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1. Introduction

Given a positive integer n, a Boolean function on n variables is a function f : {0, 1}" — {0, 1}. The function is called
monotone if forallx = (x1,...,X,),¥y = (1, ...,¥n) € {0, 1}" satisfying x; < y; foreach 1 < i < n, we have f(x) < f(y).
For an n-variable Boolean function f, the influence of the ith variable on f is defined to be
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where e; denotes the element of {0, 1}" whose only non-zero coordinate is in the ith position, and addition is done
coordinate-wise modulo two. The total influence of f is defined to be
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For the proof of our result it will be convenient to introduce the following definition: Given y € {0, 1}" we define the
influence of y on f to be
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[We remark that if we consider the correspondence between the elements of {0, 1}" and the subsets of {1, ..., n} then the
influence of y on f is not the same as the usual definition of the influence of the set Y (corresponding to y) over f. Since we
will not be using the latter definition, we hope that no confusion arises.]

The notion of influence of a variable on a Boolean function was introduced by Ben-Or and Linial [1]. It has since found
many applications in discrete mathematics, theoretical computer science and social choice theory. We refer the reader to [2]
for a survey of some of these applications. In this note we study the effect on the influence after applying an invertible linear
transformation on a monotone Boolean function.
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Given an n-variable Boolean function f and an invertible linear transformation L € GL,(FF3), the function Lf is defined by
Lf (x) = f(Lx). In [3] Keller and Pilpel raised the following conjecture.

Conjecture 1 (Keller and Pilpel [3]). If f is an n-variable monotone Boolean function and L € GL,(F;) then I(f) < I(Lf).
We prove this conjecture in the next section.

2. Proof of the conjecture

Since Lis invertible, its determinant is non-zero and thus by the formula for the determinant there must be a permutation
mof {1,..., n}such that Ly, is non-zero for each i. In particular, if P is the permutation matrix which maps e; to e, ;, then
each diagonal entry of L' := LP is non-zero. Moreover, it is immediate that [;(L'f) = L, (Lf) for each 1 < i < n and thus the
total influences of L’ and L are equal. Thus, we may assume that the diagonal entries of L are non-zero. In this case, we will
prove the stronger assertion that I;(f) < I;(ILf) for each 1 < i < n. We claim that [;(Lf) = I, (f). Indeed,
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Splitting the sum in the definition of I, (f) into two parts depending on whether the ith coordinate is equal to zero or not
we obtain that
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Observe that since each diagonal entry of L is non-zero, the ith coordinate of Le; is equal to one and so if the ith coordinate
of z is zero, then the ith coordinate of z 4 e; + Le; is also zero and so by the monotonicity of f we have f(z) < f(z + ¢;) and
f(z+ e+ Le;) < f(z + Le;). It follows that
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as required. This completes the proof of Conjecture 1.
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