. Let X and Y be smooth G -manifolds. Assume that there is a smooth normally
non-singular map from X to the object space Z of G and that TY is subtrivial or that all G -
vector bundles over X are subtrivial. Then any smooth G -map from X to Y is the trace of a
smooth normally non-singular G -map, and two smooth normally non-singular G -maps from X

to Y are smoothly equivalent if and only if their traces are smoothly G -homotopic.

Example 4.10 shows that Theorem 4.36 fails for non-smooth normally non-singular maps: for
a smooth manifold X, there may be several non-equivalent normally non-singular maps X →
X × X whose trace is the diagonal embedding.

The technical conditions in the theorem are necessary for a good theory. If there is no smooth
normally non-singular G -map X → Z, then there is no smooth normally non-singular map whose
trace is the anchor map X → Z, which is a smooth G -map. If the tangent bundle TY is not
subtrivial, then the diagonal embedding Y → Y ×Z Y is not the trace of a smooth normally non-
singular map because its stable normal bundle would have to be TY . If V is a G -vector bundle
over X that is not subtrivial, then the zero section X → |V | is not a smooth normally non-singular
map because its stable normal bundle would have to be V .

Proof of Theorem 4.36. Lifting does not alter the trace of a normally non-singular map, and a
smooth isotopy of normally non-singular maps provides a smooth homotopy between their traces.
The main point is that, conversely, any smooth map from X to Y is the trace of a smooth normally
non-singular map and that smooth normally non-singular maps with smoothly homotopic traces
are smoothly equivalent.

Let (V ,E, ĝ) be a smooth normally non-singular map from X to Z. Then g := ĝ ◦ ζV :X →
|E| is a smooth embedding. Let f :X → Y be a smooth G -map. Then we get another smooth
embedding (f, g) :X → Y ×Z |E| = |EY |. By the Tubular Neighbourhood Theorem 3.18, it
extends to a smooth open embedding on the fibrewise normal bundle of (f, g). This normal
bundle is contained in the pull-back of TY , so that our assumptions ensure that it is subtrivial. As
a result, we get a smooth normally non-singular map from X to Y with trace f . Thus any smooth
map f :X → Y is the trace of a smooth normally non-singular map.

Similarly, any fibrewise smooth map F = (Ft )t∈[0,1] :X ×[0,1] → Y × [0,1] is the trace of a
smooth normally non-singular map X × [0,1] → Y × [0,1]. Thus a smooth homotopy between
two smooth normally non-singular maps lifts to a smooth isotopy of normally non-singular maps.
It remains to check that two smooth normally non-singular maps with the same trace are smoothly
equivalent.

Let Φj = (Vj ,Ej , f̂j ) for j = 1,2 be smooth normally non-singular maps with the same
trace. Lifting Φ1 along E2 and Φ2 along E1, we can arrange that both involve the same G -vector
bundle E := E1 ⊕ E2 over Z. Let f̃j := f̂j ◦ ζV :X � |Vj | ↪→ |EY | for j = 1,2. These are
j
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smooth embeddings. They are G -equivariantly homotopic via the G � [0,1]-equivariant smooth
embedding

f̃ :X × [0,1] → ∣∣EY
∣∣ × [0,1], (x, t) �→ (

(1 − t)f̃1(x), t f̃2(x), t
)
.

Its normal bundle restricts to V1 and V2 at 0 and 1; hence V1 ∼= V2 by Proposition 2.22.
The Tubular Neighbourhood Theorem 3.18 applied to f̃ yields a smooth isotopy between
Φ ′

j = (Vj , f̂
′
j ,Ej ) for j = 1,2 with f̂ ′

1 ◦ ζV1 = f̃1 and f̂ ′
2 ◦ ζV2 = f̃2.

It remains to show that Φj is smoothly isotopic to Φ ′
j for j = 1,2. Equivalently, we must

show that Φ1 and Φ2 are smoothly isotopic if V1 = V2, E1 = E2, and f̃1 = f̃2, where f̃j :=
f̂j ◦ ζVj

. This means that the Tubular Neighbourhood of an embedded submanifold is unique up
to isotopy. The proof in [12, p. 113f] carries over to the equivariant case almost literally. We may
equip V with a fibrewise smooth inner product by Proposition 2.19, and we can find a G -invariant
fibrewise smooth function � :X → [0,1] such that f̂2(|V |) contains f̂1(v) for all v ∈ |V | with
‖v‖ � �(πV (v)), where πV : |V | � X is the bundle projection. The map f̂1 is isotopic to the map

v �→ f̂1

(
v · �(

p(v)
)
/

√
1 + ‖v‖2

)
,

whose range is contained in f̂2(|V |) by construction. Hence we may assume without loss of
generality that f̂1(|V |) ⊆ f̂2(|V |), so that f̂1 = f̂2 ◦ Ψ for a smooth map Ψ : |V | ↪→ |V | that is
a diffeomorphism onto an open subset of |V | and restricts to the identity map between the zero
sections. The derivative of Ψ on the zero section restricts to a vector bundle automorphism Ψ0
of V ⊆ TV . An Alexander homotopy as in [12] shows that Ψ is isotopic to Ψ0. Thus (V , f̂1,E)

is isotopic to (V , f̂2 ◦ Ψ0,E), and the latter is isomorphic to (V , f̂2,E) via Ψ0. This finishes the
proof. �
5. Oriented normally non-singular maps and their wrong-way maps

