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Abstract

We study the normalized difference between the solution u. of a reaction—diffusion equation in a bounded interval [0, L],
perturbed by a fast oscillating term arising as the solution of a stochastic reaction—diffusion equation with a strong mixing be-
havior, and the solution u of the corresponding averaged equation. We assume the smoothness of the reaction coefficient and we
prove that a central limit type theorem holds. Namely, we show that the normalized difference (ue — it)/+/€ converges weakly
in C([0, T]; L%(0, L)) to the solution of the linearized equation, where an extra Gaussian term appears. Such a term is explicitly
given.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous étudions la différence normalisée entre la solution u d’une équation de réaction—diffusion sur un intervalle borné [0, L],
perturbée par un terme rapidement oscillant qui apparait comme solution d’une équation stochastique de réaction—diffusion avec un
comportement fortement mélangeant, et la solution u de 1’équation correspondante moyennée. Nous supposons que le coefficient
de réaction—diffusion est régulier et qu’un théoréme du type de la limite centrale s’applique. Nous montrons que la différence
normalisée (ue — i1)/+/€ converge faiblement dans C ([0, TT; L2(0, L)) vers la solution de 1’équation linéarisée, ol un terme
gaussien supplémentaire, donné explicitement, apparait.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let € > 0 be a small parameter. In the present paper we are dealing with the following class of reaction—diffusion
equations in the bounded interval [0, L]:

e
W(I’E) ZAME(LE) + f(§7u€(ta$)v v(t/67§))7 t>oa Se [Oa L]a
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(1.1)
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where v is the solution of the stochastic reaction—diffusion equation:

ow

a
S0 6) = Bot.§) + g(£.0(1.6) +0 (6,0, ) S-(1.6). 120, §€[0,.L], 12
Mou(r,0) =Nv(r, L) =0, t>0, v(0,§)=y, £§€[0,L].

Here A and B are second order uniformly elliptic operators and A and A, are some operators acting on the boundary.

The reaction coefficients f: [0, L] x R2 - R and g:10, L] x R — R and the diffusion coefficient o : [0, L] x R —
R are measurable and satisfy usual Lipschitz-continuity assumptions.

The stochastic perturbation in the fast motion equation is given by a cylindrical Wiener process dw/dt which is
white both in time and in space and is defined on a complete stochastic basis (£2, F, F;, P).

What is of interest in applications is the study of the limiting behavior of the motion u. (¢), for time ¢ in intervals of
order ¢!, as it is indeed on such time scales that the most significant changes happen, like for example the exit from
the neighborhood of a periodic trajectory or of an equilibrium point.

Recently, in the paper [5] and in the paper [6] written in collaboration with Mark Freidlin, we have studied this
aspect, that is the occurrence of an averaging principle for a general class of systems of coupled stochastic reaction—
diffusion equations, describing respectively a fast and a slow motion. We have shown that, under the main assumption
that the fast motion equation, with frozen slow component x in L2, admits a unique invariant measure u* which is
strongly mixing, then the slow motion u¢™> converges (either weakly or in probability, depending on the structure of
the system) to the solution #* of a suitable stochastic evolution equation in the Hilbert space L2, obtained by taking
the average of the coefficients of the slow motion equation with respect to the invariant measure ©* of the fast motion
equation.

In the present paper we are going one step further. Namely, we are interested in the study of the normal deviations
of the slow motion u¢ " (t) from the averaged motion it*. As far as we know, up to now this problem has been treated
only in the case of systems with a finite number of degrees of freedom (to this purpose we refer to the fundamental
paper by Khasminskii [10] appeared in 1966). In the infinite-dimensional setting the problem was completely open,
not only concerning the type of results which can be obtained but also concerning the techniques which can be used
in their proofs.

The situation we are considering here is much more simple than the general one considered in [5]. Actually, here we
do not have a system of two fully coupled stochastic equations in any space dimension, but a deterministic reaction—
diffusion equation in dimension d = 1 describing the slow motion, perturbed by a fast motion, obtained as the solution
of a stochastic equation and independent of the slow motion.

Nevertheless, the analysis of the present situation is completely new. First of all, it was not even clear what sort of
limiting motion one could have for the normalized difference (uz'” — it*)/+/€. Actually, it was reasonable to expect to
obtain a Gaussian motion, but the structure of the covariance, which we describe explicitly, was something a priori not
at all intuitive. Secondly, for the techniques which we have used in the proof of our results we are greatly indebted to
the fundamental paper [10], but the passage from a finite-dimensional to an infinite-dimensional setting has required
a substantial introduction of new techniques. Moreover, at present such techniques do not allow to treat the more
general case of fully coupled stochastic systems in any space dimension for which an averaging phenomenon occurs.

In the situation we are considering, we assume that Eq. (1.2) admits a unique invariant measure @ and there exists
a constant 8 > 0 such that for any y, y» € H := L*(0, L),

" v 2 _
E|vt (1) — 2 (1|7, <ce Py —wly, >0

This in particular implies that a spectral gap occurs for the transition semigroup P; associated with Eq. (1.2), which
means that for any Lipschitz-continuous function ¢ : H — R, and for any y € H:

[P = @ 1) | <e™ (Il +1)l@lLip, >0 (1.3)
Now, we denote by u” the solution of the problem:

ou*

g(t,é)=Aﬁx(t,§)+ﬁ(ﬁ"(t))(é), t>0, £€[0,L],
M, 0)=Mu*(t,L)=0, >0, 1 (0,&) =x(&), £ €[0, L],
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where forany x,y € H,

Flx) = / Fx,y) u(dy),
H
and

Fx,)(&) = f(§,x&).y®), &el0, Ll

As proved both in [5] and in [6], for any T > O the family (ur’} c C(0,T]; H) converges weakly to u*, as € — 0.
Moreover, if the diffusion coefficient in the slow motion equation does not depend on the fast motion, the convergence
is in probability. All this means that the system of the two Eqs. (1.1) and (1.2) satisfies an averaging principle.

In the present paper we are interested in the analysis of the deviation of u; ™ from the averaged motion iz*. Namely,
we want to prove that, under a smoothness assumption for the reaction coefficient f in the slow motion equation,
a central limit type result holds, in the sense that

7Y = %(u’éy —u*)—~2z", asel0, (1.4)
in C([0, T]; H). Moreover, we want to identify the weak limit z* as the solution of the linear problem:
1
KO =T"@)+ f UTIADF (" ()" (s)ds,! 1 €0, T, (1.5)
0

where I'* is a Gaussian process taking values in H, having continuous trajectories and independent increments. We
will characterize I'* by showing that it has zero mean and covariance operator given by:
t
E(I*(8), h), (T (), k), = f(q)(ﬁx (5))e""9n, e""Vk)  ds, (1.6)
0
forany i,k € H and t > 0, where @ : H — L(H) is defined by,
o
@ (x)(k, h) = / [((FieCx, ) P Fi(x, ) + Fin(x, ) Pr Fie(x, ), ) = 2F () By (0) ] dr,
0
and where Fj(x,y) := (F(x,y),h)y and F(x):= (Fh(x,),u)y,forany x,h, ke H.
In particular, when it is possible to factorize @ (x) as ¥*(x)¥ (x), for some ¥ : H — L(H), then z* turns out to be
the mild solution of the linear stochastic partial differential equation with non-local coefficients:

07" _ 0
T (1.6) = A (1.6) + [DF (@ (0)z (0] ©) + ¥ (@ (0) 52 (.6). 120, £ €[0. L],

M5, 00 =NZ* ¢, L)=0, >0, 7°(0,6)=0, £ €[0, L],
for some space—time white noise w(z, £).
In order to prove the validity of limit (1.4), we introduce for each € > 0 the linear problem:
1

§e(t):Fex’y(t)+/e(’_S)ADF(ﬁ"(s))ge(s)ds, (1.7)
0
where
1 t
X,y _ (t—s)A ~X y (X
r = ﬁ/e [F (i (s), v (s/€)) — F (" ()] ds. (1.8)
0

! Here and in what follows we shall denote by ¢4 the semigroup generated by the realization in H of the operator A, endowed with the boundary
condition Nj.
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The two key steps in the proof of (1.4) consist in showing that

1. the solution ¢, of problem (1.7) weakly converges in C([0, T]; H) to the solution of problem (1.5), as € | 0,
2. the second moment of the C([0, T]; H)-norm of the difference z; > — ¢2” converges to zero, as € | 0.

The first step follows once we prove that the process Iy > weakly converges in C([0, T]; H) to the Gaussian
process I'* described above. This is the major task of the paper. Actually, we have to prove that, as a consequence of
(1.3), the sequence (e )}ee(o,1] is tight. Tightness is proved in Theorem 4.1 and is a consequence of Lemma 4.2,
whose proof (postponed to Appendix A) is rather technical even if the only two basis ingredients are the spectral gap
(1.3) and the strong Feller property of P;.

In order to identify the weak limit with the process I'*, we have to show that the weak limit of any subsequence
{I. e)f,’y In, With €, | 0, has independent increments, continuous trajectories, zero mean and covariance given by (1.6).
This means that such a weak limit has to coincide with the Gaussian process I™* in C ([0, T']; H). We would like to
stress that the proof of identity (1.6) is quite involved and is based again on (1.3) and on a priori estimates for the
processes ugY (1) and v7 (1 /€). The proof of the independence of increments is based on estimate (3.11), which is on
its turn a consequence of spectral gap and strong Feller property.

