
File: 580J 309201 . By:DS . Date:22:08:97 . Time:07:21 LOP8M. V8.0. Page 01:01
Codes: 3189 Signs: 1297 . Length: 50 pic 3 pts, 212 mm

Journal of Functional Analysis�FU3092

journal of functional analysis 149, 226�244 (1997)

The Sard Inequality on Wiener Space

A. S. U� stu� nel

De� partement Re� seaux, ENST, 46, rue Barrault, 75013 Paris, France

and

M. Zakai

Department of Electrical Engineering, Technion��Israel Institute of Technology,
32000 Haifa, Israel

Received November 20, 1996; accepted December 18, 1996

Let T(w)=w+u(w) be a Cameron�Martin perturbation of the identity. The for-
mal infinite dimensional extension of the Sard inequality,

+(TA)�|
A

|4| d+,

is shown to hold and applications to absolute continuity on Wiener space are
presented. � 1997 Academic Press

I. INTRODUCTION

The Sard lemma on Rn states that if D/Rn is open, T is a continuously
differentiable function from D to Rn and E0=[x # D : det {T(x)=0], then
the Lebesgue measure of E0 is zero. This result is useful in many applica-
tions as it often avoids the need to consider what happens on E0 . In [9],
J. T. Schwartz presented a generalization of this result:

Theorem 1.1 [9]. Let D and T be as above and let J(x) denote the
Jacobian determinant of T at x; also, let E be a measurable subset of D, then
T(E) is measurable and

|
Rn

1TE(x) dx�|
Rn

1E(x) |J(x)| dx. (1.1)
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In order to represent this result for the case where the Lebesgue measure
is replaced with the standard Gaussian measure on Rn, note that if �(x) is
measurable and nonnegative, then (1.1) implies that

|
Rn

�(x) 1TE(x) dx�|
Rn

�(Tx) 1E(x) |J(x)| dx. (1.2)

In particular, setting

�(x)=(2?)&n�2 exp &|x| 2�2

+(dx)=�(x) dx

Tx=x+ f (x)

and

4(x)=J(x) exp((x, f (x))& 1
2 | f (x)| 2)

yields

|
Rn

1TE(x) d+(x)�|
Rn

1E(x) |4(x)| +(dx)

or

+(TE)�|
E

|4(x)| +(dx). (1.3)

An extension of (1.1) where the condition of T being continuously differen-
tiable is replaced by a weaker assumption is a part of Federer's area
theorem for m=n, (Theorem 3.2.3 of [3]). Cf., also, Theorem 5.6 of [4].

An infinite dimensional extension of Sard's lemma (with zero Lebesgue
measure replaced by first category) was presented by Smale [10]. In the
context of Wiener space, Kusuoka presented a Sard-type result
(Theorem 8.1 of [6]) and indicated the validity of the Sard lemma under
certain restrictions in [7], Cf. also Getzler [5]. The purpose of this paper
is to present detailed proofs of the measurability of the forward images of
Borel sets under the perturbation of identity maps, the Sard inequality and
some applications of these results. Some of these results are applied in [15]
to degree theory on the Wiener space.

In the next section we will summarize some definitions and results of
stochastic analysis that will be needed in the paper. The measurability
problem will be discussed in Section 3. Section 4 is devoted to the Sard
inequality. The strategy of the proof follows Smale [10]: T is shown to be
representable locally as T=TS b TG where TG is invertible and TS is finite
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dimensional. This is done in Lemma 4.1 following the technique of
Kusuoka [6]. It is then shown, Lemma 4.2, that the Sard inequality for T
follows from the application of the finite dimensional Sard inequality to TS .
Section 5 is devoted to a certain extension of the Sard inequality and the
infinite dimensional extension of (1.2) is also given there. Some applica-
tions to the question of absolute continuity are discussed in Section 6.

