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a b s t r a c t

Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function
does not decrease if we apply to it an invertible linear transformation. Our aim in this short
note is to prove this conjecture.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a positive integer n, a Boolean function on n variables is a function f : {0, 1}n → {0, 1}. The function is called
monotone if for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1}n satisfying xi 6 yi for each 1 6 i 6 n, we have f (x) 6 f (y).
For an n-variable Boolean function f , the influence of the ith variable on f is defined to be

Ii(f ) =
1
2n

∑
x∈{0,1}n

|f (x+ ei)− f (x)|,

where ei denotes the element of {0, 1}n whose only non-zero coordinate is in the ith position, and addition is done
coordinate-wise modulo two. The total influence of f is defined to be

I(f ) =
n∑
i=1

Ii(f ).

For the proof of our result it will be convenient to introduce the following definition: Given y ∈ {0, 1}n we define the
influence of y on f to be

Iy(f ) =
1
2n

∑
x∈{0,1}n

|f (x+ y)− f (x)|.

[We remark that if we consider the correspondence between the elements of {0, 1}n and the subsets of {1, . . . , n} then the
influence of y on f is not the same as the usual definition of the influence of the set Y (corresponding to y) over f . Since we
will not be using the latter definition, we hope that no confusion arises.]
The notion of influence of a variable on a Boolean function was introduced by Ben-Or and Linial [1]. It has since found

many applications in discretemathematics, theoretical computer science and social choice theory.We refer the reader to [2]
for a survey of some of these applications. In this note we study the effect on the influence after applying an invertible linear
transformation on a monotone Boolean function.
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Given an n-variable Boolean function f and an invertible linear transformation L ∈ GLn(F2), the function Lf is defined by
Lf (x) = f (Lx). In [3] Keller and Pilpel raised the following conjecture.

Conjecture 1 (Keller and Pilpel [3]). If f is an n-variable monotone Boolean function and L ∈ GLn(F2) then I(f ) 6 I(Lf ).

We prove this conjecture in the next section.

2. Proof of the conjecture

Since L is invertible, its determinant is non-zero and thus by the formula for the determinant theremust be a permutation
π of {1, . . . , n} such that Liπ(i) is non-zero for each i. In particular, if P is the permutation matrix which maps ei to eπ(i), then
each diagonal entry of L′ := LP is non-zero. Moreover, it is immediate that Ii(L′f ) = Iπ(i)(Lf ) for each 1 6 i 6 n and thus the
total influences of L′ and L are equal. Thus, we may assume that the diagonal entries of L are non-zero. In this case, we will
prove the stronger assertion that Ii(f ) 6 Ii(Lf ) for each 1 6 i 6 n. We claim that Ii(Lf ) = ILei(f ). Indeed,

Ii(Lf ) =
1
2n
∑
x

|Lf (x+ ei)− Lf (x)|

=
1
2n
∑
x

|f (Lx+ Lei)− f (Lx)|

=
1
2n
∑
y

|f (y+ Lei)− f (y)|

= ILei(f ).
Splitting the sum in the definition of ILei(f ) into two parts depending on whether the ith coordinate is equal to zero or not
we obtain that

ILei(f ) =
1
2n
∑
y

|f (y+ Lei)− f (y)|

=
1
2n

( ∑
{y:yi=0}

|f (y+ Lei)− f (y)| +
∑
{y:yi=1}

|f (y)− f (y+ Lei)|

)

=
1
2n

∑
{z:zi=0}

(|f (z + Lei)− f (z)| + |f (z + ei)− f (z + ei + Lei)|)

>
1
2n

∑
{z:zi=0}

|f (z + ei)+ f (z + Lei)− f (z)− f (z + ei + Lei)|.

Observe that since each diagonal entry of L is non-zero, the ith coordinate of Lei is equal to one and so if the ith coordinate
of z is zero, then the ith coordinate of z + ei + Lei is also zero and so by the monotonicity of f we have f (z) 6 f (z + ei) and
f (z + ei + Lei) 6 f (z + Lei). It follows that

ILei(f ) >
1
2n

∑
{z:zi=0}

|f (z + ei)+ f (z + Lei)− f (z)− f (z + ei + Lei)|

=
1
2n

∑
{z:zi=0}

|f (z + ei)− f (z)| +
1
2n

∑
{z:zi=0}

|f (z + Lei)− f (z + ei + Lei)|

=
1
2n

∑
{z:zi=0}

|f (z + ei)− f (z)| +
1
2n

∑
{w:wi=1}

|f (w)− f (w + Lei)|

= Ii(f ),
as required. This completes the proof of Conjecture 1.
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