A normally non-singular map only induces a map on K-theory or KO-theory if it comes with
additional orientation information, which depends on the choice of a cohomology theory. In
this section, we first fix our notation regarding equivariant cohomology theories; then we define
oriented normally non-singular maps and let them act on the appropriate cohomology theory by
wrong-way maps. Our main examples are equivariant K-theory and equivariant KO-theory. If G
is a group, then Bredon cohomology provides equivariant versions of cohomology as well.

Equivariant representable K-theory for proper actions of locally compact groupoids with a
Haar system on locally compact spaces is studied in [9]. The treatment of equivariant K-theory
in [9] carries over literally to equivariant KO-theory. We do not want to discuss here how to
extend this theory to more general G -spaces. We do not need our theories to be defined for all
spaces – all locally compact spaces is enough. When we specialise to equivariant K-theory in the
following, we assume all groupoids and spaces to be locally compact to ensure that it is defined.

5.1. Equivariant cohomology theories

Let G be a numerably proper groupoid. Let F∗ = (Fn)n∈Z be a sequence of contravariant func-
tors from pairs of G -spaces to the category of Abelian groups (or some other Abelian category).
We shall assume that they have the following properties:
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(i) Fn is invariant under G -equivariant homotopies for all n ∈ Z.
(ii) For each pair of G -spaces (X,Y ), there is a natural long exact sequence

· · · → Fn+1(X) → Fn+1(Y ) → Fn(X,Y ) → Fn(X) → Fn(Y ) → ·· · ;

this implies more general long exact sequences

· · · → Fn+1(X,U) → Fn+1(Y,U) → Fn(X,Y ) → Fn(X,U) → Fn(Y,U) → ·· ·

for nested closed subsets U ⊆ Y ⊆ X.
(iii) Let ϕ : (X,A) → (Y,B) be a map of pairs of G -spaces with Y = X ∪A B . Then ϕ induces

isomorphisms F∗(Y,B)
∼=−→ F∗(X,A).

(iv) Let Y ⊆ X be a closed G -invariant subset. Let CY be the directed set of closed G -invariant
neighbourhoods of Y . Then

F∗(X,Y ) ∼= lim−→
U∈CY

F∗(X,U);

that is, any class in F∗(X,Y ) lifts to F∗(X,U) for some closed G -invariant neighbourhood U

of Y , and if two classes in F∗(X,U) become equal in F∗(X,Y ), then they already become
equal in F∗(X,U ′) for some closed G -invariant neighbourhood U ′ of Y contained in U .

(v) F∗ is multiplicative, that is, equipped with natural associative and graded commutative ex-
terior product operations

⊗Z : Fi (X1, Y1) ⊗ Fj (X2, Y2) → Fi+j (X1 ×Z X2, Y1 ×Z X2 ∪ X1 ×Z Y2)

for all i, j ∈ Z, which are compatible with the boundary maps in the long exact sequences
for pairs. (The exterior product operation is part of the data of F.)

(vi) There is 1 ∈ F0(Z,∅) such that 1 ⊗Z ξ = ξ = ξ ⊗Z 1 for all pairs of G -spaces (X,Y ) and
all ξ ∈ Fi (X,Y ).

At least if we restrict attention to second countable, locally compact spaces and groupoids,
then equivariant K- and KO-theory have these properties, as shown in [9]. The excision state-
ment in [9] is weaker than (iii), but the more general statement follows for the same reasons.
Property (iv) is not stated explicitly in [9], but it follows immediately from the description by
maps to Fredholm operators. It is equivalent to Lemma 5.1 below.

Let F∗(X,Y ) := ⊕
j∈Z

Fj (X,Y ). The composite map

F∗(X,Y ) ⊗ F∗(X,Y )
⊗Z−−→ F∗(X ×Z X,Y ×Z X ∪ X ×Z Y )

�∗−−→ F∗(X,Y ),

where � is the diagonal map X → X ×Z X, turns F∗(X,Y ) into a graded ring. For Y = ∅, this
ring is unital with unit element �∗(1), where � :X → Z is the anchor map.

In order to define oriented vector bundles or oriented correspondences, we need a variant of F∗
with built-in support conditions.

Let f :X → Y be a G -map. A subset A ⊆ X is called Y -compact if f |A :A → Y is proper
(see Definition 2.9), and relatively Y -compact if its closure is Y -compact. We let Fj

(X) be
Y
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the inductive limit of the relative groups Fj (X,X \ A) ∼= Fj (A, ∂A), where A runs through the
directed set of open, relatively Y -compact subsets of X.

