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Abstract

Truncated-Newton methods are a family of methods for solving large optimization problems. Over the past two decades,
a solid convergence theory has been derived for the methods. In addition, many algorithmic enhancements have been
developed and studied, resulting in a number of publicly available software packages. The result has been a collection
of powerful, 
exible, and adaptable tools for large-scale nonlinear optimization. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

Truncated-Newton methods are a family of methods suitable for solving large nonlinear opti-
mization problems. At each iteration, the current estimate of the solution is updated (i.e., a step is
computed) by approximately solving the Newton equations using an iterative algorithm. This results
in a doubly iterative method: an outer iteration for the nonlinear optimization problem, and an inner
iteration for the Newton equations. The inner iteration is typically stopped or “truncated” before the
solution to the Newton equations is obtained.
More generally, an “inexact” Newton method computes a step by approximately solving the New-

ton equations. This need not be done using an iterative method. These de�nitions, however, are not
universal. In some papers, “inexact” Newton methods refer to methods for solving systems of non-
linear equations, and “truncated” Newton methods refer to methods for solving optimization
problems. I focus here on truncated-Newton methods and optimization problems.
A truncated-Newton method will be e�ective if

• a small number of inner iterations is su�cient to produce a “good” step,
• each inner iteration can be performed e�ciently,
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• the overall method is implemented with appropriate safeguards (a “globalization” strategy) to
guarantee convergence to a stationary point or local optimum, in cases where the optimization
problem satis�es appropriate assumptions.

These issues motivate much of my discussion.
Choices are available for the components of a truncated-Newton method:

• the globalization procedure (some form of line search or trust region strategy),
• the inner iterative algorithm,
• the preconditioner for the inner algorithm,
• the truncation rule for the inner algorithm,
• the technique for computing or estimating second-derivative information.
These choices provide a great deal of 
exibility, and allow the method to be adapted to the optimiza-
tion problem and the computing environment. “Black-box” software is available, but a sophisticated
practitioner can enhance the basic method in many ways when faced with a di�cult optimization
problem.
In much of this paper I focus on the unconstrained problem

minf(x) (1)

since the ideas can be explained more simply in this setting, and many of the ideas carry over
directly to the constrained case. The �rst-order optimality condition for this problem is

3f(x) = 0;

which is a system of nonlinear equations. For this reason, results for nonlinear equations provide
insight in the optimization setting.
Given some guess xk of a solution x∗, Newton’s method computes a step pk as the solution to

the linear system

32f(xk)p=−3f(xk) (2)

and then sets xk+1 ← xk +pk . In this simple form, Newton’s method is not guaranteed to converge.
In a truncated-Newton method, an iterative method is applied to (2), and an approximate solution

accepted. In [3], the rate of convergence of the outer iteration is proven to be related to the accuracy
with which (2) is solved. The paper [3] focuses on nonlinear equations, but the results apply (with
minor modi�cation) to optimization problems. These results clarify the local convergence behavior
of a truncated-Newton method (i.e., the behavior of the method when xk is close to the solution x∗).
If the problem (1) satis�es appropriate assumptions, then global convergence (to a local solution)

can be guaranteed in either a line search or a trust region framework by making adjustments to the
inner algorithm (see Section 3). (In this paper, “global convergence” for an unconstrained problem
means that the limit of the gradient norms is zero.) Building upon this foundation, many practical
enhancements can be made to the overall method.
A basic question in a truncated-Newton method is the choice of an inner iterative algorithm

for solving (2). Some variant of the linear conjugate-gradient method is almost always used. The
conjugate-gradient method is an optimal iterative method for solving a positive-de�nite linear system
Ap = b, in the sense that the ith iterate pi minimizes the associated quadratic function Q(p) =
1
2p