II. PRELIMINARIES

Let (W, H, +) be an abstract Wiener space. We start with a short sum-
mary of the notations of the Malliavin calculus. For h # H*=H, the
Wiener integral w(h) will also be denoted (h, w) , w # W. Let X� be a real
separable Hilbert space; smooth, X� -valued functionals on (W, H, +) are
functionals of the form

a(w)=:
N

1

'i ((h1 , w) , ..., (hm , w) ) xi

with xi # X� and 'i # C �
b (Rm), hi # W*/H. For smooth X� -valued func-

tionals, define

{a(w)= :
N

i=1

:
m

j=1

�j 'i ((h1 , w) , ..., (hj , w) ) } xi �hj ,

and {k, k=2, 3, . . . are defined recursively. For p>1, k # N the Sobolev
space Dp, k(X� ) is the completion of X� -valued smooth functionals with
respect to the norm

&a&p, k= :
k

i=0

&{ia&Lp(+, X� �H� i) . (2.1)

The gradient { : Dp, k(X� ) � Dp, k&1(X� �H) denotes the closure of { as
defined for smooth functionals under the norm of (2.1). The gradient {a is
considered as a mapping from H to X� and ({a)* will denote the adjoint
of {a and is a mapping from X� * to H. The adjoint of { under the Wiener
measure + is denoted by $ and called the divergence or the Skorohod
integral or the Ito-Ramer integral (recall that it is defined by the ``integra-
tion by parts formula'' E(G$u)=E({G, u) H for smooth real valued G and
H-valued u). Also recall that if F is in Dp, 1(H), for some p>1, then for a.e.
w, {F(w) is a Hilbert-Schmidt operator from H to H and for any smooth
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H-valued F and any complete orthonormal basis of H, say [ei , i=1, 2, . . .]
we have

$F= :
�

i=0

(F, ei) H (ei , w) &({((F, ei) H), ei) H . (2.2)

An X� -valued random variable F is said to be in D loc
p, k(X� ) if there exists

a sequence (An , Fn) where An are measurable subsets of W, �n An=W
almost surely, Fn # Dp, k(X� ) and for every n, Fn=F almost surely on An . It
was shown in [6] that if F(w) is H valued and H&C1, then F # D loc

�, 1(H).
Let K be a linear operator from H to H with discrete spectrum and let

*i , i=1, 2, . . . be the sequence of eigen-values of K repeated according to
their multiplicity. The Carleman�Fredholm determinant of K is defined as:

det2(I+K )= `
�

i=1

(1+*i) e&*i (2.3)

and the product is known to converge for Hilbert�Schmidt operators. For
F # D loc

p, 1(H), {F is Hilbert�Schmidt and define

4F (w)=det2(I+{F ) exp(&$F& 1
2 &F&2

H). (2.4)

The following lemma will be needed in section IV:

Lemma 2.1. Let F1 , F2 , F3 belong to D loc
p, 1(H) and let Tiw=w+Fi (w),

i=1, 2, 3. Assume that: (i) + b T &1
2 R+ and (ii) T3=T1 b T2 (i.e.,

F3=F2+F1 b T2). Then

(a) I+{F3=[I+({F1)(T2)](I+{F2)

(b) 4F3
=(4F1

b T2) } 4F2
.

The proof is straightforward (cf. Lemma 6.1 of [6] or [8] and uses the
fact that for T(w)=w+u(w)

($F ) b T=$(F b T )+(F b T, u)H+Trace(({F ) b T } {u.

Remark. Recall that for any measurable set A on W there exists a
_-compact modification of A, i.e. there exists a _-compact set G such that
G/A and +(G)=+(A).

With every measurable subset A of W we associate the random variable
\A(w) which plays an important role in the construction of a class of
mollifiers:
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Definition 2.1. Let A be a measurable subset of W, set

\(w, A)= inf
h # H

[&h&H : w+h # A] (2.5)

and \(w, A)=� if w � A+H.

Clearly, \(w, A)=0 if w # A, moreover [6], \(w, A) is a measurable
random variable and:

(i) If A/B, then \(w, A)�\(w, B)

(ii) |\(w, A)&\(w+h, A)|�&h&H .

(iii) AnZA implies \(w, An)z\(w, A).

(iv) If G is _-compact and . # C �
0 (R) (compact support), then

.(\(w, G)) # Dp, 1 for all p and

&{.(\(w, G))&H �&.$&� } 1[.(\G){0]

�&.$&� . (2.6)

(v) Let Z=[w : \(w, A)<�]. It is straightforward to see that,
A/Z, and that, if w # Z, then so does w+h, for any h # H. Consequently,
the distributional derivative {1Z=0, hence 1Z is almost surely a constant.
Consequently +(Z)=1 if +(A)>0.