A G -map X → X′ between spaces over Y (not necessarily respecting the projections to Y )
induces a map f ∗ : F∗

Y (X′) → F∗
Y (X) if f −1(A) ⊂ X is Y -compact whenever A ⊂ X′ is Y -

compact. If f is compatible with the projections, this is equivalent to f being a proper map.
If F is representable K-theory and all spaces and groupoids involved are locally compact, then

F∗
Y (X) as defined above agrees with the equivariant K-theory of X with Y -compact support by

[9, Theorem 4.19].

Lemma 5.1. Let A ⊆ X be a closed G -invariant subspace. Then there is a natural long exact
sequence

· · · → Fn+1
Y (X) → Fn+1

Y (A) → Fn
Y (X \ A) → Fn

Y (X) → Fn
Y (A) → ·· · .

Hence there is no need for a relative version of F∗
Y , and F∗

Y (�) is covariantly functorial for
open embeddings.

Proof. Any relatively Y -compact open subset of X, A or X \A is contained in some Y -compact
closed subset B ⊆ X. By excision, all groups we are dealing with are inductive limits of corre-
sponding subgroups where we replace X by B . Hence we may assume without loss of generality
that X itself is Y -compact, that is, the map X → Y is proper. Then its restriction to the closed
subset A is proper as well. Thus F∗

Y (X) ∼= F∗(X) and F∗
Y (A) ∼= F∗(A), and a closed subset of

X \ A is Y -compact if and only if it remains closed in X. It remains to identify F∗
Y (X \ A) with

F∗(X,A).
By definition, F∗

Y (X \ A) is the inductive limit of F∗(X \ A, (X \ A) \ U), where U runs
through the directed set of open, G -invariant, relatively Y -compact subsets of X. Being relatively
Y -compact simply means U ∩ A = ∅. Thus U is the complement of a closed G -invariant neigh-
bourhood of A. Since U has the same closures in X and X \ A, we may use excision twice to
rewrite

F∗(X \ A, (X \ A) \ U
) ∼= F∗(U, ∂U) ∼= F∗(X,X \ U).

Finally, we take the inductive limit where X \ U runs through the directed set of closed G -
invariant neighbourhoods of A. This agrees with F∗(X,A) by property (iv) on page 2872. �
Definition 5.2. Let V be a d-dimensional G -vector bundle over a G -space X. An F-orientation
for V is a class τ ∈ Fd

X(|V |) such that for each G -map f :Y → X, multiplication with f ∗(τ ) ∈
F∗

Y (|f ∗V |) induces an isomorphism F∗
X(Y ) → F∗

X(|f ∗V |) (shifting degrees by d , of course).

If F is representable K-theory, then a K-orientation in the usual sense (specified by a com-
plex spinor bundle or by a principal Spinc-bundle) is one in the sense of Definition 5.2, and the
isomorphism F∗(X) → F∗

X(|V |) is a variant of the familiar Thom isomorphism for equivariant
K-theory.

In the non-equivariant case, an orientation is defined by requiring τ to induce fibrewise
cohomology isomorphisms F∗({x}) ∼= F∗{x}(Vx) for all x ∈ X. It is not clear whether this char-
acterisation extends to the equivariant case. As we shall see, the definition above ensures that
orientations have the expected properties.
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Let V be a G -vector bundle over X with a G -invariant inner product. If A ⊆ V is G -invariant
and X-compact, then there is a G -invariant function � :X → (0,∞) with

A ⊆ D�(V ) := {
v ∈ V

∣∣ ‖v‖ � �
(
πV (v)

)}
.

Hence an F-orientation for V will be supported in D�(V ) for some function � as above. Since
rescaling by � is homotopic to the identity map, we can find another representative that is sup-
ported in the closed unit ball DV of V . Furthermore, since |V | is homeomorphic to the open unit
ball, the proof of Lemma 5.1 yields

F∗
X

(|V |) ∼= F∗(DV,SV ), (5.3)

where DV and SV denote the unit disk and unit sphere bundles in V .

Lemma 5.4. Let V be an F-oriented G -vector bundle over X and let ϕ :X → Y be a G -map.
Then exterior product with τ induces an isomorphism F∗

Y (X) ∼= F∗
Y (|V |).

Proof. Recall that F∗
Y (X) is the inductive limit of F∗(X,X \ U) ∼= F∗(U, ∂U), where U runs

through the directed set of open, G -invariant, relatively Y -compact subsets of X. Arguing as in
the proof of (5.3), we get

F∗
Y

(|V |) ∼= lim−→ F∗(DV |U ,DV |∂U ∪ SV |U)

with U as above. The F-orientation and excision yield isomorphisms

Fn(∂U) ∼= Fn(DV |∂U ,SV |∂U ) ∼= Fn(DV |∂U ∪ SV |U ,SV |U),

Fn(U) ∼= Fn(DV |U ,SV |U).

