Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Influences of monotone Boolean functions

Demetres Christofides

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

ARTICLE INFO

ABSTRACT

note is to prove this conjecture.

Article history: Received 30 September 2009 Received in revised form 13 December 2009 Accepted 21 December 2009 Available online 13 January 2010

Discrete cube Boolean functions Influence

1. Introduction

Given a positive integer *n*, a *Boolean function* on *n* variables is a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$. The function is called *monotone* if for all $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \{0, 1\}^n$ satisfying $x_i \leq y_i$ for each $1 \leq i \leq n$, we have $f(x) \leq f(y)$. For an *n*-variable Boolean function *f*, the *influence of the ith variable on f* is defined to be

Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function

does not decrease if we apply to it an invertible linear transformation. Our aim in this short

© 2010 Elsevier B.V. All rights reserved.

$$I_i(f) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} |f(x + e_i) - f(x)|,$$

where e_i denotes the element of $\{0, 1\}^n$ whose only non-zero coordinate is in the *i*th position, and addition is done coordinate-wise modulo two. The *total influence of f* is defined to be

$$I(f) = \sum_{i=1}^{n} I_i(f).$$

For the proof of our result it will be convenient to introduce the following definition: Given $y \in \{0, 1\}^n$ we define the *influence of y on f* to be

$$I_{y}(f) = \frac{1}{2^{n}} \sum_{x \in \{0,1\}^{n}} |f(x+y) - f(x)|.$$

[We remark that if we consider the correspondence between the elements of $\{0, 1\}^n$ and the subsets of $\{1, ..., n\}$ then the influence of *y* on *f* is not the same as the usual definition of the influence of the set *Y* (corresponding to *y*) over *f*. Since we will not be using the latter definition, we hope that no confusion arises.]

The notion of influence of a variable on a Boolean function was introduced by Ben-Or and Linial [1]. It has since found many applications in discrete mathematics, theoretical computer science and social choice theory. We refer the reader to [2] for a survey of some of these applications. In this note we study the effect on the influence after applying an invertible linear transformation on a monotone Boolean function.

E-mail address: christod@maths.bham.ac.uk.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2009.12.017

Given an *n*-variable Boolean function f and an invertible linear transformation $L \in GL_n(\mathbb{F}_2)$, the function Lf is defined by Lf(x) = f(Lx). In [3] Keller and Pilpel raised the following conjecture.

Conjecture 1 (Keller and Pilpel [3]). If f is an n-variable monotone Boolean function and $L \in GL_n(\mathbb{F}_2)$ then $I(f) \leq I(Lf)$.

We prove this conjecture in the next section.

2. Proof of the conjecture

Since *L* is invertible, its determinant is non-zero and thus by the formula for the determinant there must be a permutation π of $\{1, \ldots, n\}$ such that $L_{i\pi(i)}$ is non-zero for each *i*. In particular, if *P* is the permutation matrix which maps e_i to $e_{\pi(i)}$, then each diagonal entry of L' := LP is non-zero. Moreover, it is immediate that $I_i(L'f) = I_{\pi(i)}(Lf)$ for each $1 \le i \le n$ and thus the total influences of L' and L are equal. Thus, we may assume that the diagonal entries of L are non-zero. In this case, we will prove the stronger assertion that $I_i(f) \le I_i(Lf)$ for each $1 \le i \le n$. We claim that $I_i(Lf) = I_{Le_i}(f)$. Indeed,

$$\begin{split} I_i(Lf) &= \frac{1}{2^n} \sum_{x} |Lf(x + e_i) - Lf(x)| \\ &= \frac{1}{2^n} \sum_{x} |f(Lx + Le_i) - f(Lx)| \\ &= \frac{1}{2^n} \sum_{y} |f(y + Le_i) - f(y)| \\ &= I_{le_i}(f). \end{split}$$

Splitting the sum in the definition of $I_{Le_i}(f)$ into two parts depending on whether the *i*th coordinate is equal to zero or not we obtain that

$$\begin{split} I_{Le_i}(f) &= \frac{1}{2^n} \sum_{y} |f(y + Le_i) - f(y)| \\ &= \frac{1}{2^n} \left(\sum_{\{y:y_i = 0\}} |f(y + Le_i) - f(y)| + \sum_{\{y:y_i = 1\}} |f(y) - f(y + Le_i)| \right) \\ &= \frac{1}{2^n} \sum_{\{z:z_i = 0\}} (|f(z + Le_i) - f(z)| + |f(z + e_i) - f(z + e_i + Le_i)|) \\ &\geqslant \frac{1}{2^n} \sum_{\{z:z_i = 0\}} |f(z + e_i) + f(z + Le_i) - f(z) - f(z + e_i + Le_i)|. \end{split}$$

Observe that since each diagonal entry of *L* is non-zero, the *i*th coordinate of Le_i is equal to one and so if the *i*th coordinate of *z* is zero, then the *i*th coordinate of $z + e_i + Le_i$ is also zero and so by the monotonicity of *f* we have $f(z) \leq f(z + e_i)$ and $f(z + e_i + Le_i) \leq f(z + Le_i)$. It follows that

$$\begin{split} I_{Le_i}(f) &\geq \frac{1}{2^n} \sum_{\{z: z_i = 0\}} |f(z + e_i) + f(z + Le_i) - f(z) - f(z + e_i + Le_i)| \\ &= \frac{1}{2^n} \sum_{\{z: z_i = 0\}} |f(z + e_i) - f(z)| + \frac{1}{2^n} \sum_{\{z: z_i = 0\}} |f(z + Le_i) - f(z + e_i + Le_i)| \\ &= \frac{1}{2^n} \sum_{\{z: z_i = 0\}} |f(z + e_i) - f(z)| + \frac{1}{2^n} \sum_{\{w: w_i = 1\}} |f(w) - f(w + Le_i)| \\ &= I_i(f), \end{split}$$

as required. This completes the proof of Conjecture 1.

Acknowledgement

The author was supported by the EPSRC, grant no. EP/E02162X/1.

References

- [1] Ben-Or, N. Linial, Collective coin flipping, in: Randomness and Computation, Academic Press, 1990, pp. 91–115.
- [2] G. Kalai, S. Safra, Threshold phenomena and influence: Perspectives from mathematics, computer science, and economics, in: Computational Complexity and Statistical Physics, Oxford Univ. Press, 2006, pp. 25–60.
- [3] N. Keller, H. Pilpel, Linear transformations of monotone functions on the discrete cube, Discrete Math. 309 (2009) 4210–4214.