The following result will be needed in Section IV, cf. [6, 12].

Theorem 2.1. Let F : W � H be a measurable map belonging to Dp, 1(H)
for some p>1. Assume that there exist constants c, d (with c>1) such that
for almost every w # W

&{F(w)&�c<1

and

&{F(w)&2�d<�

where & }& denotes the operator norm and & }&2=& }&H�H denotes the
Hilbert�Schmidt (or H�H) norm (in other words, for almost all w # W,
&F(w+h)&F(w)&H�c &h&H for all h # H where c is a constant, c<1 and
{F # L�(+, H�H)). Then:

(a) Almost surely w [ T(w)=w+F(w) is bijective, the inverse T&1

satisfies T&1w=w+L(w) where &L(w)&H�&F(w)&H �1&c and &{L&2�
d�1&c.

(b) The measures + and T*+ are mutually absolutely continuous.
(c) E[ f ]=E[ f b T } |4F | ] for all bounded and measurable f on W and

in particular E[|4F | ]=1.
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Definition 2.2. Let u(w) be an H-valued random variable

(a) u(w) is said to be an H&C map if, for almost all w # W,
h [ u(w+h) is a continuous function of h # H.

(b) u(w) is said to be H&C 1 if it is H&C and for almost all w # W,
h [ u(w+h) is continuously Fre� chet differentiable on H.

(c) u(w) is said to be ``locally H&C 1'' if there exists an almost surely
strictly positive random variable \ such that h [ u(w+h) is C1 on the set
[h # H : |h|<\(w)].

(d) u(w) will be said to be '&H&C 1, if there exists a non-negative
random variable '(w) such that +['(w)>0]>0 and for all w # Q=
[w : '(w)>0], u(w+h) is Fre� chet differentiable on [h # H, &h&H<'(w)].

III. THE MEASURABILITY OF THE FORWARD IMAGE

Theorem 3.1. Suppose that u : W � H is a measurable map. Then for
any measurable A/W, (IW+u)(A)=T(A) is in the universally completed
Borel sigma algebra of W.

Proof. If w # T(A), then w=%+u(%) where % # A. Otherwise stated,
setting %=w+h, h satisfies

0=h+u(w+h)

and

w+h # A.

Let 1(w) be the multifunction taking values in subsets of H:

1(w)=[h : h+u(w+h)=0 and (w+h) # A].

Then

T(A)=[w # W : 1(w){,]=?W (G(1 )),

where G(1 ) is the graph of 1 : G(1)=[(h, w) : h # 1(w)] and ?W (h, w)=w.
Since (w, h) [ w+h is measurable, G(1) is measurable in W_H hence
?W G(1) is universally measurable (c.f. Theorem 23, p. 75 of [1]).

231SARD ON THE WIENER SPACE



File: 580J 309207 . By:DS . Date:22:08:97 . Time:07:21 LOP8M. V8.0. Page 01:01
Codes: 2177 Signs: 1183 . Length: 45 pic 0 pts, 190 mm

IV. THE SARD INEQUALITY

The following result is the infinite dimensional version of the Sard
inequality which implies the Sard lemma.

Theorem 4.1. Suppose that u : W � H is a measurable map in some
Dp, 1(H) and is '&H&C1, i.e. there exists a non-negative random variable
', with +(Q)=+['>0]>0 and the map h [ u(w+h) is continuously
Fre� chet differentiable on the random open ball [h # H : &h&H<'(w)]. Then
we have, for any A # B(W),

+(T(A & Q))�|
A & Q

|4u | d+.

The proof of the theorem will follow from the following two lemmas.

Lemma 4.1. Under the assumptions of Theorem 4.1, there exists a count-
able cover Qm, n of Q and two sequences in Dp, 1(H), denoted by Km, n(w) and
Sm, n(w) such that

1. &{Km, n&2�*m, n<1

for almost all w # W, where & }&2 denotes the Hilbert�Schmidt norm.

2. Sm, n(w) is finite dimensional on Qm, n , i.e. there exists a finite
dimensional subspace of H, say Hm, n , such that Sm, n(w) # Hm, n for all
w # Qm, n .

3. T=TSm, n
b T &1

Km, n
.