These groups fit into long exact sequences

· · · → Fn+1(∂U) → Fn(U, ∂U) → Fn(U) → Fn(∂U) → ·· ·

and

· · · → Fn+1(DV |∂U ∪ SV |U ,SV |U) → Fn(DV |U ,DV |∂U ∪ SV |U)

→ Fn(DV |U ,SV |U) → Fn(DV |∂U ∪ SV |U ,SV |U) → ·· · .

Multiplication with the F-orientation provides a chain map between these exact sequences. This
is invertible on two of three entries by definition of an F-orientation. It is an isomorphism
F∗(U, ∂U) ∼= F∗(DV |U ,SV |U ∪ DV |∂U ) as well by the Five Lemma. �
Lemma 5.5. If f :X → Y is a G -map and τ ∈ F∗

Y (|V |) is an F-orientation for a G -vector bun-
dle V over Y , then f ∗(τ ) ∈ F∗

X(|f ∗V |) is an F-orientation for f ∗(V ).

Proof. Trivial from the definition. �
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Lemma 5.6. Let X be a G -space and let V be a G -vector bundle over X. Let X1 and X2 be
closed G -invariant subsets of X with X = X1 ∪ X2 and let τ1 and τ2 be F-orientations for V |X1

and V |X2 , respectively. Then there is an F-orientation on X1 ∪ X2 that restricts to τ1 and τ2 on
X1 and X2.

Proof. Let X12 := X1 ∩ X2 and let Vj := V |Xj
for j ∈ {1,2,12}. We have F∗

X(Vj ) ∼= F∗
Xj

(Vj )

for j = 1,2,12. The properties of F yield a long exact Mayer–Vietoris sequence

· · · → Fn+1
X

(|V12|
) → Fn

X

(|V |) → Fn
X

(|V1|
) ⊕ Fn

X

(|V2|
) → Fn

X

(|V12|
) → ·· · .

Hence there is τ ∈ F∗
X(|V |) that restricts to τj on |Vj | for j = 1,2. We claim that any such τ is

an F-orientation for V .
Let f :Y → X be a G -map and let Yj := f −1(Xj ) for j = 1,2,12. We have a commuting

diagram of exact Mayer–Vietoris sequences

Fn
X

(|f ∗V |) Fn
X

(|f ∗V1|
) ⊕ Fn

X

(|f ∗V2|
)

Fn
X

(|f ∗V12|
) · · ·

Fn
X(Y )

τ

Fn
X(Y1) ⊕ Fn

X(Y2)

τ1⊕τ2

Fn
X(Y12)

τ12

· · ·

By assumption, τ1, τ2, and τ12 induce isomorphisms. By the Five Lemma, τ induces an isomor-
phism as well, so that τ is an F-orientation. �
Lemma 5.7. Let V1 and V2 be two G -vector bundles over X, let V2 be F-oriented. Then there is
a natural bijection between F-orientations on V1 and V1 ⊕ V2.

Proof. Assume first that V1 and V2 are F-oriented by τj ∈ F∗
X(|Vj |). The total space of V1 ⊕V2 is

the total space of the G -vector bundle π∗
V1

(V2) over |V1|. By Lemma 5.5, π∗
V1

(τ2) ∈ F∗|V1|(|V1 ⊕
V2|) is an F-orientation for π∗

V1
(V2). Its product with τ1 in F∗

X(|V1 ⊕ V2|) is an F-orientation
for V1 ⊕ V2.

Now let τ2 and τ12 be F-orientations for V2 and V12 := V1 ⊕V2. For any f :Y → X, the prod-
uct of the Thom isomorphism for V12 and the inverse Thom isomorphism for πV1(V2) provides
an isomorphism F∗

X(Y ) → F∗
X(|f ∗V1|). This is induced by a class τ1 ∈ F∗

X(|V1|), namely, the
image of the identity element in F∗

X(X) = F∗(X). Hence τ1 is an F-orientation on V1. The two
constructions of F-orientations on V1 and V1 ⊕ V2 are inverse to each other. �

We always equip pull-backs and direct sums of F-oriented G -vector bundles with the induced
F-orientations described in Lemmas 5.5 and 5.7.

In the presence of F-orientations, we modify the notions of trivial and subtrivial G -vector
bundles: a trivial F-oriented G -vector bundle is the pull-back of an F-oriented G -vector bundle
on Z, and a subtrivial F-oriented G -vector bundle is an F-oriented direct summand of a trivial
F-oriented G -vector bundle.
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5.2. Oriented normally non-singular maps

In this section, we let VectG (X) be the monoid of subtrivial F-oriented G -vector bundles,
that is, we require the G -vector bundles in the definition of a normally non-singular map to be
F-oriented. This leads to the theory of F-oriented normally non-singular maps.