The second step is obtained by looking at the equation satisfied by the difference p; > :=z¢> — ¢&'” and by

proceeding with a priori bounds. Hence, the limit
lim E sup |,0;"»"(t)|2 =0
>0 1e[0,7]

follows from Lemma 5.3, whose proof is postponed to Appendix B. For the theory of averaging of systems with a
finite number of degrees of freedom we refer to the monographies [1,2,8,19] and to the papers [7,9—15,18,21,22]. For
averaging of infinite dimensional systems, we refer to [16,17,20].

2. Setup

We denote by H the Hilbert space L2(0, L) of square integrable functions, endowed with the scalar product (-,-) 7
and the corresponding norm | - | 7. Moreover, we denote by | - | the usual sup-norm in L*°(0, L).
We denote by B, (H) the Banach space of Borel bounded functions ¢ : H — R, endowed with the sup-norm,

lello := sup|e(x)]|.
xeH

C,(H) is the subspace of uniformly continuous functions and Lip,(H) is the subspace of Lipschitz-continuous
functions. Moreover, we denote by Lip(H) the space of Lipschitz-continuous functions ¢ : H — R (not necessar-

ily bounded). Lip(H) is a Banach space, endowed with the norm,
lp(x) —o(I
leliLip = [@(0)] + sup ————= =:{p(0)] + [¢]Lip-
x,yeH |x — y|H
Xy

In particular, for any ¢ € Lip(H) we have:
o] < ll@luip(1+Ixl#),  x€H. 2.1)

Finally C 11 (H) is the space of continuously Fréchet differentiable functions with bounded derivative, endowed with
the norm,

el == llgllo + @11 =: llello + sup | Dp(x)] -
xeH

Next, L(H) is the Banach space of bounded linear operators A: H — H, endowed with the sup-norm,

[Allo:= sup [Ax[u,
N

and £, (H) is the subspace of Hilbert—Schmidt operators, endowed with the norm,

[All2 == Tr[A*A].
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The operators A and B appearing in Eq. (1.1) are second order uniformly elliptic operators with uniformly con-
tinuous coefficients and the boundary operators A; and N, can be either the identity operator (Dirichlet boundary
conditions) or a first order operator satisfying the non-tangentiality condition (Neumann, or even general Robin bound-
ary conditions).

As known, the realizations A and B in H of the second order operators A and 3, endowed respectively with the
boundary conditions V] and A3, generate two analytic semigroups with dense domain, which will be denoted by /4
and e'8, t > 0, respectively. Their domains D(A) and D(B) are given by:

Wﬁg(o, L):={x e W*2(0, L): Nix(0) =Nix(L)=0}, i=1,2.

By interpolation we have that for any 0 < r < s < 1/2 and ¢ > 0 the semigroups ¢’4 and ¢'® map W"2(0, L) into
W*2(0, L), and

|e"Ah],+ [e"Ph] < st AT e R, (2.2)
for some constants ¢, s > 1 and 5 € R.
In what follows, we shall assume that the semigroup ¢'4 satisfies the following conditions.
Hypothesis 1. There exists an orthonormal basis {ey}ren in H and a non-negative sequence {oy }xeN such that
Aep = —arer, keN.
Moreover,

(077 Nkz.

In view of Hypothesis 1, for any s € [0, 1] we denote:

|h|? = |h|%)((—A)f) = Z(l +“1%S)h/%-

keN
It is immediate to check that for any s € [0, 1] and & € D((—A)*),
|(e"* = I)h|,, <cst AR (2.3)

Together with (2.2), this implies that for any 6 € (0, 1) and p > 1/(1 —6) and forany f € LP(0,T; H) and 0 <t <
t+h<T:

t+h !
/ =94 £(5)ds — /e(t_S)Af(s) ds| < CT,ph9|f|L!’(0,T;H)' 24)
0 0 "

Moreover, it is possible to show that for any s € [0, 1/4) there exists ¢y, ¢ > 0 such that
crlhlzsp < |hls < e2lhlag 2, (2.5)

so that D((—A)*) = W2%2(0, L), with equivalence of norms.

The stochastic perturbation in the fast motion equation is given by a Gaussian noise dw/dt(t,§), for (t,§) €
[0, c0) x [0, L], which is white both in time and in space. Formally, the cylindrical Wiener process w(t, £) is given
by the series,

w(t, €)=Y e;(E)B;(1),

jeN

2 For any s > 0, WS '2(0, L) denotes the set of functions 2 € H such that

(&) — h(n)|?
[hls,2 = / grEen o d€ dn < oco.

[0.L1?

W$2(0, L) is a Banach space, endowed with the norm |A|s 2 := ||y + [2]; 2.
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for some orthonormal basis {e;};en of H and some sequence of mutually independent standard Brownian motions
{Bj}jen, defined on the same complete stochastic basis (£2, F, F;, P).

The semigroup ¢'? generated by the diffusion operator B, with the boundary condition A, appearing in Eq. (1.2)
is assumed to satisfy the following conditions.

Hypothesis 2.

1. There exists A > 0 such that
e, <e ™. t>o0. (2.6)

2. There exist two operators C:D(C) C H— H and L:D(L) C H — H such that B=C + L and |L*¢! x|y <
c(t N l)_%|x|H,f0ranyt >0andx € H.

3. There exist a complete orthonormal system { fi.}r in H and a non-negative sequence {yy}r such that C fy, = —yx fx,
with supey | filoo < 00 and yi ~ k2.
Remark 2.1. Assume that
Bx = ax” + bx/,
with @ € C'[0, L] and b € C[0, L]. If set,
Cx =lax'], Lx=[b—d]x,

and denote by C and L the realizations of C and £ in H, we have that B = C + L and conditions 2 and 3 introduced
in Hypothesis 2 are satisfied.

Concerning the coefficients f, g and o we assume the following conditions:

Hypothesis 3.

1. The mapping f:[0, L] x R> — R is measurable and the mapping f(&,-):R* — R is Lipschitz-continuous,
uniformly with respect to & € [0, L]. Moreover, the mapping f (&, -, p2) :R — R is twice continuously differen-
tiable, for any & € [0, L] and pp € R, with uniformly bounded derivatives.

2. The mapping g:[0, L] x R — R is measurable and the mapping g (&, -) : R — R is differentiable with,

3 ’
M‘ =Ly <A, 2.7
.p)el0,LIxR| 0P

where A is the constant introduced in (2.6).
3. The mapping o :[0, L] x R — R is measurable and the mapping o (&, -) : R — R is differentiable, with uniformly
bounded derivative. Moreover,

inf , — 0. »
(S,p)el[r(l),L]xRb(g '0)| Co > 28

and there exists B € [0, 1) such that

oGPl _ 0 o (2.9)

up =:
& pel0.L1xr 1+ 1plP ’

In what follows, for any x, y,z € H and & € [0, L], we shall set:
F(x,y)(&) = f(§x(5), y()), GE) =g(5 y©®), [Z(0z]€) =0 (& y(E)2(&).
Due to the conditions in Hypothesis 3, the mappings,
F:HxH—H, G:H— H,
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are both Lipschitz-continuous and, due to (2.9), the mappings,
2 2
Y:H— L(H; L71(0, L)), Y:H— L(L™F(0,L); H),
are both Lipschitz-continuous. Moreover, from (2.8) we have that for any y, z € H,

z(§)

_ 0, L],
o y@y L

[Z7'»nzZ]@) =

is well defined, and
=22 ') =1, yeH. (2.10)

According to Hypotheses 2 and 3, both Egs. (1.1) and (1.2) admit unique mild solutions in L?($2, C([0, T']; H)),
forany p > 1 and T > 0. Namely, as proved for example in [3], for any y € H there exists a unique adapted process
vy e LP(£2,C([0, T1; H)) such that

t t
V() =eBy+ / e(t_s)BG(vy (s))ds + / e(’_s)BL"J(vy () dw(s),
0 0

. . . X,
and in correspondence of such v, for any € > 0 and x € H there exists a unique adapted process u;”

L?(£2,C([0,T]; H)) such that

S

t
utY (1) = e x +fe<"s)AF(u§’y(S), v (s/€))ds.
0

2.1. The fast transition semigroup

Now, we introduce the transition semigroup associated with Eq. (1.2), by setting for any ¢ € B,(H) and t > 0,
Pip(y) =Ep(v’ (1)), yeH.

Due to the differentiability assumptions on g and o and to (2.8) which implies (2.10), we have that P; is a strong
Feller semigroup. More precisely, it maps By, (H) into C;(H ) and for any ¢ € By(H)

c
P, < — , t>0. 2.11
[Pro] ﬁllwllo (2.11)
Moreover, as proved in [4, Theorem 7.3], due to (2.6) and (2.7) and to the growth condition (2.9), for any p > 1,
E[v (1)}, <c(14+e777|ylh), (2.12)

with y = (A — Lg)/2, and there exists some 6 > 0 such that for any to > 0,
supE|vy(t)|D((_B)g) <en(L+1yla)- (2.13)

t>tg

This in particular implies that the family {£(v? (¢))};>, is tight in P(H), so that the semigroup P; admits an invariant
measure .
Next, we assume that the fast equation (1.2) satisfies the following condition.

Hypothesis 4. There exists § > 0 such that for any yy, y, € H:

E[o" (1) — v ()3 < ce ¥y — yaly, 120, (2.14)

This implies that for any ¢ € Lip(H),

|Pio(1) — Prio(2)| < ce ™ [@lLiplyt — ¥2l, (2.15)
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so that the invariant measure u is unique and strongly mixing and
|Prp(y) = (@, 10)| < ce™ (Iyla + 1) @lLip, 1 >0, (2.16)
where
(o, p) = / ¢(2) u(dz).
H
Moreover, according to (2.11) and to the semigroup law, this implies that for any ¢ € By (H),
ce—%
|Pp(y) = (9, )| < 7 (Iyle + 1)llgllo, > 0. (2.17)
Notice that, as proved for example in [6, Lemma 3.4], from (2.12) we have:
/ |z|%, n(dz) =:cp < o0,
H
for any p > 1. Then, by using (2.12) and (2.14), we easily obtain that for any ¢, ¢ € Lip(H):
| P (@) (0) — (o, )| < ce (14 |y[F) lllLipll ¥ lILip- (2.18)

Remark 2.2.