Proof of Lemma 4.1. Let (?n ; n # N) be a sequence of orthogonal pro-
jections of H increasing to IH . Let : be a fixed positive number (to be
specified later), set

Qm, n={w # W : &{u(w+h)&{u(w)&2�:, for all |h|H�
1
m=

& {w # W : |?=
n u(w)|H<

:
m

, &?=
n {u(w)&2�:,

&{u(w)&2�m, '(w)>
4
m= ,
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where & }&2 denotes the Hilbert-Schmidt norm. By the H&C1-property,
(Qm, n ; n, m # N) covers Q almost surely (here, if necessary, we add a negli-
gible set to have equality everywhere instead of almost everywhere but we
keep the same notation). Let us denote Qm, n by q. It is easy to see that for
w # q and any h # H, &h&H�1�m

&?=
n {u(w+h)&2�2: (4.1)

and, assuming that :<1,

&?=
n u(w+h)&H �&?=

n u(w)&H+|
1

0
&?=

n {u(w+th)&2 } &h&H } dt

�
:
m

+
2:
m

�
3:
m

. (4.2)

Let . be a smooth function on R such that |.(t)|�1 and |.$(t)|�2 for all
t # R, furthermore assume that .(t)=1 on |t|�1�2 and .(t)=0 on |t|�2.
Let \(w, q)=inf[&h&H : h # H, w+h # q].

Set

g(w)=.(m\(w, q))

and

G(w)= g(w) ?=
n u(w).

Therefore, if g(w){0, then m } \(w, q)<1, hence for some w0 # q,
&w&w0&H<1�m. Therefore, by (4.1) and (4.2), for all w # W,

&G(w)&H�
3:
m

(4.3)

and

&{G(w)&2 �&{g�?=
n u&2+&g } {?=

n u&2

�2m }
3:
m

+2:=8:. (4.4)

Setting, now, :=0.5 } 10&2, it follows from Theorem 2.1 that TG=Iw+G is
a.s. bijective. Let E=TG(q), then by the result of the previous section, E is
measurable and for any w satisfying \(w, E)�1�3m there exists some
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w0 # q, such that w&TG w0 # H and &w&TGw0&H< 1+=
3m , =>0. Therefore,

by (a) of Theorem (2.1) and (4.4)

&T &1
G w&w0&H�

&w&TGw0&H

1&8:
�

1
2m

.

Hence, \(T &1
G w, q)<1�2m and .(m } \(T &1

G w, q))=1, i.e. G(w)=?nu(w)
and consequently

(I+?=
n u) b T &1

G w=w (4.5)

for any w such that \(w, E )<1�3m and in particular to any w # E. Now set

&K(w)=.(8m\(w, E ))(w&(I+G)&1 w)

=.(8m\(w, E )) G((I+G)&1w). (4.6)

Hence by Theorem 2.1 and (4.3)

&K(w)&H�
3:
m

and

&{K&1�16m &G(w)&H+&{G b (I+G)&1 w&2 } (1+&{(I&(I&G)&1)&2)

�
48m:

m
+8: \1+

8:
1&8:+

<0.3.

Setting IW+S=T b TK , i.e., S(w)=K(w)+u(TK (w)), if \(w, E )<1�8m (in
particular, if w # E) then by (4.5), (4.6) TK (w)=T &1

G w and

w=(Iw+?=
n u) TK (w)

=w+K(w)+?=
n u(TK (w)).

Therefore

S(w)=&?=
n u(TK (w)) and

S(w)=K(w)+u(TK (w))

=(1&?=
n ) u(TK (w))

=?n u(TK (w)).

234 U� STU� NEL AND ZAKAI



File: 580J 309210 . By:DS . Date:22:08:97 . Time:07:21 LOP8M. V8.0. Page 01:01
Codes: 2465 Signs: 1354 . Length: 45 pic 0 pts, 190 mm

Consequently, for \(w, E )<1�8m, S(w) is in a finite dimensional space.
Setting K=Km, n and S=Sm, n completes the proof of the lemma.

Lemma 4.2. Let A be any measurable subset of W and let Qm, n be as
defined in Lemma 4.1, then

+(T(A & Qm, n))�|
A & Qm, n

|4u(w)| +(dw).

Proof. