Note

Influences of monotone Boolean functions

Demetres Christofides

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

ARTICLE INFO

Article history:

Received 30 September 2009
Received in revised form 13 December 2009
Accepted 21 December 2009
Available online 13 January 2010

Keywords:

Discrete cube
Boolean functions
Influence

Abstract

Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function does not decrease if we apply to it an invertible linear transformation. Our aim in this short note is to prove this conjecture.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a positive integer n, a Boolean function on n variables is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. The function is called monotone if for all $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in\{0,1\}^{n}$ satisfying $x_{i} \leqslant y_{i}$ for each $1 \leqslant i \leqslant n$, we have $f(x) \leqslant f(y)$.

For an n-variable Boolean function f, the influence of the ith variable on f is defined to be

$$
I_{i}(f)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}\left|f\left(x+e_{i}\right)-f(x)\right|,
$$

where e_{i} denotes the element of $\{0,1\}^{n}$ whose only non-zero coordinate is in the i th position, and addition is done coordinate-wise modulo two. The total influence of f is defined to be

$$
I(f)=\sum_{i=1}^{n} I_{i}(f)
$$

For the proof of our result it will be convenient to introduce the following definition: Given $y \in\{0,1\}^{n}$ we define the influence of y on f to be

$$
I_{y}(f)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}|f(x+y)-f(x)| .
$$

[We remark that if we consider the correspondence between the elements of $\{0,1\}^{n}$ and the subsets of $\{1, \ldots, n\}$ then the influence of y on f is not the same as the usual definition of the influence of the set Y (corresponding to y) over f. Since we will not be using the latter definition, we hope that no confusion arises.]

The notion of influence of a variable on a Boolean function was introduced by Ben-Or and Linial [1]. It has since found many applications in discrete mathematics, theoretical computer science and social choice theory. We refer the reader to [2] for a survey of some of these applications. In this note we study the effect on the influence after applying an invertible linear transformation on a monotone Boolean function.

[^0]Given an n-variable Boolean function f and an invertible linear transformation $L \in G L_{n}\left(\mathbb{F}_{2}\right)$, the function $L f$ is defined by $L f(x)=f(L x)$. In [3] Keller and Pilpel raised the following conjecture.

Conjecture 1 (Keller and Pilpel [3]). If f is an n-variable monotone Boolean function and $L \in G L_{n}\left(\mathbb{F}_{2}\right)$ then $I(f) \leqslant I(L f)$.
We prove this conjecture in the next section.

2. Proof of the conjecture

Since L is invertible, its determinant is non-zero and thus by the formula for the determinant there must be a permutation π of $\{1, \ldots, n\}$ such that $L_{i \pi(i)}$ is non-zero for each i. In particular, if P is the permutation matrix which maps e_{i} to $e_{\pi(i)}$, then each diagonal entry of $L^{\prime}:=L P$ is non-zero. Moreover, it is immediate that $I_{i}\left(L^{\prime} f\right)=I_{\pi(i)}(L f)$ for each $1 \leqslant i \leqslant n$ and thus the total influences of L^{\prime} and L are equal. Thus, we may assume that the diagonal entries of L are non-zero. In this case, we will prove the stronger assertion that $I_{i}(f) \leqslant I_{i}(L f)$ for each $1 \leqslant i \leqslant n$. We claim that $I_{i}(L f)=I_{L_{i}}(f)$. Indeed,

$$
\begin{aligned}
I_{i}(L f) & =\frac{1}{2^{n}} \sum_{x}\left|L f\left(x+e_{i}\right)-L f(x)\right| \\
& =\frac{1}{2^{n}} \sum_{x}\left|f\left(L x+L e_{i}\right)-f(L x)\right| \\
& =\frac{1}{2^{n}} \sum_{y}\left|f\left(y+L e_{i}\right)-f(y)\right| \\
& =I_{L e_{i}}(f) .
\end{aligned}
$$

Splitting the sum in the definition of $I_{L e_{i}}(f)$ into two parts depending on whether the i th coordinate is equal to zero or not we obtain that

$$
\begin{aligned}
I_{L e_{i}}(f) & =\frac{1}{2^{n}} \sum_{y}\left|f\left(y+L e_{i}\right)-f(y)\right| \\
& =\frac{1}{2^{n}}\left(\sum_{\left\{y: y_{i}=0\right\}}\left|f\left(y+L e_{i}\right)-f(y)\right|+\sum_{\left\{y: y_{i}=1\right\}}\left|f(y)-f\left(y+L e_{i}\right)\right|\right) \\
& =\frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left(\left|f\left(z+L e_{i}\right)-f(z)\right|+\left|f\left(z+e_{i}\right)-f\left(z+e_{i}+L e_{i}\right)\right|\right) \\
& \geqslant \frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left|f\left(z+e_{i}\right)+f\left(z+L e_{i}\right)-f(z)-f\left(z+e_{i}+L e_{i}\right)\right| .
\end{aligned}
$$

Observe that since each diagonal entry of L is non-zero, the i th coordinate of $L e_{i}$ is equal to one and so if the i th coordinate of z is zero, then the i th coordinate of $z+e_{i}+L e_{i}$ is also zero and so by the monotonicity of f we have $f(z) \leqslant f\left(z+e_{i}\right)$ and $f\left(z+e_{i}+L e_{i}\right) \leqslant f\left(z+L e_{i}\right)$. It follows that

$$
\begin{aligned}
I_{L_{i}}(f) & \geqslant \frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left|f\left(z+e_{i}\right)+f\left(z+L e_{i}\right)-f(z)-f\left(z+e_{i}+L e_{i}\right)\right| \\
& =\frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left|f\left(z+e_{i}\right)-f(z)\right|+\frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left|f\left(z+L e_{i}\right)-f\left(z+e_{i}+L e_{i}\right)\right| \\
& =\frac{1}{2^{n}} \sum_{\left\{z: z_{i}=0\right\}}\left|f\left(z+e_{i}\right)-f(z)\right|+\frac{1}{2^{n}} \sum_{\left\{w: w_{i}=1\right\}}\left|f(w)-f\left(w+L e_{i}\right)\right| \\
& \left.=I_{i} f\right),
\end{aligned}
$$

as required. This completes the proof of Conjecture 1.

Acknowledgement

The author was supported by the EPSRC, grant no. EP/E02162X/1.

References

[1] Ben-Or, N. Linial, Collective coin flipping, in: Randomness and Computation, Academic Press, 1990, pp. 91-115.
[2] G. Kalai, S. Safra, Threshold phenomena and influence: Perspectives from mathematics, computer science, and economics, in: Computational Complexity and Statistical Physics, Oxford Univ. Press, 2006, pp. 25-60.
[3] N. Keller, H. Pilpel, Linear transformations of monotone functions on the discrete cube, Discrete Math. 309 (2009) 4210-4214.

[^0]: E-mail address: christod@maths.bham.ac.uk.
 0012-365X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2009.12.017