1. As proved in [4, Theorem 7.3], (2.12) and (2.13) are still valid if in (2.9) we take B = 1 and we assume also the

condition,

L, \? ME
kl’p<7g> +k2’p)\,Ti < 1,

for suitable constants ki, k2 p, cp > 0.

2. In [4, Theorem 7.4] it is proved that for any p large enough there exist some constants A1, ,, h2 p, cp > 0 such

that the condition,
P

L,\? M,
hl’p<7g> -i-h;,,);; <1,

implies that there exists §,, > 0 such that
E[v (1) — v ()| <e % |y1 — yally,

for any y1, y» € H and t > 0, and hence (2.14) holds.

3. When the stochastic perturbation in Eq. (1.2) is of additive type, that is ¢ = 1, thanks to (2.6) and (2.7) condition

(2.14) is always satisfied with 6 = (A — L) /2.

4. In the case 0 = 1, in Eq. (1.2) we do not need to have a noise which is white in space but we can also consider a

cylindrical Wiener process of the following type,

wl(t, &)= Qe;E)B; 1),

j=1

for some Q € L1 (H). In this case, in Hypothesis 2 we have to add to (2.6) the following two conditions:
(a) for any ¢ > 0 the operator ¢'2 Q belongs to £,(H) and there exists y € (0, 1/2) such that

o0

/r—y |2 0] di < oo, (2.19)
0
(b) there exists n < 1 such that

Im(—B)~? C Im Q. (2.20)
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Due to the closed graph theorem, condition (2.20) means that there exists some I, € L(H) such that
07 '=ry(-B)".

Such a condition assures that the semigroup associated with the fast equation has a smoothing effect.
Moreover, if we assume that there exists a orthonormal basis {e;} ey in H and two sequences of non-negative
real numbers {0} jen and {2} jen such that

Bej=—0je;, Qej=Aje;,
condition (2.19) becomes,
2
>
Ty =%
— .7
JEN T
and condition (2.20) becomes,
1
inf ;62 >0.
jeN I

In the interval [0, L] we have 0 ~ 72, so that it is not difficult to check that the two conditions above can be both
satisfied, by a suitable choice of the sequence {A;}.

2.2. The averaged equation

In what follows, for any fixed x, y, h € H we define:
Fi(x,y) = (F(x, ), h),.
According to Hypothesis 3-1, the mapping,
y€H> Fy(x,y):=(F(x,y).h), €R,
is Lipschitz-continuous and
[Fux, )] < Lslhla, (2.21)
where L ¢ is the Lipschitz constant of the mapping f(&, ) :R? — R. Then, if we define,
Fooi= [ Fooyu@. xed,

H
due to (2.16) for any fixed r > 0 and x, y, h € H we have:

|EFy(x, 07 (1)) — Fiu(x)| <cLre ™ (1+ ylu)lhln, (2.22)
so that in particular forany t >0 and T > O,
T+t
1 ! _ c
7 [ Bl @) dt = B < (14 Iyl 223)

T

In [5] (and also in [6] in the case of additive noise), we have proved that under Hypotheses 2, 3 and 4 an averaging
principle holds for the process u. (in fact in [6] and [5] much more general situations are treated). Namely, we have
proved that in the setting we are considering here for any x € D((—A)%), witha > 0, and y € H and forany 7, > 0
it holds,

eli_lf})Pq”?y - ﬁx|C([0,T];H) >1n) =0, (2.24)
where u” is the solution in C ([0, +00); H) of the averaged equation:

‘;—l:(z) = Au(t) + F(u(t)), u(0)=x. (2.25)
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Notice that, due to our assumptions on A and F (and hence on F), for any 7 > 0,a €[0,1) and x € D((—A)%), we
have:

sup |ia* ()|, = cr.o(1 + |x]a) < c0. (2.26)
tel0,T]

Moreover, from (2.3) and (2.26) for any « € [0, 1) and x € D((—A)*) we obtain:

" (1) — " ()| S crat =) (14 1xla), 0<s<r<T. (2.27)
3. Some consequences of the spectral gap

In the previous section we have seen that, as an immediate consequence of the spectral gap (2.16), estimate (2.23)
holds. The following result is maybe less immediate, but it is again a consequence of (2.16).

Lemma 3.1. Under Hypotheses 2, 3 and 4, for any ¢, € Lip(H) and y € H and for any T > 0 we have:

t+T t+T
1
tim / / E[o(v” (1) — Ep(v” (1) ][¥ (")) — Eyr(v” ()] di ds

_ f <<p(z) / (P (@) — (o i) dr + v (2) f (Pro(2) — (g, m)dr) 1(d2)
0 0

H
o0

- / ([P + v Prol. 1) — 2, ) (0. ) dr, 3.1)
0

and the limit is uniform with respect to t.

Proof. We have:

t+T t+T +T
f E[o (" () — Ep(v* 0)][¥ (v* () — By (v* (5))] di ds = / (I, 0+ 1, ©)d, (2
where
+T

L= / E[¢ (v ) — Eg (v 0)][¢ (v* 5)) — B¢ (v* (5)) ] ds

t
+T

= / [Ep (v’ )y (v (5)) — Prop(y) Psir ()] ds.
t
Then, from the Markov property, we obtain:

t+T

I, (1) = / [Ee (v (1) Ps—rir (v7 (1)) — Prp(0) Ps¥r ()] ds

t
+T

— / Ep (v (0)[Posts (v (1)) — Py ()] ds

t
T+T—t

—Ep(v’ (1)) f [P (v () — PRy dr.
0
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This implies:

T+T, 00
/ [Ew(vy(t))f(Prw(vy(t)) - <w,u>)dr—lj,w(t)} dt
T 0
4T o0 +T T+T—t
=/E¢(Uy(l)) / (Prlﬁ(vy(l))—(lﬁ,u))drdt-i-/]Ew(vy(t)) / (P (P (y) — (. ) dr dt
T T+T—t T 0

= Ji(t,T)+ Jo(z, T).

Due to (2.1) and (2.16) we have:
+T 00

(. T < el ol / (1+E[0[) / ¢ drdr,
T T+T—t
and then, thanks to (2.12), we obtain:
[N (0. )| < el lupllelip(1+ 1y17) (1 — 7). (3.3)
Analogously, we have:
+T +T
|2, T)| < cl¥ILiplleliLip f (1+ER 07, / e drdt
T t

< cl¥luipleliip(1 + 1y13) (1 — e 7).
Together with (3.3) this yields:

T+T, oo

" ,

Jim f [Ew(vya)) / (P (v () = (W, ) dr _1;4,/(;)} di =0, (34)
T 0

and the limit is uniform with respect to 7. Due to (2.15), for any i € Lip(H) the mapping,

xeH— /(Prw(x) — (¥, w))dr eR,
0

is Lipschitz-continuous and then, thanks to (2.18), we have:

+T [e'9) o0
1 '
Jim = [ B @) [(Rv (' 0) - o) ardr = [ o) [ (@ = ) dr e
T 0 H 0

uniformly with respect to . From (3.4), this yields,

+T 00
1 V
lim — / 1), (dr = / ¢(2) / (Pv (@) = (. ) dr p(d2),
T H 0

uniformly with respect to T > 0. The same is true for Ii’ (p(t) (clearly with ¢ and ¥ exchanged) and then we

get (3.1). O

In what follows, for any x, i, k € H we shall define:

e¢]

@ (x)(k, h) := f [{[FeCe, VP Fi(x, ) + Fi(x, ) P Fi(x, )] i) = 2F5(0) B ()] dr. (3.5)
0
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Notice that @ (x): H x H — R is a symmetric bi-linear map, and
|® (x)(k, )| < c(1+ |xIF) 1kl k|- (3.6)
This means that @ (x) € L1 (H), for any x € H, and
D (x)(k, h) :(cb(x)k,h>H, (k,h)e H x H.

With these notations, in view of (3.1), we have:

t+T t+T
Thm — / / Fk X, vy(t)) EFk(x vy(t))][Fh(x v’ (s)) EFh(x vy(s))]dtds
:(cp(x)k,h)H. 3.7)

Next, for any 0 < s <7 < oo and y € H we denote:
Hi(y) :=o(vy(r), s<r< t).
The o-algebra H.(y) is clearly generated by the family C!(y) of cylindrical sets, that is the family of all sets of the
following type {v>(r1) € Ay, ..., vV (@) € Ag},forkeN,s<ri<m<---<rg<tand Ay,..., Ay € B(H).