TAp− pTb over the Krylov subspace spanned by {b; Ab; : : : ; Ai−1b}.
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The Hessian matrix 32f(xk) need not be positive de�nite, so the assumptions underlying the
conjugate-gradient method may not be satis�ed. However, the Hessian matrix is always symmetric.
At a local minimizer of (1), the Hessian is guaranteed to be positive semi-de�nite; in nondegenerate
cases it will be positive de�nite. Thus, as the solution is approached (and the Newton model for (1)
is more accurate and appropriate) we can anticipate that the requirements for the conjugate-gradient
method will be satis�ed. If the Hessian matrix is not positive de�nite, then the techniques discussed
in Section 5 should be used.
A truncated-Newton method will only be competitive if further enhancements are used. For ex-

ample, a preconditioner for the linear system will be needed, and the stopping rule for the inner
algorithm will have to be chosen so that it is e�ective both close to and far from the solution. With
these enhancements, truncated-Newton methods are a powerful tool for large-scale optimization.
Because of all the choices that can be made in designing truncated-Newton methods, they form a


exible class of algorithms. For this reason, the method can be adapted to the problem being solved.
Thus, if “black box” software is not able to solve a problem successfully, it is possible to modify
the inner algorithm, the preconditioner, the stopping rule for the inner iteration, or a number of other
details to enhance performance.
A constrained optimization problem

min f(x)
subject to g(x) = 0;

h(x)¿0;

can be solved using a penalty-barrier method, in which one solves a sequence of unconstrained
problems of the form

min
x

f(x) + �j

∑
gi(x)2 − 1�j

∑
log(hi(x))

for an increasing sequence of values of �j → ∞ [19]. Each of the unconstrained problems can be
solved using a truncated-Newton method, and so all of the above comments apply in this case. (There
are also some new issues; see Section 10.) This is not the only possible approach to constrained
problems, but it does indicate the relevance of unconstrained optimization techniques in this setting.
Some applications where truncated-Newton methods have been e�ective include:

• weather modeling,
• potential-energy minimization,
• molecular geometry,
• multicommodity 
ow,
• medical imaging,
• molecular conformation.
Truncated-Newton methods have been extended to the in�nite-dimensional case, at least in the setting
of nonlinear equations. See, for example, [23].
Many of the above ideas are discussed in greater detail in the remainder of the paper. Here is an

outline of the topics covered:

• controlling the convergence rate (Section 2),
• guaranteeing convergence (Section 3),
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• computing second-derivative information (Section 4),
• handling nonconvex problems (Section 5),
• preconditioning (Section 6),
• parallel algorithms (Section 7),
• practical behavior (Section 8),
• software (Section 9),
• constrained problems (Section 10).
A version of this paper containing an expanded reference list can be obtained from http:==iris.gmu.
edu=˜snash= under “New Papers”, or by contacting the author.

1.1. Basics

The default norm || · || used in this paper is the 2-norm: for a vector x = (x1; : : : ; xn); ||x|| =√
x21 + · · ·+ x2n. All vectors are column vectors.
The conjugate-gradient method for solving a linear system Ap=b is initialized with p0 =0; r0 =b

(ri is the ith residual b− Api); v−1 = 0, and �0 = 0. Then
For i = 0; 1; : : :

If stopping rule satis�ed, stop
If i¿ 0 set �i = rTi ri=r

T
i−1ri−1

Set vi = ri + �ivi−1
Set �i = rTi ri=v

T
i Avi

Set pi+1 = pi + �ivi
Set ri+1 = ri − �iAvi

Stopping rules are discussed in Section 2. The algorithm requires the computation of the matrix–
vector product Avi, but other information about A need not be supplied.
A line-search method for solving (1) has the following basic form: Specify some initial guess of

the solution x0. Then
For k = 0; 1; : : :

If stopping rule satis�ed, stop
Compute a search direction pk

Determine an improved estimate of the solution xk+1 = xk + �kpk

[line search]

“Improvement” is often measured in terms of the function value f(xk+1). For example, the new
estimate xk+1 might be required to satisfy a “su�cient decrease” condition of the form

f(xk+1)6f(xk) + ��pTk3f(xk)

for some 0¡�¡ 1 [19]. That is, there must be a decrease in the function value that is a fraction
of the decrease predicted by the �rst-order Taylor series approximation to f(xk + �pk).
A trust-region method for solving (1) has the following basic form: Specify some initial guess of

the solution x0, and specify �0, the bound on the size of the “trust region”, i.e., the bound on the
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length of the allowable step at the current iteration. Then
For k = 0; 1; : : :

If stopping rule satis�ed, stop
Choose pk so as to minimize some approximation  k(p) ≈ f(xk + p),

subject to the constraint ||p||6�k

Compute xk+1 and �k+1 using pk .