Definition 5.8. An F-oriented normally non-singular map from X to Y consists of

• V , a subtrivial F-oriented G -vector bundle over X;
• E, an F-oriented G -vector bundle over Z; and
• f̂ : |V | ↪→ |EY |, a G -equivariant open embedding.

The trace, the stable normal bundle, and the dimension of an F-oriented normally non-singular
map are defined as for normally non-singular maps.

The relations of isotopy, lifting, and equivalence for normally non-singular maps extend to F-
oriented normally non-singular maps; in the definition of lifting, we require the additional trivial
vector bundle to be F-oriented, of course, and equip the direct sums that appear with the induced
F-orientations. Isotopy and equivalence remain equivalence relations for F-oriented normally
non-singular maps.

A composite or exterior product of F-oriented normally non-singular maps inherits a canonical
F-orientation because we may add and pull back F-orientations.

Proposition 5.9. The category of G -spaces with F-oriented normally non-singular maps as mor-
phisms and the exterior product is a symmetric monoidal category.

Proof. Copy the proof of Proposition 4.26. �
Definition 5.10. Let NorF(G) be the category of proper G -spaces with F-oriented normally non-
singular maps as morphisms.

Example 5.11. Let f :X → Y be a smooth map between two smooth manifolds. Lift it to a
normally non-singular map from X to Y as in Example 4.6. When is this map F-oriented? Recall
that the normally non-singular map associated to f is of the form Φ := (V , f̂ ,R

n), where n is
chosen so large that there is a smooth embedding h :X → R

n and f̂ is a tubular neighbourhood
for the smooth embedding (f,h) :X → Y × R

n. Thus V is the normal bundle of (f,h). Since
the constant vector bundle R

n is canonically F-oriented, an F-orientation for f is equivalent to
one for V .

Already h is a smooth embedding, and its normal bundle NX is a stable normal bundle of
the manifold X; it has the property that NX ⊕ TX is the constant vector bundle R

n. Since h is
a smooth embedding, we get a canonical vector bundle extension f ∗(TY) � V � NX , so that
V ∼= f ∗(TY) ⊕ NX . Thus Φ is F-oriented if and only if f ∗(TY) ⊕ NX is F-oriented. This does
not depend on the choice of Φ .

We are going to show that an F-orientation on a lifting of a normally non-singular map is
equivalent to a (stable) F-orientation on its stable normal bundle.
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Definition 5.12. Let (V+,V−) be a pair of subtrivial G -vector bundles over X. A stable F-
orientation for (V+,V−) consists of a subtrivial G -vector bundle V3 on X and F-orientations
on V+ ⊕ V3 and V− ⊕ V3. Two such stable F-orientations are called equivalent if the induced
F-orientations on (V+ ⊕V3)⊕ (V− ⊕V ′

3) and (V+ ⊕V ′
3)⊕ (V− ⊕V3) agree (we use Lemma 5.7

to define these induced F-orientations).
A stably F-oriented normally non-singular map is a normally non-singular map with a stable

F-orientation on its stable normal bundle.

Lemma 5.13. Assume that any G -vector bundle over Z is a direct summand of an F-oriented
G -vector bundle. Then there is a bijection between lifting classes of F-oriented normally non-
singular maps and stably F-oriented normally non-singular maps X → Y .

Here we use the equivalence relation generated by lifting, which is contained in the equiva-
lence of normally non-singular maps.

Proof. Clearly, an F-orientation on a normally non-singular map Φ = (V ,E, f̂ ) induces a stable
F-orientation on its stable normal bundle (V ,EX). Furthermore, lifting along F-oriented G -vector
bundles over Z does not alter this stable F-orientation.

Conversely, suppose that the stable normal bundle (V ,EX) of Φ carries a stable F-orientation.
We want to construct an F-orientation on a lifting of Φ . We are given F-orientations on V ⊕ V3
and EX ⊕ V3 for some G -vector bundle V3. Our assumptions provide a G -vector bundle E2
over Z such that E ⊕ E2 is F-oriented and V3 is a direct summand in EX

2 . Let V3 ⊕ V ⊥
3

∼= EX
2 .

Since

(
EX ⊕ V3

) ⊕ V ⊥
3

∼= (E ⊕ E2)
X

and EX ⊕ V3 and E ⊕ E2 are F-oriented, V ⊥
3 inherits a canonical F-orientation by Lemma 5.7.

Then V ⊕ EX
2

∼= (V ⊕ V3) ⊕ V ⊥
3 inherits an F-orientation as well. Thus we get an F-orientation

on the lifting of Φ along E2.
Now assume that we are given two equivalent stable F-orientations on (V ,EX) involving

stabilisation by V3 and V ′
3. Construct G -vector bundles E2 and E′

2 over Z for both of them and
F-orientations on Φ ⊕ E2 and Φ ⊕ E′

2. Since E ⊕ E2 and E ⊕ E′
2 are F-oriented, the liftings

(Φ ⊕ E2) ⊕ (E ⊕ E′
2) and (Φ ⊕ E′

2) ⊕ (E ⊕ E2) inherit F-orientations. By construction, these
normally non-singular maps involve the G -vector bundle E ⊕E2 ⊕E ⊕E′

2 over Z with the same
F-orientation. The G -vector bundles over X are

(
V ⊕ EX

2

) ⊕ (
E ⊕ E′

2

)X ∼= (V ⊕ V3) ⊕ V ⊥
3 ⊕ (

EX ⊕ V ′
3

) ⊕ (
V ′

3

)⊥
,(

V ⊕ (
E′

2

)X) ⊕ (E ⊕ E2)
X ∼= (

V ⊕ V ′
3

) ⊕ (
V ′

3

)⊥ ⊕ (
EX ⊕ V3

) ⊕ V ⊥
3 ,

equipped with the F-orientations induced by Lemma 5.7. These agree by assumption (here we
identify the two G -vector bundles by the obvious isomorphism).

As a result, the lifting class of the F-oriented normally non-singular map Φ ⊕E2 only depends
on the equivalence class of the stable F-orientation of (V ,EX); the same argument with V3 = V ′

3
shows that the lifting class of the F-oriented normally non-singular map Φ ⊕E2 does not depend
on the auxiliary choices. The two constructions above well-define maps between lifting classes
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of stably F-oriented and F-oriented maps. They are easily seen to be inverse to each other (up to
lifting). �
Remark 5.14. For equivariant K-theory or KO-theory, E8 is F-oriented for any G -vector bun-
dle E. Hence the assumption in Lemma 5.13 becomes vacuous for these cohomology theories.

Corollary 5.15. Let X and Y be smooth G -manifolds. Assume that there is a smooth normally
non-singular map from X to the object space Z of G and that all G -vector bundles over Z and X

are direct summands in trivial, F-oriented G -vector bundles. Then smooth equivalence classes of
F-oriented smooth normally non-singular G -maps from X to Y correspond bijectively to pairs
(f, τ ) where f is the smooth homotopy class of a smooth G -map from X to Y and τ is a stable
F-orientation on its stable normal bundle f ∗([TY ]) − [TX].
Proof. Theorem 4.36 shows that smooth homotopy classes of smooth G -maps correspond bijec-
tively to smooth equivalence classes of smooth normally non-singular G -maps. The additional
F-orientations reduce to one on the G -vector bundle f ∗(TY) ⊕ NX over X as in Example 5.11;
this is equivalent to the stable normal bundle of f . But f ∗(TY) ⊕ NX is equal in [VectG

0 (X)] to
f ∗([TY ]) − [TX]. Finally, we use Lemma 5.13. �
5.3. Wrong-way functoriality

Let Φ = (V ,E, f̂ ) be an F-oriented normally non-singular map from X to Y . Let

Φ! : F∗
Z(X) → F∗

Z(Y )

be the product of

• the Thom isomorphism F∗
Z(X) → F∗

Z(|V |) (see Lemma 5.4);
• the map F∗

Z(|V |) → F∗
Z(|EY |) induced by the open embedding f̂ ; and

• the inverse Thom isomorphism F∗
Z(|EY |) → F∗

Z(Y ).

This construction is analogous to the definition of the topological Atiyah–Singer index map
in [2]. See Section 6 for further remarks about index theory.

Theorem 5.16. The maps X �→ F∗
Z(X) and Φ �→ Φ! define a functor from NorF(G) to the cate-

gory of Abelian groups.

Proof. The construction of Φ! does not require the vector bundles involved to be trivial or sub-
trivial: it still works for triples (VX,VY , f̂ ) where VX and VY are F-oriented G -vector bundles
over X and Y and f̂ is an open embedding |VX| ↪→ |VY |. Since the definition of the composition
product involves lifting a normally non-singular map to a triple of this form, it is useful to treat
these more general objects.

Let Φj := (VX,VY , f̂j ) for j = 1,2 be triples as above with isotopic maps f̂1 and f̂2. Then
Φ1! = Φ2! if Φ1 is isotopic to Φ2 because F∗ is homotopy invariant.

If V1 and V2 are G -vector bundles over the same space X, then the Thom isomorphism for
V1 ⊕ V2 is the product of the Thom isomorphisms F∗

Z(X) ∼= F∗
Z(|V1|) for V1 and F∗

Z(|V1|) ∼=
F∗

Z(|V1| ⊕ |V2|) for π∗
V1

(V2) by the proof of Lemma 5.7.
Using this and the naturality of the Thom isomorphism, we conclude that lifting does not

change the wrong-way element – even lifting along non-trivial G -vector bundles. Thus Φ1! = Φ2!
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if Φ1 and Φ2 are equivalent. This shows that Φ �→ Φ! well-defines a map on equivalence classes
of normally non-singular maps.

It is clear that Id! = Id. The product of two normally non-singular maps involves lifting both
factors – one of them along a non-trivial vector bundle – and then composing the open embed-
dings involved. Functoriality for open embeddings is easy. We have just observed that the lifting
step does not alter the wrong-way elements. In the second step, the effect of composing is to
replace the map

ζV ! ◦ πV ! : F∗
Z

(|V |) → F∗
Z(X) → F∗

Z

(|V |)
for a G -vector bundle V over X by the identity map on F∗

Z(|V |). Since ζV ! and πV ! are the Thom
isomorphism for V and its inverse, we get functoriality. �
6. Normally non-singular maps and index theory

Normally non-singular maps formalise the construction of topological index maps by Atiyah
and Singer in [2]. In Kasparov’s bivariant K-theory, we may also construct analytic index maps
for smooth maps that are not necessarily normally non-singular. Certain index theorems compare
both constructions. Theorem 4.36 is a prerequisite for such results because it asserts that the
smooth maps for which the analytic index map is defined have an essentially unique topological
index associated to them.

Let G be a proper groupoid, let X and Y be smooth G -manifolds, and let f :X → Y be a
G -equivariant, fibrewise smooth, K-oriented map. We want to define a wrong-way map f ! ∈
KKG∗ (C0(X),C0(Y )) associated to f . If f were a normally non-singular map, we could use
the construction in Section 5.3 for this purpose, because it only uses Thom isomorphisms and
wrong-way functoriality for open embeddings, which do provide classes in KKG . In general, the
construction of f ! follows [8] and requires a factorisation of f through a K-oriented smooth
embedding and a K-oriented smooth submersion.

Let V be a G -vector bundle over X such that V ⊕ f ∗(TY) is K-oriented. We may factor f as
f = πY ◦ f ′ with the coordinate projection πY : |V | ×Z Y → Y and

f ′ :X → |V | ×Z Y, x �→ (
ζV (x), f (x)

)
.

The map f ′ is a smooth immersion with K-oriented normal bundle V ⊕f ∗(TY) and has a tubular
neighbourhood by Theorem 3.18. Hence the Thom isomorphism for V ⊕f ∗(TY) and the functo-
riality of KK for open embeddings provide a wrong-way element f ′! ∈ KKG∗ (C0(X),C0(|V | ×Z

Y )). The same construction is used in Section 5.3 for smooth normally non-singular maps. In
fact, f ′ is the trace of a smooth normally non-singular embedding, and the latter is unique up to
equivalence by the proof of Theorem 4.36.

It remains to define a wrong-way element for πY : |V | ×Z Y → Y , which is a smooth submer-
sion. Its normal bundle is the pull-back of the G -vector bundle V ⊕TX on X, which is K-oriented
because V ⊕ TY and the map f are K-oriented.

Since it only remains to study maps like πY , we assume from now on that f :X → Y be a
G -equivariant, K-oriented, fibrewise smooth submersion. Then X may be regarded as a G � Y -
manifold, since its fibres are smooth G -manifolds. Let Tf X denote the vertical tangent space of
this G � Y -manifold; thus Tf X is the tangent bundle to the fibres of f . It is G � Y -equivariantly
K-oriented by assumption.
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The family of Dirac operators along the fibres of f now provides an element

Df ∈ KKG�Y
dim(Y )−dim(X)

(
C0(X),C0(Y )

)
,

see [8], or [10] for a discussion of the groupoid-equivariant case. We interpret this as an analytic
wrong-way element associated to the K-oriented submersion f .

If we also assume f to be proper, so that composition with f provides an equivariant ∗-
homomorphism f∗ : C0(Y ) → C0(X), then we can form the index

Index(Df ) := f∗(Df ) ∈ KKG�Y∗
(
C0(Y ),C0(Y )

) ∼= RK∗
G (Y )

(the last isomorphism is from [9]). More generally, we may compose Df with classes in

RK∗
G,Y (X) := KKG�Y∗

(
C0(Y ),C0(X)

)
,

equivariant K-theory classes on X with Y -compact support, to get elements of RK∗
G (Y ). An

equivariant families index theorem is supposed to compute these elements of RK∗
G (Y ) or, even

better, the class of Df in KKG�Y∗ (C0(X),C0(Y )), in topological terms from the given data f .
A K-oriented normal factorisation of f , that is, a K-oriented G � Y -equivariant normally

non-singular map (V ,E, f̂ ) with trace f , provides such a topological formula:

f ! := ζV ⊗C0(|V |) f̂ ⊗C0(E
X) πEX ∈ KKG�Y

dim(Y )−dim(X)

(
C0(X),C0(Y )

)
.

This construction is parallel to the Atiyah–Singer topological index and therefore deserves to be
called the topological index of f . The Index Theorem in this case simply states that f ! = Df in
KKG�Y∗ (C0(X),C0(Y )). This result may be proved by following a similar argument in [8] in the
non-equivariant case.