Lemma 3.2. Under Hypotheses 2, 3 and 4, for any y € H and s,t > 0 it holds:
—38s

ce
/5

sup{|P(B1 N By) —P(B1)P(By)|: B1 € H{(y), By e HyY, (0} < (L4 1Iyln)- (3.8)
Proof. Let By € C(y) and B> € C¥,(y). We have:

ki ko

Blzm{vy(rl,i)EAl,i}, Bzzﬂ{vy(rz,i)eAz,i},

i=1 i=1
where 0<ryp < <ryg <tands+1<rp<---<ry, <ooand Aj; e B(H),for j=1,2andi=1,...,k;.
We have:

P(BiNBy)=E (HHA“ (v¥(r1.0)) HHAZ, (r2l))
= (]‘[HAI, (v (r1.0) (]‘[HAZ (v? <r2,>)|f,))

i=1
Now, ast +5 <1y <+ <712k,, Wwe have:

ko ka
E(]‘[hz,i(vy(rz,i))m,) = (HAz.(v (r2.1)) <1‘[HA2, (v (rz,))|fr21)|f,>

i=1 i=2

ko
=]E<HA2.1(Uy(r2,l))E<HA22(U (}’2 2) <1_[]IA2, )(”21))|-7:r22)|‘7:r2 1>|~7:t>9

i=3
and then, by iterating this procedure, we obtain,

ko
E(HHAZJ(U),(TQJ‘)N?I) ZE(HAz_l(Uy(rZ,l)) (]IAzz(v (7'2 2)) (HAZk ( y(rz,kz))|fr21k2,1)| e |~7:r2,1)|~7:t)~

i=1
This implies:

ky
(HI[Azl v (VZI))L?:Z) r21 I[HA21Pr22 rzl(I[Azzprzg rzz(HAzg ))](vy(t))

i=1
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Analogously, we have:
k2
E l_[ ]IAQJ‘ (Uy (r2,i)) = P}’Z,lft [HAZJ Pr2,27r2,1 (]IAZYQ Pr2,37}’2,2 (I[Az’g o ))]()’)
i=1
Therefore,
ki
P(Bl N BZ) - P(Bl )P(Bz) = ]E 1_[ ]IAL,' (vy (rl,i)) (Prl] —t [HAQJ Przyz—rzyl (HA2,2 Pr2y3—r2,2 (I[Azﬁ o ))] (vy (t))
i=1
- PrZ,l—t[]IAZ,l Prz,z—rz,l (HAz,z Prz,s—rz,z (]IAz,z o ))]()’))
Thanks to (2.17) and (2.12), this yields:

—8(ra,1—1) —3s
[P(B1 N By) — P(BP(BY)| < (B[ (1), + Iyl + 1) < —— (1 + Iyl),
21—t ﬁ

so that (3.8) holds for B; € C(’)(y) and By € C7Y((y).
The general case of By € ’H(’) (») and B> € HY, (y) follows from a monotone class argument, as C!(y) is an algebra
which generates Hg (y),forany0<s<r<oo. O

An important consequence of the previous lemma is given by the following result.

Proposition 3.3. Assume Hypotheses 2, 3 and 4. Let y € H and let &1, ..., &, be complex-valued random variables
such that &; is H?, (y)-measurable, foranyi =1,...,nand 0 <s1 <t <sp < -+ <8, < 1.

1. If |&] < 1, P-a.s., then
—8A

n n
e
Ell&—||E&|<cn—1)——, (3.9
[e11m V3
where A :==min{sy —t{,..., 8, —ty—1}.
2. Ifthere exists p € (0, 1) such that
sup  |&;| 20-1 = kKn,p < 00, (3.10)
i=l,...n L 1= (2;0)
then
n n —8AN 75
e 4
Ef|& — | | E&| < cnpkl) (—) , (3.11)
E i ]1 | <enoino( 5

for some positive constant ¢, ,.

Proof. The proof of (3.9) is as in [19, Lemmas IV.11.1 and IV.11.2] by induction on n. We recall it for the reader’s

convenience.
Let n = 2. We have:

[E£1& — E&1EE | = [E(&1[E(&IHY () — E&])| < [E(§][E(&2IHE () — E&])| = |EE & — E&(EE,

where

’

g =21 1.

{E(EIH () —E&>0)

Analogously, we have:

|E&16, — B[ ES| < [E&1E, — BEES,

9
where

g =21 1.

(B IHS (v)—EE >0} —
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Therefore, we have:

|E&1&, — E& E& | < |EE(&) — EE|EE)| =4|P(ANB) —

where

= [E(&IH) () — E& > 0} e HI (y),

and

= {E(5{IH2(») — E& > 0} e H2 ().
According to (3.8), this implies:

—8(s2—11)

IE&§152 — E§1E&| < Cﬁ(l +1yln),

so that (3.9) holds for n = 2.
Next, assume that (3.9) is true for n — 1. We have:

n n n—1 n—1
E[]&-[]EB&| < [E]]&& —E]]&Ea |+
i=1 i=1 i=1 i=1

and then, from the inductive hypothesis,

, (3.12)

n—1 n—1
(E]‘[s,- - 1‘[15;,»)1135"
i=1

i=1

—38(sp—ty—1) 75A ce*SA
EHE: HE‘; \ﬁ-i-c(n—z) NIy C(n—l)ﬁ.

Now we prove (3.1 1), in the case the moduli of the random variables &; are not pointwise bounded by 1, but their
momenta satisfy condition (3.10). As before, we proceed by induction on n and we first verify (3.11) for n = 2.
For any R > 0 let us define:

Arg:={l&] <R} As g :={l&I <R}
We have:

E&1& — B EE = E(5162: ALr N Az g) + E(§162: A g U AS ) —EEES
= (E&1la, p&2la, p — &1l E&Na, o) + E&1820a uas
— (B&11a, pE&lag | +E&1Tac E&la, o +E&1lac Eéoll4q )
= Jir+ o+ J3R.

For J; r we have:

Ji.r= R2<E§1 I[Al R%—R]IAZR _Eg ]IAI RIElg ]IAz R)

and then, as fori =1, 2

&i &i

Ié Ht’ ), EjHAi,R <1, P-as,
according to (3.9) we have:

o34 5
|J1.rl <c R-. (3.13)
A
For J; g, if p € (0, 1) is a constant fulfilling (3.10), we have:
2 . c 12_0 2 i l_p
2,817 < B[ Tl 7 (P(AS ) +P(45.£)) 77 <Elei| 7Bl ™7 R 77 (Bl | +Ele2))

so that from (3.10) we obtain,
|hm<%@“RP (3.14)
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Analogously, for J3 g we have:
|J3.8] < cp;c2+"R 2 (3.15)

Therefore, collecting together (3.13), (3.14) and (3.15), we conclude that for any R > 0,

-84
€ 240 p—
E&1& — & EE| < c—=R* +coky PR
I R
By taking the minimum on R > 0, this yields:
—5A
2 (¢ L
[E&152 — E§1E&| < cpky )| —F— . (3.16)
PAVA

Next, if we assume that (3.11) is true for n — 1, we conclude that it is true also for n. Actually, as

n—1 ) I_Tp Z(n 1)
(E]‘[mﬂ) (]‘[Em ) = Kn.p»
i=1
P

due to (3.12), (3.16) and (3.11) for n — 1, we obtain:
e84\ 155 .- e\ 15
cp/c «/Z + Cn—1.pKp_1 pKn.p ﬁ ,

E]‘[s, ]‘[Es,

which implies (3.11) forn, as k,—1 p < kn,p. O

4. Construction of the limiting diffusion

For any € > 0 and x, y € H, let us consider the problem:
dr 1 _
Z(t) =AI(t) + E[F(ﬁx(t), v(t/e)) — F(a* ()], I©0)=0, 4.1)

where it* (¢) is the solution of the averaged equation (2.25). By the variation of constants formula, the solution I;"” (¢)
is given by:

t

X = %@ / "OALF (i (5), v* (s /€)) — F (" (5)) ] ds
0

In this section we are interested in studying the weak limit, as € | 0, of the sequence (I Yes0in C([0,T); H),
for any 7 > 0. To this purpose, we first prove that such a sequence is tight and then we identify uniquely the weak
limit of any subsequence and hence of the whole sequence.

Theorem 4.1. Assume Hypotheses 1-4 and fix x,y € H and T > 0. Then

1. forany p € (0, 1) there exist p, > 1 such that for any 0 <t <t +h < T and p > p,,

SupE| Y (t+ 1) — I |5 <erp(1+ [xlfy + 15 1P, (4.2)

e>0

2. there exists 0 € (0, 1/2) such that for any p > 1,

supE sup |[IY(0]) <erp(1+1x15 + [ylhy). (4.3)
e>0 t€[0,T]

In particular, the sequence {L(I',"7)}e=o is tight in P(C([0, T1; H)).
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Proof. Step 1, proof of (4.2). Forany 7 >0and 0 <t <t + h < T we have:
XY +h) -7 =

("4 —1) [ "TALF (@ (r), v (r/€)) — F(i* ()] dr

-

o—

t+h

+ %E / eUTRDALF (@ (r), v¥ (r/€)) — F (it* ()] dr
t

This means that

2
T2+ ) = TEY 0 < / COAE@ (v r/e) = F (@ ()] dr
€ 0 H
t+h 2
+§ / SHDALE (7 (1), v (rf€)) — F (@ (1)) ] dr
H

t
2
=: g(le,l + I 2).

Now, we estimate the two terms /. | and I ». We have:

o0
ler=D (7" -
k=1

0
Then, as oy ~ k2, forany p € (0,1) and n > 2,

t

/e—(’_r)ak<F(ﬁx(r), vy(r/e)) — F(ﬁx(r)), ek)H dr

1+p o k

X (e~hu _ 1)2 _ )= (dp)@tD
no_ h1+p|: (e 1) - 271” o 2nn
k=1 (agh)™

t "
f e TI(F (@ (r), vV (r/€)) = F (@ (1), ex) y dr }

0

n—1
| _Utp © A+t
<ot (o ) e
k

=1

He‘“ A (@ (i), v (rif€) = F (1)), ex)yy dry - -dran.
[0,]2 i=1

Therefore, we have:

(1+ﬂ)(n+l)
EI! <ch1“’Za / Ene e B (@™ (r;), vV (ri /€)) — F(it* (i) ex)y dry -+ -dro.
k=1 o =1

In order to estimate the term above we need the following crucial lemma, whose proof is postponed to Appendix A.