Algorithms for constrained problems can also be imbedded inside line search or trust region ap-
proaches, but the details are more complicated (both practically and theoretically). For more infor-
mation on these topics, see [19].

2. Controlling the convergence rate

The basic local convergence theorem appeared in [3], in the context of nonlinear equations. Here
is an adaptation of that theorem to unconstrained optimization. The de�nition of a q [strong] rate of
convergence can be found in [3].

Theorem 1. Assume that 3f is continuously di�erentiable in a neighborhood of a local solution
x∗ of (1). In addition, assume that 32f(x∗) is nonsingular and that 32f is Lipschitz continuous
at x∗. Assume that iteration k of the truncated-Newton method computes a step pk that satis�es

||3f(xk) +32f(xk)pk ||6�k ||3f(xk)||
for a speci�ed value of �k ; the new estimate of the solution is computed using xk+1 ← xk + pk .
If x0 is su�ciently close to x∗ and 06�k6�max¡ 1 then {xk} converges to x∗ q-linearly in the
norm || · ||∗ de�ned by ||v||∗ ≡ ||32f(x∗)v||, with asymptotic rate constant no greater than �max.
If limk→∞ �k = 0; then the convergence is q-superlinear. If �k = O(||3f(xk)||r) for 0¡r61; then
the convergence is of order at least (1 + r).

The sequence {�k} is referred to as a “forcing” sequence. The theorem shows that there is a
direct relationship between the forcing sequence and the rate of convergence of the truncated-Newton
method for (1). In [3] the authors suggest using

�k =min{ 12 ; c||3f(xk)||r}
as a practical forcing sequence, where c is a positive constant, and 0¡r61. This sequence leads
to a method with a fast asymptotic convergence rate. However, it is not scale invariant, i.e., the
behavior of the truncated-Newton method will change if the objective function f(x) is multiplied
by a positive constant.
If the conjugate-gradient method is used for the inner iteration, then the ith inner iteration �nds

a minimizer of the quadratic model

f(xk + p) ≈ f(xk) + pT3f(xk) + 1
2p

T32f(xk)p ≡ Qk(p) (3)

over the Krylov subspace spanned by {3f(xk); : : : ; [32f(xk)]
i−13f(xk)}. The model (3) has a global

minimum when the residual of the Newton equations is zero. If p is not the minimizer of the
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quadratic model, however, the magnitudes of the residual and the quadratic model can be dramatically
di�erent [15], and the residual can be a deceptive measure of the quality of the search direction.
For this reason, it may be preferable to base a stopping rule on the value of the quadratic model.
Let pi be the search direction computed at the ith inner iteration, and let Qi=Q(pi). The stopping

rule suggested in [15] is to accept a search direction if

i(Qi − Qi−1)=Qi6�k :

Quoting from [15]: “This criterion : : : compares the reduction in the quadratic model at the current
iteration (Qi−Qi−1) with the average reduction per iteration (Qi=i). If the current reduction is small
relative to the average reduction (with ‘small’ measured by �k), then the inner iteration is terminated.”
Newton’s method is based on the Taylor series approximation (3). If this approximation is in-

accurate then it may not be sensible to solve the Newton equations accurately. (“Over-solving”
the Newton equations will not produce a better search direction.) In this circumstance, the inner
algorithm should be truncated after a small number of iterations.
The conjugate-gradient method minimizes the quadratic model (3); in particular, it computes the

value of the quadratic model. The quadratic model predicts the amount of decrease that will be
obtained in the objective value. The outer iteration will typically compute f(xk + p), and hence
determines the actual decrease in the objective value. By comparing these two quantities, the algo-
rithm can determine if the quadratic model is accurate. If not, an alternative value of the forcing
term �k+1 can be used at the next outer iteration. A simple rule of this type is used in [16]; more
sophisticated approaches are analyzed in [5].
The paper [5] identi�es two successful forcing sequences (in the context of solving nonlinear

equations, but adapted here for optimization). Let pk be the search direction at the kth outer iteration,
and let �k be the step length. The �rst stopping sequence uses �0 ∈ [0; 1), and then for k = 0; 1; : : :

�k+1 =
| ||3f(xk+1)|| − ||3f(xk) + �k32f(xk)pk || |

||3f(xk)|| :

The second uses �0 ∈ [0; 1); 
 ∈ [0; 1]; � ∈ (1; 2), and then for k = 0; 1; : : :

�k+1 = 

( ||3f(xk+1)||
||3f(xk)||

)�

:

Both are designed to provide good asymptotic performance while at the same time preventing
over-solving.
All of these results can be applied directly to the sequence of unconstrained problems that arise

when a penalty-barrier method is used to solve a constrained problem. The convergence of the overall
penalty-barrier method is discussed in [19]. Convergence results for a gradient-projection method for
linearly-constrained problems can be found in [8].

3. Guaranteeing convergence

Convergence can be guaranteed by imbedding a truncated-Newton method in either a line-search or
a trust-region framework. This is straightforward, although minor adjustments to the inner algorithm
must be made. Basic convergence theorems for line-search and trust-region frameworks can be found
(for example) in [19].
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Global convergence results for the more general setting of inexact-Newton methods are developed
in [4]. I assume here that a truncated-Newton method is used, with the conjugate-gradient method
as the inner algorithm.
A variety of convergence results are available for line-search methods. In one such (from [19]),

the line search method can be guaranteed to converge (in the sense that the limit of the gradient
norms is zero) if the following assumptions are satis�ed:

• the level set S = {x: f(x)6f(x0)} is bounded,
• 3f is Lipschitz continuous for all x ∈ S,
• the search directions pk satisfy a su�cient-descent condition

− pTk3f(xk)
||pk || · ||3f(xk)||¿�¿ 0

for some �xed �;
• the search directions are gradient related: ||pk ||¿m||3f(xk)|| for some �xed m¿ 0,
• the search directions are bounded: ||pk ||6M for some �xed M ,
• an “appropriate” line search is used.
The �rst two conditions are assumptions on the optimization problem, and the �nal condition is
independent of the inner algorithm.
Before discussing the other three conditions, it is useful to discuss the Lanczos method. The

Lanczos method can be applied to any symmetric matrix A. It determines a sequence of orthogonal
matrices Vi and tridiagonal matrices Ti such that

V T
i AVi = Ti:

The Lanczos method is equivalent to the conjugate-gradient method. If A =32f(xk) and pi is the
result of the ith iteration of the conjugate-gradient method applied to (2), then

pi =−ViTi(xk)(−1)V T
i 3f(xk):

See [21] for further details. The other three conditions for convergence will be satis�ed if the
eigenvalues of the matrices Ti are uniformly bounded for all xk :

0¡c16�min[Ti(xk)]6�max[Ti(xk)]6c2:

The upper bound can be guaranteed if the level set S is bounded, and if the Hessian is continuous
on S. The lower bound can be guaranteed by making adjustments to the conjugate-gradient method.
These ideas are discussed further in Section 5.
These convergence results are based on a “traditional” line search, i.e., the new estimate of the

solution is obtained as xk+1 ← xk + �pk , where � is chosen to ensure that the objective function
decreases at every iteration. Convergence can also be proved for algorithms that use a curvilinear
line search [9]; the new estimate of the solution is of the form

xk+1 = xk + �2pk + �dk

where dk is a direction of negative curvature (see Section 5). In addition, convergence can be proved
for algorithms that use a non-monotone line search [7], where decrease in f(xk) is not required at
every iteration.
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When using a trust-region method, fewer adjustments need be made to the conjugate-gradient
method. One signi�cant issue, though, is to ensure that the output vector pk satis�es the trust-region
constraint:

||pk ||6�k

where �k is a parameter in the trust-region method. A technique for this was suggested by [25], and
is outlined here. It is straightforward to prove that the iterates from the conjugate-gradient method
increase monotonically in norm as long as the tridiagonal matrix Ti is positive de�nite:

||p0||¡ ||p1||¡ ||p2||¡ · · · :
Thus, it is easy to determine at which iteration the trust-region constraint is violated, and to choose pk

as the point between pi and pi+1 which exactly satis�es the constraint. Of course, if the termination
rule is satis�ed before the trust-region constraint is encountered, then the inner algorithm terminates
before this occurs. If Ti becomes inde�nite, then the quadratic model is unbounded below, and the
next step in the inner iteration will cause the trust-region constraint to be violated. In [6] the authors
examine more closely what happens in a truncated-Newton method when the trust-region boundary
is encountered, and propose alternatives to simply truncating the inner iteration in this case.
Just as in Section 2, all of these results can be applied when a penalty-barrier method is used

to solve a constrained problem. Global convergence results for a trust-region method for linearly
constrained problems can be found in [8].