Before we sketch this, we return to wrong-way elements. If f is a general smooth K-oriented
map, then we may factor f = πY ◦ f ′ as above and let f !an be the Kasparov product of DπY

and f ′!. This is the analytic wrong-way element of a smooth K-oriented map.

Theorem 6.1. The map f �→ f !an is a functor from the category of smooth K-oriented maps
to KKG and satisfies f !an = Df for any smooth submersion f . If f is the trace of a smooth
normally non-singular map f̂ , then f !an = f̂ !. In particular, if a K-oriented submersion f is the
trace of a smooth normally non-singular map f̂ , then f̂ ! = Df .

In the non-equivariant case, this is established in [8]. The argument easily adapts to the equiv-
ariant case. We merely sketch some of the steps.

Proof. The main step of the argument is to show that Df1◦f2 is the Kasparov product of Df1

and Df2 if f1 and f2 are composable K-oriented submersions. This also implies that Df = f !
for any K-oriented submersion f : the factorisation above merely introduces a Thom isomorphism
and its inverse, which cancel. We also get that (f1 ◦f2)!an is the product of the topological wrong-
way element f2! with Df1 whenever f1 is a smooth submersion and f2 is a smooth immersion.
This implies easily that analytic wrong-way elements are functorial for smooth immersions.

It is clear that the analytic and topological wrong-way elements coincide for zero sections
of vector bundles, vector bundle projections, and open embeddings: in the first two cases, both
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constructions use the Thom isomorphism and its inverse. Hence they coincide for normally non-
singular immersions and special normally non-singular submersions. We have already seen that
topological wrong-way elements are functorial. The equality of analytic and topological wrong-
way elements follows once the analytic wrong-way elements are functorial as well.

Now consider composable maps f1 :Y → U and f2 :X → Y and factor them through smooth
immersions and submersions as fj = f ′

j ◦ f ′′
j with smooth submersions f ′

j and smooth immer-
sions f ′′

j for j = 1,2. We may even assume that f ′′
j is the zero section of a G -vector bundle

and let πj be the corresponding vector bundle projection. Since we already know functoriality
of wrong-way elements for immersions and submersions separately, it remains to prove that the
Kasparov product of f ′′

1 ! and Df ′
2

equals (f ′′
1 ◦ f ′

2)!an. Since f ′′
1 ! is a Thom isomorphism, it is

invertible and we lose nothing if we compose both sides with its inverse Dπ1 . This reduces the
issue to Dπ1 ◦ (f ′′

1 ◦f ′
2)!an = Df ′

2
. Since π1 ◦f ′′

1 ◦f ′
2 = f ′

2, we conclude that functoriality of ana-
lytic wrong-way elements holds in general once it holds if the first map is a smooth submersion.
By definition, this reduces further to the case where both maps are smooth submersions, which
we already know. �

The equality Df = f ! for K-oriented submersions actually follows immediately from the du-
ality isomorphisms in [10,11]. This means that all the analysis needed to prove the index theorem
is already embedded in the proof of the duality isomorphisms. The argument goes as follows. Let
f :X → Y be a G -equivariant, K-oriented, fibrewise smooth submersion. Replacing G by G � Y ,
we may assume that Y = Z. A duality isomorphism is always based on two bivariant K-theory
classes, Dirac and local dual Dirac. The Dirac elements for the dualities in [10] are the analytic
Dirac element Df and the topological wrong-way element f !, respectively. The local dual Dirac
element is the wrong-way element associated to the diagonal embedding X → X ×Z X. Since
this is a smooth immersion, it makes no difference here whether we work analytically or topo-
logically. The Dirac and local dual Dirac elements Θ and D for a duality isomorphism determine
each other uniquely by the equation Θ ⊗X D = 1 in KKG�X(C0(X),C0(X)). Since both duals
for X use the same local dual Dirac element, they must both involve the same Dirac element, that
is, Df = f !.

This shows that all the analysis required to prove the Index Theorem is already embedded
in the proofs of the duality isomorphisms; these only use the functoriality of analytic Dirac
elements f ! with respect to open embeddings, the homotopy invariance of the construction (in-
dependence of the choice of Riemannian metric), and the Thom isomorphism.

The Index Theorem 6.1, f !an = f !, only makes sense for smooth maps with a normal factori-
sation. For example, let GA be as in Example 3.4 for a hyperbolic matrix A ∈ Gl(2,Z), and let X

be a smooth G -manifold with at least some morphism in GA acting non-trivially on X. Assume
that X is GA-equivariantly K-oriented. Then there is a Dirac class DX along the fibres of the
anchor map X → Z, but X admits no smooth embedding in an equivariant vector bundle over Z.
Hence there is no topological model f ! for Df . For instance, GA acts on itself, so we can get the
example X := GA. The fibres here are complex tori T

2 ∼= C/Z
2, and the action by translations

preserves the complex structure. Hence GA carries a GA-equivariant complex structure. The fi-
brewise Dolbeault operator poses an index problem for which it seems unclear how to define the
equivariant topological index.
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