Lemma 4.2. Assume Hypotheses 2, 3 and 4 and fix any « > 0 and B € [0, 1/3). Forany x,y,h€ H,r > 0and € > 0,
define:
W iy (r) :=(F (" (er), v’ (r)) — F (" (er)). h) . Do p(r) :=e"r P,
Then, forany j e Nand 0 <s <t < T we have:
a-2p)j

J
i (=)o Al 2 ;
Enﬁa,ﬁ(t—ri)‘lfe,h(ri/G)drl -drj| <erj(1 +|x|J +|y|j) é(T) il (44
i=1

[s.1)
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If we apply Lemma 4.2 in the time interval [0, 7], with « = o, 8 =0, j = 2n and h = ej, we obtain:

o]

(tp)r+1)
EI"| <coronh'™ (1+ |x[3 + 113 Zak .
Hence, if we take p € (0, 1), we can find n,, € N such that
(I+pm+1 1
- >, n=n,,
2 2
so that
EI ) <cronh'™P(1+ x5 +1y13)e". n=np. (4.5)
For the term I, » we have:
00 t+h 2
Lo :Z f e 2R F (% (r), v¥ (r/€)) — F (" (), ex) , dr |
k=1l

so that, by proceeding as for I 1, for any n € N we have:

<1+p> o0 (1+P)(71 1
Z“k Z“k

X / ]_[e*(”h*r”“k(F(mr,-), v (rif€)) — F(i* (ri)), ex)y dri- - drag.

[t,t++h]?" i=l
Therefore, by applying again Lemma 4.2 in the time interval [z, 4 ], with o« = oy, 8 =0, j =2n and h = e;, we
obtain:

i dtp)n=D) _

EI”, <cron(1+ 113 +1y13) Z " (hag A1)

o0

<cranh P (14 Ix I3 + IyIF Z

(I+p)(n+1)

—n

so that, as above for I, 1,
EIZ, <cronh'P(1+ x5 +1yI3)e", n>np.
Together with (4.5), this implies (4.2) with p, =2n,.

Step 2, proof of (4.3). By stochastic factorization, for any 6 > 0 and 8 € (0, 1/2) we have:

(—AY 5 (1) = %Si“ﬂ”ﬂ f (1 — 5)f~1et=94y. (s) ds.

where
Ye(s) = /(s =) P (=) STIALF (" (r), vV (r/€)) — F(a* (r))]dr

Hence, for any n € N and 8 > 1/2n we have:

(A T Ol <

1t
(B=1)2n
(/ = ds) f|Y€(s)|Z'ds.
0
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:

Now, if 0 > 0 we have:
/(s — 1) P ST(F (@ (r), v) (r/€)) — F (" (1)), ex),, dr

0

-1
& 7% " & 2n9+(n—l)2(l+ﬂ)
< %
k=1

2n
x / [t =iy Pem =% F (" (ri), v¥ (ri/€)) — F (" (1)), ex)yy dry - -dran.

i=1

o]

Ye()| o = (Za£9
k=1

[0“?]2:1

Therefore, if we assume n > 2, we can apply Lemma 4.2 in the time interval [0, s], with 8 € (1/2n, 1/3), o = o,
j =2n and h = e, and we obtain:

2n 2 oy o= 2004 A q gy
E|Ye()]y <cron€" (14 1[5 +1y17) ) : :
k=1
Hence, if we assume n > 2 and 6 € (0, 1/14) we can find § € (1/2n, 1/4) such that

(n—=1DA+0) - 1

n(l —2B) —2n6 — > 5

This implies
2
E|Ye(s)]5 < crone” (14 X7 + y13).
and then

, 2
E sup [(—A)/' T2 0|, <craa(1+ X7 +1IF). O
te(0,7T]

As the family (L)) eso is tightin C ([0, T']; H), for any sequence {e,} | O there exists a subsequence {€,, }xeN
such that I’;:;{y weakly converges to some random element I"* taking values in C ([0, T]; H). In what remains of the
present section, we characterize ' and in particular we obtain the weak convergence in C ([0, T']; H) of (I Yes0

tol,ase 0.

Lemma 4.3. Under Hypotheses 1-4, for any x,y, h € H and for any T > 0 we have:
sup |E(I'Y (), h),| <cr(1+1ylu)lhlave, €>0. (4.6)
tel0,T]

In particular, forany t € [0, Tl and h € H,
E(I* (1), h),, =0.

Proof. With the notation introduced in Section 2, for any & € H we have:

'
1 _
(Fex’y(t), h)H _ ﬁ /(F(ﬁx(s), UY(s/e)) — F(ﬁx(s)), e(ffS)Ah)H ds
0

t
1 -
= ﬁ /(Fe(r—s)Ah(lx_lx(S), Uy(S/E)) — Fe(t—s)Ah(lz_lx(S)))dS.
0

In view of (2.22), with a change of variables, this yields for any 7" > 0,
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1
[E{rz @)y | < 2 1+|y|H)|h|H/”e(t_S)AHoe_zﬁ_asds

cL (

Je

<cT\/E(1+|y|H)|h|H/e—2‘“ds<cT¢E(1+|y|H)|h|H, te[0, T,
0

so that (4.6) follows. O

Lemma 4.4. Under Hypotheses 1-4, forany t >0, x, h,k € D((—A)%), witha > 0, and y € H we have:
'
~ 2y : _ p —5)A —5)A
GIEI%)E(FGUQ), h) (F25Y (1), k), = /(d)(ux ())e" "D n, e""Vk)  ds, 4.7
0

where @ : H — L(H) is the mapping defined in (3.5).
In particular, forany t € [0, T]and h,k € H,

E(I* (1), h) (7" (), k) (@ (s))e" "4 h, e ~4k)  ds. (4.8)

H

o\

Proof. Forany y,he€ H,0<s <t and € > 0 we set v.(t) := v”(¢/€) and h;(s) := "4 %. We have:

E(I2Y (), h) , (TX (1), k)

tt
1 _ _
=- / / E[ iy ) (i (5). 06 () — By 5y (@ )) [ Foo oy (7 (), ve () — Fiooy (@ () dr dis
00
1 tt
-- / / E[ Foy ) (i (5). e () — EFp ) (7 (), ve ) |[ Pty (@ (). e ()) — EFeyry (@ (). ve () dr dis

tt
1 _ _
2 / / [EEh ) (@ (5). 06 (5)) — Fiytoy (@ ) [[EFi i (@ (). ve () — By (@ (1)) ] dir s
00

= J1,e(t) + Joe(2).

Since

t
1
D)=+ / [EFiy o) (i (5). e (5)) — oy (7 ()] s / EFiy (@ (). ve(s)) — Feygo) (@ (5))] ds
0 0

according to (2.22) we obtain:

|12.e ()] < (1+|y|H |h|H|k|H(/e s) <cre(1+yI3) hlnlkl g,
0
so that
35% E(IY (0), h) (F5Y (1), k) = 35% J1e(t). 4.9)

In order to compute the limit of J; < (¢), we divide [0, ¢] into n intervals of size t/n := 1, and we define:

Ci = [inn, i + Dna| x [ing, G+ Dny], i=0,...,n—1.
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Moreover we set:
n—1
c:=JG. D:=(0.11x[0.1])\C

This means that
n—1 n—1
D:(U[o,inn]x[inn,aﬂ)nn) (Umn,(z+1>nn [o,inn]).
i=1 i=1
Next, we define:

Aci(s.7) :=E[ F ) (@ (). ve(8)) = EFp, () (i (5). ve (s)) ]
X [ Fio(r) (@ (1), ve (r)) — EFg, ) (0 (r), ve(r))],  0<s,r <.
If s > r we have:
Acs(s,7) = E[(Fiytr) (0" (), ve (r)) = EFg ) (" (r), ve (1))
5 B(Fiy(5) (8 (), ve(8)) = EFpy ) (8 (5), ve (5)) | )]
= E[(Fi, () (@ (), ve (1) = EFp ¢ (" (1), ve (1))
X (Pa=r Fiy(5) (8 (5). ) (ve (1)) = P i) (" (5), 1) (1)) ]
=EFy ) (" (1), ve (1) (Pazz Fiy ) (i 5). ) (ve () = Ps Fiy(5) (@ (5). ) ().