4. Computing second-derivative information

The conjugate-gradient method requires the computation or estimation of matrix-vector products
involving the Hessian of the objective function

w =32f(xk)v (4)

for any vector v. This can be accomplished in a variety of ways.
If the Hessian 32f is explicitly available then (4) can be computed directly. This can be especially

e�cient if the Hessian is sparse. The user must be able to derive and program the formulas for the
Hessian to use this technique. The remaining techniques require less e�ort on the part of the user.
An estimate of (4) can be obtained using �nite di�erencing:

w ≈ 3f(xk + hv)−3f(xk)
h

for some “small” h. Each matrix–vector product requires one gradient evaluation, since 3f(xk) is
already available as the right-hand side of (2). The choice of h is discussed in [19], as are alternative
�nite-di�erence formulas. This approach is widely used in practical truncated-Newton methods.
If it is possible to use complex arithmetic, then a more accurate �nite-di�erence approximation to

w can be obtained using

vh = xk +
√−1hv; gh =3f(vh); w ≈ Im(gh)=h:

With this technique it is possible to choose a very small value of h (e.g., h= 10−16) and obtain an
estimate of w that is accurate to O(h).
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A third alternative is to use automatic di�erentiation [19] to compute (4). This is an exact calcu-
lation (up to the limits of computer arithmetic). The computational cost is comparable to a gradient
evaluation, and thus comparable to the �nite-di�erence technique.

5. Nonconvex problems

As was mentioned in Section 3, the conjugate-gradient method is equivalent to the Lanczos method
in the sense that

pi =−ViTi(xk)(−1)V T
i 3f(xk);

where A=32f(xk) and

V T
i AVi = Ti:

Here {Vi} is a sequence of orthogonal matrices and {Ti} is a sequence of tridiagonal matrices.
If A is positive de�nite, then the formulas for the conjugate-gradient method correspond to com-

puting the factorization

Ti = LiDiLTi
where Di is diagonal (with positive diagonal entries), and Li is lower triangular (with ones along
the diagonal). This factorization exists if and only if Ti is positive de�nite.
If Ti is not positive de�nite then this factorization cannot be computed. The algorithm will break

down if a diagonal entry of Di is zero, and will be numerically unstable if a diagonal entry of Di

is negative. To guarantee convergence (see Section 3) the diagonal entries of Di must be positive
and bounded away from zero.
The same situation occurs for certain implementations of Newton’s method. In that setting a

variety of proposals have been made that correspond to “modifying” the Hessian (or, equivalently,
the factorization) to obtain a new, positive de�nite matrix that then replaces the Hessian in (2).
Any of these techniques could, in principle, be applied to the factorization of the tridiagonal

matrix Ti. This is not usually done, however, because the components of the matrix Ti are generated
iteratively, and the matrices Ti and Vi are not stored.
An alternative approach that uses information from two successive iterations of the conjugate-

gradient method is developed in [12]. This “modi�ed” conjugate-gradient method is iterative (like
the regular conjugate-gradient method), and has many of the same theoretical and practical properties
as modi�ed-Newton methods.
It is possible to use a simpler technique, and develop a “modi�ed” method using only information

from the current iteration of the conjugate-gradient method. This approach is mentioned in [12]. The
drawback to this approach is that the modi�cation to the Hessian can be very large in norm, much
larger than if information from two successive iterations is used.
If the tridiagonal matrix Ti is not positive semi-de�nite, then the matrix Di must have a negative

diagonal entry. This corresponds to a direction of negative curvature, i.e., a vector d satisfying

dT[32f(xk)]d¡ 0:

Such a direction can be used as part of a search direction, since either d or −d is a direction of
nonascent. This idea is discussed in [9].
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The trust-region techniques discussed in Section 3 provide an alternative way of handling non-
convex problems. If a diagonal entry of Di is negative, then the quadratic model can be decreased
to −∞ by following this direction of negative curvature. Thus, a su�ciently long step along such
a direction (or any direction) is guaranteed to violate the trust-region constraint.
The application of these ideas to constrained problems is discussed in Section 10.