From this it follows:

| Aci(s.r)| < crlk|gE((1+ [a* ()], + [ve ()] ;)

Due to (2.16) we have:

P% Fh,(s)(lzx(s), ~)(UE(I")) Ps th(s)( (s) )(y)|)

qu,,,(s)(ms),.)(ue(r)) Ps Fi ) (" 5), ) )]
Ps- th (s)( *(s), )(Ue(”)) th(S)( (S))

28(s—r)

<erlhlu(1+ |ve()]y)e

() (#5(5), ) ) = Fpy) (@ ()|

and then
28(s—r)

_ 2 2\ _
|Aci(s, )| <erlhlmlklg (1+ @ ()] + Elve(r)|5;)e ™«
Thanks to (2.12) and (2.26), this implies that for any i =0,...,n — 1,
iny (i+1)n, ing @i+1ny
26r
Aci(s,r)dsdr| < cT|h|H|k|H(l + le%i + IyI%I) / e dr / e < ds
0 iny 0 iny

<erlhlulkla(1+ x + y)e

‘// Aei(s,r)dsdr
D

Next, forany i =0, ..., n — 1 we have:

In particular,

<2nerlhlulkln (14 x1% + 1% (4.10)
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@I+Dny i+, +Dnn (+Dn,
Acy(s,r)dsdr = / f E[Fay iy (@ 10)- e ()) — By () ve(5))]
inn inn i77n inn

X [ Fie i (@ (im), ve (1)) — EFi iy (@ (im), ve (r)) | ds dr
(i+Dnp 4+,
+ E[ F,(5) (i8* (), e () Fiy ) (8 (), ve (7))
g i
— FiGing) (0 i110), ve ($)) Fig iy (@8 (i), ve () ] ds dr
(i+Dnp 4+,
- / / [EFi, 5) (7 (5), ve (8))EFi, () (@ (r), ve (1))
in N
— EFh, (iny) (@ (i), ve (9))E Fie iy (@ imn), ve (r)) | ds dr
=li+h;+1h;
Due to the Lipschitz-continuity of F and to (2.3), from estimates (2.12) and (2.26) we get:
(i+Dnp (+1)n,
| < erlhlulkln / / (7 (5) — @ ima)], + () — i (ma)] )
i1 inn
x (1+|a*®)|, + |@* )|y +Elve(®)|, +E|ve(r)| ;) dsdr
+Dnn (+1)m,
ver [ [ (ka8 = ] bl (O = ) )

inn iny
x (14 |@ ©)|3, + @ O3 +Elve@)|3, + Elve()|,) dsdr
@+Dny
< 2mnerlhlalkle (1+ 1x13 + 113) / (%) = & Gnn)| y + (5 — ina)®) ds.
i1y

Then, thanks to (2.27), we conclude that

112,i] < 2my e |hlalkle (14 XI5 + 1y13)-
The same arguments can be used for I3; and we get:

n—1

> (0l +113.41) < ern™ T hlg ko (1+ x13 + [y1;)- (4.11)
i=0

Concerning the terms /1 ;, with a change of variables we have:
G+Din G+

11,1'=6|:i / / il,i(ss")deri|77n7
Nn

inn inn
€ 3

where

11, (s, 7) == E[ Fy iy (@ i0), 07 () = EFpy iy (@ ina), 07 (5)) ]
X [ Ftim) (@ inn), v* (1) = EFi i, (@ ), 07 (1) ].
Then,
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Il,i = 6(@(ﬁx(inn))e(t_iﬂn)Ah’ e(t—inn)Ak)Hnn

(l+1)77n (l+1)77n

+{n / / I i(s,rydsdr — (& (minn))e(’"""“h,e(“‘""“k)H}nn
n
l’ln

= G( (u (lﬂn))e(t lﬁ;l)Ah’e(l lnn)Ak)Hnn+€je,inn~

Therefore, collecting all terms, we have:

1t
1
J],e(t)zg// Ae (s, r)dsdr
00
n—1

// Aes(s,r)dsdr + - Z(Izlﬂg,)

n—1
+ Z (i* (ina)) e A n, 1Ay 4 e i
i=0
If we take ne ~ e~ 7, with (1 +a)~! <y < 1, we have:
lim ene =0, lim en!** = o0,
e—0 e—>0
and hence, in view of (4.10), (4.11) and (3.1), we obtain:
ne 1 ne—1
tim ~ //Ae,(s rdsdr+ - Z(Izl #130)+ 3 Joimn =0
Moreover, we have:
ne—1 !
lim (@ (@ (inn))e '~/ AR, 1= ImIAR) 1y, = / (@ (@ (s))e "9 %h, " 94k), ds,
€e—
i=0 0

so that
t

111% Jie(t) = /(cb(ﬁ’C(s))e(’*”Ah, e=I4k) . ds.
€E—>
0

Together with (4.9), this yields (4.7).
From (4.7) we get (4.8) for h, k € D((—A)*). Now, due to (3.6), the mapping,

(h,k)e Hx H /(e(’_S)AcD(ﬁx(s))e(’_S)Ah, k), ds €R,

is continuous. Then, as the mapping,
(h,k) € H x H > E(I"™(t)h, ' (1)k),, € R

is continuous and D((—A)%) is dense in H, we obtain (4.8) forany h, ke H. O
Lemma 4.5. Under Hypotheses 1-4, the process I'*(t), t € [0, T'], has independent increments.

Proof. Letn e Nand0<s; <t <s$p <--- < s, <1, <T. With the notations introduced in Section 3, we have:

' , ! t
expi{IY (1)) — I (s)), h)y € H s///eE ),
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forany h € H and j =1, ..., n. Then, according to (3.9) we have:

n 3 A
. ) e €
Eexp(zZ(F“(t,)—F“(s,) h) ) HIEexp (T2 (1)) = T2 (5)), b)) | <cn —1) —,
Jj=1 Jj=1 >
where A :=min{s, —t1,...,8, —t,—1}. As
n n
elig})Ef:xp(i o - Fex’y(sj),h)H> =]Eexp<i () = 1 s)). h)H),
j=1 j=1
and

lim HIEexp i(I5Y () — T (s)). h)y HIEexp (@) — I'*(s). h),,),
j=1
this implies

n

Eexp(i D (T = I (s). h) ) l_[Eexp (M) — ™ (sj). h),).
j=1 j=1

so that independence of increments follows. O

As the process I'*(¢) has continuous trajectories and independent increments, we have that ' (¢) is a Gaussian
process. This means that it is characterized by its mean and covariance. Thanks to Lemmas 4.3 and 4.4, this allows to
obtain the following result.

Theorem 4.6. Assume Hypotheses 1-4 and fix x € D((—A)%), with o >0 and y € H. Then (I Yes0 weakly con-
vergesin C([0,T]; H), as € |, 0, to the Gaussian process I'’*, with independent increments, zero mean and covariance
operator given by (4.8).

5. The limiting result

Since we are assuming that the mapping f (£, -, p2) : R — R is continuously differentiable with bounded derivative,
uniformly with respect to & € [0, L] and p € R?, it is immediate to check that the mapping F(-, y) : H — H is Giteaux
differentiable, and

[DyF(x, y)z](é)— o (S x(§),y(©))z(6), & €l0,L].

In particular, the averaged coefficient F : H — H is Gateaux differentiable, and

DF(x)z = /[DXF(x, nz]udy), x,z€H.
H
Now, for each € > 0 and x, y € H, we consider the problem:

a¢ -
S0 = AL + DE(@ 0)¢ (1) + H (1), 2(0) =0, 5.1)
where

HEY (1) i= —= [F (@ (). v (/€)= F(a* (1))].

Sl -

We denote by ¢ (¢) its solution. We have:

t

N0 =T ) + / VD (i ()¢5 () ds.
0
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Proposition 5.1. Under Hypotheses 1-4, forany T > 0 and o > 0 and for any x € D((—A)%) and y € H, the sequence
{227 }es0 weakly converges in C ([0, T]; H) to the solution of the problem:

1
z(t) =F"(t)+fe(’_s)ADF(ﬁx(s))z(s)ds, tel0,T]. (5.2)
0

Proof. For any v,z € C([0, T]; H) we define:
t
@, (2) (1) = v(t) + / "IADF (" (s))z(s)ds, t€[0,T].
0
It is immediate to check that @, maps C([0, T']; H) into itself and if we endow C ([0, T']; H) with the norm,
|zl cqorim = sup e M|z,
1€[0,T]

we have that for A large enough @, is a contraction on C ([0, T']; H). This means that it admits a unique fixed point in
C ([0, T]; H) which we denote by @ (v). Clearly, @ : C([0, T]; H) — C([0, T]; H) is linear and bounded.

Now, for any € > 0 we have ¢ = @ (I',"”). In the previous section we have proved that I, is weakly convergent
in C([0,T]; H), as € | 0, to the Gaussian process I"*, then g“ex’y is weakly convergent in C([0, T]; H), as € | 0, to
@ (I'*) which is in fact the solution of problem (5.2). O

Theorem 5.2. Assume Hypotheses 1-4 and for any x,y € H and € > 0, define:
ug” (1) — " (1)
NG

Then, if x € D((—A)%), with a > 0, we have that ) weakly converges in C([0, T]; H), as € | 0, to the solution z*
of the linear problem,

V(@) = , tel0,T].

t
(1) =Fx(t)+/e(’_S)ADF(ﬁx(s))zx(s)ds, te[0,T1, (5.3)
0

where ' is the Gaussian process arising from Theorem 4.6.

Proof. In view of Proposition 5.1, it is sufficient to show that

mE sup |25 (0) — 5 (0|5, = 0. (5.4)
T]

e—0 telo,
If we set pf’y(t) =07 — Cex’y(t), we have:

1 1

t
o0 = [ D 6 (/) G ds+ [ s ds 4 [ ) ds,
0 0 0

where

@2V (1) = —=[F (@ (1) + Vez2 Y (1), v7 (t/e)) — F(a* (1), v¥(t/€)) — Dy F(i* (1), v” (t/€)) ezl ¥ ()], (5.5)

1
NG
and

VIV (1) i= [ D F (@ (1), v¥ (t/€)) — DF (@ (1))]¢5 (1) (5.6)

Therefore we have:
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t 2 t 2
f E=)AQTY (s)ds +3/ U=y X7 (5)ds
0 H 0 H
so that, due to the Gronwall Lemma,

|pé y(t)|H <3

+CT/|p;”(s)|Hds

T

sup o2 0, < ch(
t€[0,T]

0

K 2 s 2

fe(s_r)A(pj’y(r)dr + /e(s—’>A1/f;‘»Y(r)dr )ds.
H

0 H g
This implies (5.4), once we have the following result, whose proof is postponed to Appendix B.

Lemma 5.3. Assume Hypotheses 1-4. Then, for any € >0, x,y € H and T > 0 we have:

K 2 s 2

E( sup /e“—’)Agog»Y(r)dr + /e(s_’)Alﬂé"y(r)dr <Ay’ (e),
s€[0,T] H H
0 0

with
lim 177 (€) = 0.
e—0

Appendix A. Proof of Lemma 4.2

First, we notice that it is sufficient to prove the lemma for j even. Actually, if (4.4) is true for all even integers, for
j =2n+ 1 we have:

2n+1 2
[]E / l—[ﬁa,ﬂ(t—n)‘l’e,h(ri/é)drl~--dr2n+1]

[s,1]2n+1 i=1

n 2 n+l 2
<E< / Hﬁa,ﬁ(t—Vi)lpe,h(ri/é)drl-..drn> E( / Hﬁd,ﬁ(t_ri)lpe,h(ri/é)drl"'drn+1>

s, =1

[s,e]+ i=1
2n 2(n+1)
[ [Pt —roWeni/e)dri---dry, E [ st —roWenti/e)dri---dryui

[S’t]Zn i=l1 [S,[]Z(n+l) i=1

2(2n+1 22n+1 t—s)anl
<ceraneramin (14 X3 4 1y ) e 2n+1<7

(1=28)(2n+1)
)

’

so that (4.4) is true for j = 2n + 1. This means that if (4.4) is true for all j even, then it is true for all j odd.
Next, before proceeding with the proof of (4.4) for j even, we prove a preliminary result.

Lemma A.1. Letus fixn e Nand T > 0 and for any i =1, ...,2n let us define:
T
@ i(r):=G (u (er), v” (r)) (u (er)) 0<r<—
€

for some Lipschitz-continuous mapping G;: H x H — R. Then, under the same hypotheses of Lemma 4.2, for any
I<ji<ps<nl<j<nand0<r < - <y < T and for any p € (0, 1) we have:

El_[(pez(rz

i=ji

(A1)

(S(rjz—r]2 1) ZL
2—Jj1t+1 =i+l
<er oKy jy (14 ™+ 1yl )(7) ;

Fj» = Tj—1

and
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2n
Jej(ris.rm) = |E] [ @eilri) E]‘[cbﬂ(r,)E H P i (r)

i=1 i=2j+1
—ér
e J\ 2+p
< crpnKion (14 X7 + |y|%;')<—A) : (A2)

G

where
Kjij: l_[ 1GillLip,
i=ji

and

Fj=max(ran — ran—1,r2j+1 — 12;)-

Proof. For any i =1,...,2n, we have @, ;(r) € H/.(y) and, according to (2.12) and (2.26) (with « = 0), for any
€e>0,1<j1<jp<2n, p>1landr €0, T/e] we have:

Jj2 p J2 o J2 o J2
E[[] ®eit)| < c(l + 3 @t e [P 4 ZE|vy<n>|§f‘“+””> [TuGi?,

i=ji i=j1 i=j1 i=ji
N N J2
<erp(L+ Il 0P 4 1y ) TTHGHT, (A3)
i=ji
Therefore, we can apply (3.11) to the random variables @¢ 1(r1), ..., Pe 21 (r2,) and forany 1 < j <2nand p € (0, 1)

we have:

El_[Q)E,(I’l)—]EH(pe,(F,)]E l—[ q)et(rt

i=j+1

(1 (N (Ad)
<CT’ , K1,2 +|x| +|y| (7) . A.

Moreover, due to (2.16),
|E® j,(rj,)| < ce™2h (14 1y1#)[G j,Lip-
Then, in view of (A.3) and (A.4) this implies:

J2 2 -1 -1
E[] @it <|E]] Peiti) =E [ | PeiDEPe ()| + [E [ | Pei r)EPes(rj,)
i=j i=j i=ji =]
L L —8(rjy=rj—1) m
- 1 - 1
< CT,p,n(l + |X|Z N + |y|Z e )( > l_[ ||G ||L1p7
Tjp = Th—1

i=j

so that (A.1) holds.
In particular, we have:

El_[‘pez(rl

and hence, thanks to (A.1) and (A.3), forany 1 < j < 2n,

2 ’ e —8(ran—ran—1) ZL

n n

<crnpKion(1+ XI5 + 5| ——= ;
A T2n —1n—1
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2n
El_[q)et(rz)_]El_[q)et(rt)E l—[ D i (ri)
i=j+1
( 2’1) e~ 8(ran—ran—1) y
<crpnKion (14 1x13 + 1yl (7) . (A5)
. " A T2n —n—1

Therefore, as the mapping s — e —5s /+/s is decreasing, combining together (A.4) and (A.5), for any 1 < j <n we
get (A2). O

With a change of variables we have:

2n 2n
Hﬁa,ﬂ(t — )W p(rif€)dry---dry = €"E / Hﬂa,ﬂ(l‘ —er)Wen(ri)dry ---dra,
[s,020 =1 sty 11

=: e?"EH,(s,1).

For any permutation (o (1), ..., 0(2n)) we have:

2n 2n

[ [Pest — era@)Wen o) = [Papt — €ri)Wen(ri).
i=1 i=1

and then it is immediate to get:

t
€ 'n 2 9n

Hes =co [ [ [TT0uste - ernwenirdn--ar,

s s s =1
€ €

for some constant c¢,,. In particular, through the rest of the proof we shall assume s/e <ry <--- <y, < t/€.
Now we can prove (4.4) by induction on n. Thanks to (A.1), for n = 1 we have:

L

rn
|EHc (s, 1)|=c2 / / D p(t — €r1) 0. p(t — €r2)EWe 4 (r1)We y (r2) dry dra

r

- —8(r2—r1) \ 745
e
<erpa(1+ Ixl + Iyi3) Il / / Vo p(t — €r1) e (1 — erz)(ﬁ> drydrs.

s
€

As p/(2+ p) < 1/2, with a change of variables we get:

e—8(r2=r1)
// Vo, p(t — €r) Vg, p(t — 6r2)<m) dridr

=5 =5

pome / e (<>>—
—b —ena —b —eria
r, e r, e dridr
2 1

EVA S Tl )

r2Be2ere gy

€
0 r
= +00
a _ férl %
/ r) 28 —26}’20( / ( ) dr1 de < 6—2/3
0

Then, with another change of variables:

STl
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a(t—s)
[EHc(s,1)| <

er(L+1x3 + 1y3)e P eay 1720 | =2~ dr
0

er(1+ Ixl3 + 1y13) e 2P (ea) =127 ((

t—s)a A 1)1_2/3
and this implies (4.4) for j = 2.

Next, assume that (4.4) is true for any even integer j < 2n. For any r = (r],

1) €[5, 117", with s
ran < t, we denote by j(r) the integer such that

, (r2j+1 =12j) =r2j(r)+1 = 12j(r)-
j=1,.., n—1
Then, with the notations introduced in Lemma A.1, we have

e 2n "2 o

[EH (s, 1)] < // /nﬁ‘aﬂ(t €ri)de.j) (1 ram) dry - droy
s i=1
r2j "2 2j
WS o= e[ vestrofan-
j= 1A S i=1
€ r20—j) "22(n—j) 2(n—j)
xf / / l_[ Do, p(t —€ry)|E l_[ e n(t, ri)|dry---rp—j)
s s 3 0=l i=l
=l e+ e

If we apply (A.2), with @ ; =W, j forany i =1, ..., 2n, we obtain:

5 5 efzsn(rzn*rznflJrZ,'-l:_l1 T2i41=72i)
Je,j(r)(rlv . Tp) < chn(1+|x| +|)’| n)|h|1-;l

(ron — V2n—2)'6
where
L
n2+p) 22+ p)°
This implies:
Ie <crpa(1+ x5 + 13101
5 2n
—8n(ron—ran—2) 2n
Vo, p(t — €ri) “n (217020 gy dry
/}f /(7211_7211 2)/)1—[ *h 1_[ "

2Ber pn (L4 1x13 + 1y[37) 1713

t

S t—s

T e €
_(EC(‘HS )ron—2
—(ea—8,)ra, .~ B —eary,_1,.—B -B
X / e S, e S SN —_—
0

Ton—2
(ran—2 —rap)P "~
2n "n—1
t—s t—s

1=s 1=s
5 € 2n—2 ) 5
% f o / 1_[ e—(5a+(—1)’8n)r,-ri*/3 f e—earlr;ﬁ dry---dry,

. (A.6)
r2n—2 ry =2 r

<r1<

641

N
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With a new change of variable, for k =1,2,3andi =1,3,...,2n — 1 we have:

.
= (t—s)

f e*eeri K gr; = (ea)tF ! f e i dr < cleay (1 — s)a A 1] (A7)
Tigl €ariy]
Moreover for any i = 2,4, ...,2n we have:
1—s
/ e7(€a+‘s”)"'ri_’5dri < ri_fl67(6"l+‘3")””rl (ea+8,)7 ' < cnr;ﬂl e~ €atdnripy (A.8)
Tit+1
Therefore, combining together (A.7) and (A.8), we get:
t—s
2n 2 <
/ / 1_[ —(ea+(—1)'8, )r,r B / earlrl—ﬁ dry---dry_3
roan-2 r3 rn
< (ea)P! [(t —Sa A 1]1_/3(605)(2’3_1)(”_2)[0 —S)a A 1](1_2ﬁ)(n_2)
_ (ea)n(Zﬂ—l)—Gﬂ—l)[(t —SaA 1](1—ﬂ)+(1—2ﬂ)(n—2)‘ (A.9)
Now, by using again both (A.7) and (A.8) we have:
t=s t=s t=s
r ; —(ea+8n)ran—2
—(ea—8,)ry, ,.—B —eary,_1,.—B € -8
e r e r _— dry,_>dry,—1dr
/ n / n-l (ran—g — raq)p 220722 00—l 0o
0 n n—1
t=s t=s
¢ o= Qea+d,)(ran—1—r2m)
_ e
<c¢p / 673“’”2”}’2 3p / —— dryp—1dra,
(ran—1 —ran)?
0 2n
1_;
3 ? e SnTm—1
< f —3earm, ﬂf dra,—1dra,
0 o Vzn 1
< cnleay (1 —s)a A 1] 7. (A.10)

Hence, by putting together (A.9) and (A.10) into (A.6), we obtain:
I],E < 6_2nﬁCT,n(1 + |x|Zl + |y|2")|h|2”(605)”(2'3_1)[(t _ S)(X A 1](1_ﬁ)+(1_2ﬂ)(n_2)+(1_3ﬂ)
= cra(L+ 1513 + [y ) hEe a2 [ —s)a 1] 72
Finally, due to the inductive hypothesis we have:
L <era(1+ x5 + E)Ihlge a0 2P [0 —s)a Al
and then we can conclude that (4.4) holds.