6. Preconditioning

The convergence of the conjugate-gradient method is strongly in
uenced by the condition number
of the Hessian (i.e., its extreme eigenvalues), and by the number of distinct eigenvalues of the
Hessian. Reducing either of these accelerates the convergence of the method.
Ideally, a preconditioner will be chosen based on the problem being solved. This can require

considerable analysis and programming to accomplish, however, and is not suitable for routine cases.
If the Hessian matrix is available, a good “generic” choice of a preconditioner is an incomplete

Cholesky factorization. The preconditioner is formed by factoring the Hessian, and ignoring some
or all of the �ll-in that occurs during Gaussian elimination. It may be necessary to modify the
factorization (as discussed in Section 5) so that the preconditioner is positive de�nite. This idea is
discussed in [24].
It is also possible to develop preconditioners based on partial separability in the objective function

[2]. (A function f(x) is partially separable if it can be written as the sum of functions fi(x), each
of which has a large invariant subspace.)
If neither of these is possible, “automatic” preconditioners can be developed that do not require

Hessian information. These preconditioners are based on quasi-Newton approximation to the Hessian.
A quasi-Newton approximation is computed based on vector pairs (si; yi). Traditionally, si = x − x̂
for some pair of variable values, and yi =3f(x)−3f(x̂), the corresponding di�erence of gradient
values. In the context of a truncated-Newton method, these might be x = xk and x̂ = xk+1, i.e., two
successive iterates.
It is also possible to use an arbitrary vector si with yi = 32f(xk)si. At each iteration of the

conjugate-gradient method, a matrix–vector product of this form is computed or estimated, and each
of these matrix–vector products can be used to help construct a Hessian approximation.
In [13], both these ideas are combined to form a preconditioner. The matrix–vector products from

the inner iteration are used to construct a diagonal approximation to the Hessian, using a BFGS
update formula in which only the diagonal matrix entries are computed. This is in turn used to
initialize a two-step limited-memory BFGS update formula which is the actual preconditioner. The
limited-memory update is constructed using pairs in which si is the di�erence between a pair of
x-vectors. Precise information is given in [14]. This preconditioner is implemented in the TN/TNBC
software discussed in Section 9.
A more elaborate preconditioner is described in [11], based on an m-step limited memory BFGS

update, with the (si; yi) pairs chosen as a subset of the matrix–vector products in the inner iteration.
Experiments are conducted with various choices of m. The authors propose an algorithm that “dy-
namically stores the correction pairs so that they are as evenly distributed as possible” among the
set of pairs for a complete inner iteration.
The application of these ideas to constrained problems is discussed in Section 10.
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7. Parallel algorithms

A parallel algorithm could be obtained by executing each of the steps of the truncated-Newton
method in parallel. This would require converting the line search and the conjugate-gradient method
so that they execute in parallel. By itself, this is not likely to be an e�ective strategy, since the steps
in these algorithms consist of

• scalar operations,
• vector operations,
• function and gradient evaluations.
The scalar operations cannot be made parallel, and the vector operations do not o�er much potential

for speed-up on a parallel machine (since communication and synchronization delays could easily
wipe out any computational savings obtained).
The function and gradient evaluations o�er more hope, but this requires that the person solving

the optimization problem be willing and able to compute these values e�ectively in parallel. For
very large and di�cult problems, however, this may be essential.
An alternative is to replace the line search and the inner algorithm with alternatives that are better

able to exploit parallelism. Ideally, it should be possible to take advantage of both parallel linear
algebra computations as well as parallel function and gradient evaluations (that is, simultaneous
evaluations of the function and=or gradient on separate processors).
An approach of this type for unconstrained problems is discussed in [16]. In this work, the

block conjugate-gradient method is used as the inner algorithm; this is a generalization of the
conjugate-gradient method in which a block of vectors (rather than a single vector) is updated
at every inner iteration. A simple parallel line search is used to compute xk+1 ← xk + �pk . If the
block size in the block conjugate-gradient method is equal to m, then each inner iteration requires the
computation of m independent matrix–vector products (which can be approximated by m independent
gradient evaluations). There is also considerable opportunity for parallel linear algebra computations.
Each iteration of the line search requires m independent function evaluations.
A hybrid approach (combining parallelism in the algorithm with parallelism in the individual

function evaluations) is also possible within the block conjugate-gradient method. The block size m
need not be equal to the number of processors. This can be an advantage if the individual function
and gradient evaluations can be performed in parallel. For example, suppose that a computer with
32 processors were available, and that each function or gradient evaluation could be spread over 4
processors. Then, if the block-size were chosen as m=8, an inner iteration would require 8 gradient
evaluations, each of which would require 4 processors. Thus a total of 4× 8= 32 processors would
be used.
This algorithm is implemented in the software package BTN; see Section 9.

8. Practical behavior

Truncated-Newton methods use an inner iteration to compute a search direction, and thus expend
considerable computational e�ort at each outer iteration. In contrast, nonlinear conjugate-gradient
methods and limited-memory quasi-Newton methods use relatively few computations to obtain each
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search direction. (Precise operation counts can be found in [14].) A basic question is whether the
e�ort per iteration for a truncated-Newton method can be worthwhile.
The tests in [14] compare the truncated-Newton method TN against the limited-memory quasi-

Newton method L-BFGS. The tests imply that L-BFGS becomes more e�ective as the optimization
problem (1) becomes more nonlinear. In a sense, the truncated-Newton method is more e�ective
when the quadratic model (3) is more e�ective.
Attempts have been made to combine the best properties of both these methods. This consisted in

• monitoring the e�ectiveness of the quadratic model to avoid “over-solving” in cases where the
quadratic model is poor,
• using limited-memory quasi-Newton formulas as preconditioners,
• combining both techniques in a single algorithm.
Testing of speci�c features of truncated-Newton software can be found in [12,13] and, for the

parallel case, in [16]. The results of these tests have in
uenced the development of the software
packages mentioned in Section 9. The paper [22] describes software for nonlinear equations, but
many of the comments are also applicable to optimization. Tests of truncated-Newton methods for
bound-constrained problems can be found in [8].

9. Software

Truncated-Newton software is available for unconstrained and bound constrained problems. The
�rst three packages are available from the Netlib collection (www.netlib.org).
The package TN/TNBC solves both classes of problems. It requires that the user provide a subroutine

to evaluate the function value and gradient of the objective function. The algorithm is described in
[14]. This software is designed to be easy to use, and does not require or expect customization by
the user.
The package TNPACK solves unconstrained minimization problems. In addition to function and

gradient information, the user must provide formulas for the Hessian matrix and a user-supplied
preconditioner. This software expects the user to supply information about the Hessian so that a
preconditioner can be constructed. This can require considerable e�ort, but with the promise of
improved performance.
The package BTN solves unconstrained problems on parallel computers (both shared and distributed

memory). It requires that the user provide a (scalar) subroutine to evaluate the function value and
gradient of the objective function. In addition BTN can take advantage of a parallel subroutine for
the function and gradient if one is provided. The algorithm is described in [16]. This software comes
with both easy-to-use and customizable top-level subroutines.
The TRON software [8] solves bound-constrained problems. It requires that the user supply function,

gradient, and Hessian information. It uses an incomplete Cholesky factorization as a preconditioner.
The software can be obtained from

www.mcs.anl.gov/˜more/tron/

The Lancelot software [1] is a more general package, but a variety of truncated Newton algorithms
can be used within it by appropriately selecting software parameters. Considerable customization is
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possible. Information about this software can be obtained from

www.cse.clrc.ac.uk/Activity/LANCELOT

A variety of software packages for solving nonlinear systems of equations are mentioned in [22].
Software for the quasi-Newton preconditioner in [11] is available from