]11(172/3)

Appendix B. Proof of Lemma 5.3

Since we are assuming that f(&, -, p2) :R — R is twice continuously differentiable with bounded derivatives,
uniformly with respect to £ € [0, L] and p; € R, we have that for any fixed x, y, h, k € H the mapping,

seR+ Dy F(x+sk,y)he L' (0, L),

is differentiable, and

d
EDXF(x + sk, y)h|,_, = D>F(x, y)(h, k),
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where

32
DIF(x,y)(h,k)(&) = #(&X(S),y(é))h(é)k(él §€l[0,L]
1

This means

F(it* (1) + Vezg (1), 07 (t/€) — F (" (1) v7(t/€)) — DxF (" (1), v7 (t/€)) ez (1)

1
=e/D§F(ﬁ"(z) +0/ezl (1), v (1/€)) (27 (1), 25V (1)) db,

0

so that, recalling how ¢; ” (¢) has been defined in (5.5), we have:
N
05D 1.1y < Vel O

This implies that

t

fe(l_s)A(pf’y(s) ds

0

Now, since we have:

t
V() =T (1) + %/e(’_S)A[F(uﬁ’y(s), v (s/€)) — F(i* (s), v’ (s/e))] ds,
0

for any p > 1 we obtain,

c

t
oL /|F(uf~y(s),vy(s/e)) — F(i*(s), v (s/e)) |}, ds
€2
0

YO <ep| IO +

1
<ep| I 0] + cT,p/}zfﬁy(s)ﬁI ds.
0
This yields,
t
220} <cp / Tt ey (5|,
0

and hence, according to (4.3), we get:

supE sup [z2Y (0[5, <cr (14 Ixlh + 1ylh).
e>0 1€[0,T]

By replacing in (B.1), this allows to conclude that

t

/ e(’_‘Y)Agoé"y (s)ds

0

2
E

<ereE sup |20} <ere(l+ Ixll + ylh).
]

" te[0,T

Next, we have to estimate:

t

f U™y (5)ds

0

2
E

H

t t
_1 , _1 2
gc/(t—s) 4|(pé")(s)|Ll(0’L)dséC\/E/(t—s) 428V (s)| 5y ds.
H 0 0

643

(B.1)

(B.2)
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¢V (1) — I (1) solves the equation:

As ¢ (¢) solves Eq. (5.1) the process p; (1) 1=
dpe’
- "= [A+ DF (i (1))]p?

Therefore, if we denote by U (t, s) the evolution system associated with the time dependent operator A + D F (¥ (¢)),

X)) + DF (@ () @), plY(0)=

we have:
t
pf’y(t):/U(t,s)DF(ﬁx(s))Féx’y(s)ds,
0
so that
t
g“ex’y(t):Fex’y(t)+fU(t,s)DF(ﬁx(s))Ff’y(s)ds.

0

Recalling how v (¢) has been defined in (5.6), this means that

t t
/e(’_S)AI//;“""(S) ds — /e(’_S)A[DXF(ﬁx(s), vy(s/e)) — Dﬁ(ﬁx(s))]l“f’y(s) ds
0 0
t s
+ / (t—s)A [DXF(IZX (S), Uy(S/G)) _ DF(IZX (S))] / U(S, U)Dﬁ(ﬁx(o—))rng} (o‘) dods
0

0
=l 1(t)+ I 2(1).

We have:
t

00 2
|I€1(t)|§{zz</(e(’S)A[DXF(ﬁx(s),vy(s/e))— F(@* ()] (5).e) ds)

J=1\9%
t

[ee) 2
=Z</e_(t_s)“f'<A€DF(S)FEx’y(s),ej)Hds> ,

j=1\)

where we have set,
— DF (" (s)).

AcDF(s) := Dy F (i (5), v” (s /€))

Then,

]E|Ie,1(l‘)|§_1=2 //6 (tfsl)“je*(ffsz)otj

J=19 0o
X E(AcDF(s1) T2V (s1), €j) (A DF () IV (), €) , dsads

S1

t
]E‘Iel(t)‘H Z/ s1e —= ”)af/dsze U YZ)a/'/drl/‘drz
j=1 0

xE(AeDF(sl)e(" ”)AA F(r),ej)y, (AEDF(sz)e(‘YZ_’z)AAeF(r2),e,)

S1 51 52

/dS1e (t—spa; /dsze_(t_‘Y2)a-’/dr1 e—(Sl—Vl)Dl//.drze—(sz—rz)ﬂli
0 0

00
i,j,l=1 0 0

x E{AcDF (s2)ej. €i) (A F(r2). €i) y{Ac DF (s1)ej. e1) (A F (r1). 1)

”\ll\)
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where we have set:
AcF(s) = F(ﬁx(s), v(s/e)) — I:"(ﬁx (s)).
With a change of variables, this yields:

E|I€,1(t)|il e Z e 2“"//dleH]1(6s1)|:/H]1(6sz)/K (erz)/Kl(erl)drl dryds>
0

i,j,l=1

+/Hj,,-(ész)/K[(erl)/K,-(erz)drzdrl dsy
0 0 0

S1 €ry

52
—}—/Kl(erl)/Hj,,-(esz)/Ki(erz)drgdszdr1:|, (B.3)
0 0

0
where for any j,/ e N

Hji(s):=e“ ™ (ADF(s)ej, et)yy,  Ki(s) :=e"*(AcF(s), e1) .-
As2p:=p/(2+ p) <1 forany p > 0, we have:

1
) 1—_ < oc
i=1
Hence, thanks to (A.1) and (A.2), by proceeding with arguments analogous to those used in the proof of Lemma 4.2
after some computations we get:
2 _
Elle1()|,; <erp(1+Ix[} +1y[5)e”. (B.4)
Finally, let us estimate /. 2(¢). As for I 1(t), we have:
00 ! S 2
2 —(t—s)o; L (X X,y .
2] =Y [ e i{ AcDF(s) | U(s,0)DF(a*(0)) [ (0)do,ej) ds) .
Jj=1 0 0 H

Forany 0 <s <1¢,

<A€DF(s)fU(s,a)DF(ﬁX(a))rg»Y(a)da, e,->

H

i’:

A DF(s)/U(s U)DF (0) /e(" DAAF(r)drdo, e/>
0 H

/ (¢ AAF (), [Uls,0)DE (" (0))]" Ac DF (s)e}) , dr do
0

S!
°—

%%
Mg

I
-

/ "U(AF(r), ei) (A DF (s)ej, AF (s.r)e;), dr
0

where

N

Af(s,r) :=/e‘”"”U(s,a)DF(sz(cr))da

r
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Then, we get:

2 00 t S1 S1 52

2 (t—s)ats s .

E‘IG’ZU)‘H:E Z /dsle 4 ‘“)“f/dsze 4 ‘YZ)“f/drl e”“’/drze”“’
Lit=10 0 0 0

x E{AcDF (s2)ej, Af (s2.r2)ei) y{Ac F(r2). €i) ;,(Ac DF (s1)ej, A (s1.r)er) y{Ac F(r1). er) ;-

This implies that, as for /¢ 2(¢) in (B.3), we can develop the integral above in the following way:

L

00 € 51 52 r
E|I€,2(t)|?_1:2e3 Z efzw‘f/‘dleHj,](esl,erl) /Hj,i(esz,erz)/‘Ki(erz)/Kl(erl)drl dryds)
bjt=1 0 0 0 0

s1 ) r
+/Hj,i(Gsz,erz)/Kl(Erl)/Ki(Erz)drzdrldsz
0 0 0

S rl 52
+/K[(er])/Hj,,-(esz,erz)/Ki(erz)drzdszdrl ,
0 0 0

where for any j,/ € N,
Hj(s,r) :=e"*(AcDyF(s)ej, Af (s.r)er),,. Ki(s) := e (AcF (s). e1) -

Now, since U(t,s): H — H is bounded and ||[U (¢, s)|lo < ¢, forany 0 < s <7 < T, and DF:H — L(H) is
bounded, we have:

HORI S

This means that we can use the same arguments we have just used above for /. »(¢) and we obtain:

E|le20)]7, < erp(1+ 161y + yIh)e”. (B.5)
Combining together (B.4) and (B.5) we conclude that
¢ 2
6113% [ U=y XY (5)ds| =0,
0 H

and the proof of Lemma 5.3 is finished.
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