www.ece.nwu.edu/˜nocedal/preqn.html

10. Constrained problems

Many algorithms for constrained optimization problems are built upon algorithms, techniques,
or principles from unconstrained optimization. It should not be surprising that truncated-Newton
methods can be used in this setting.
One approach is to use a penalty-barrier method to solve the constrained problem [19]. The con-

strained problem is replaced by a sequence of unconstrained problems, where violations in the con-
straints are included as penalty terms in the objective function (see Section 1). A truncated-Newton
method can then be applied to the sequence of unconstrained problems. Under appropriate assump-
tions, it is possible to derive complexity results for an algorithm of this type [20].
It has been known for decades that the unconstrained problems become increasingly ill-conditioned

as the barrier parameter is increased (i.e., as the solution is approached). This ill-conditioning causes
the behavior of the inner algorithm to deteriorate. This ill-conditioning is not inherent, however.
In [17], an approximation to the inverse of the Hessian matrix is derived that can be used within

the conjugate-gradient method. With this approximation, the conjugate-gradient method is applied to
a linear system whose conditioning re
ects that of the underlying optimization problem, and not that
of the penalty-barrier problem. The approximation formula requires, though, that an active set be
identi�ed (a prediction of the set of constraints that are binding at the solution to the optimization
problem).
Similar techniques can be applied within augmented Lagrangian and modi�ed barrier methods [1].
It is also possible to adapt truncated-Newton techniques to constrained methods based on sequential

quadratic programming. At each iteration of such a method, the nonlinear constrained problem is
approximated by a quadratic program. An inner iterative method can then be applied to the quadratic
program. There are a number of choices in how this is done; for example, an interior-point method
could be used to solve the quadratic program.
If the quadratic program is solved using a null-space approach, then the conjugate-gradient method

would be applied to a linear system with a matrix of the form

ZTHZ

where H is an approximation to the Hessian, and Z is a null-space matrix for the Jacobian of the
constraints. Optimality conditions for the constrained optimization problem imply that this matrix
will be positive semi-de�nite at the solution of the optimization problem. Inde�niteness can be dealt
with as in the unconstrained case.
The matrix ZTHZ may be a dense matrix even if H and the constraint Jacobian are sparse.

Matrix–vector products involving this matrix should be computed in stages:

w1 = Zv; w2 = Hw1; w = ZTw2:
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The convergence of the conjugate-gradient method is enhanced if a preconditioner for ZTHZ is
available. This is more challenging than in the unconstrained case. Since H is an approximation to
the Hessian matrix, preconditioners for H will depend on properties of the optimization problem (i.e.,
this requires input from the user of the software). The null-space matrix Z depends on algorithmic
details (i.e., this requires input from the developer of the optimization software). The paper [18]
develops preconditioners for ZTHZ that combine preconditioning information from these two sources.
The quadratic program might be solved by looking at the combined linear system for the variables

and multipliers of the quadratic program, which has a matrix of the form(
H AT

A 0

)
: (5)

H is an approximation to the Hessian of the Lagrangian, and A is the Jacobian matrix of the
constraints. The matrix (5) is symmetric but inde�nite. An iterative method can be applied to this
system, derived from the Lanczos method (see Section 3). One possibility is to use SYMMLQ [21],
which is designed for symmetric inde�nite systems of equations.
It may be di�cult to guarantee that the search direction that results is a descent direction. Straight-

forward tests require factorizations of ZTHZ , where Z is a null-space matrix for A. In an iterative
method, where matrices are not stored and matrix factorizations are not available, this is not usually
possible.
It is also possible to derive preconditioners based on the structure of the system (5) [10].

11. Conclusions, recommendations

Truncated-Newton methods are a 
exible set of methods for solving large optimization problems.
They are built upon a sound theoretical foundation. They can be adjusted to achieve a desired
asymptotic convergence rate, and they can be designed to limit the waste of over-solving at points
far from the solution. They can also be customized to the problem being solved.
The easiest way to use a truncated-Newton method is via the software packages discussed in

Section 9. If these are not adequate, then perhaps use of parallel software will help. Customization
of the method may also be necessary. The greatest improvements in performance can be obtained by
improving the preconditioner. In addition, the forcing sequence can be modi�ed, as can the technique
used to compute the matrix–vector product. The references in this paper provide much guidance in
these areas.
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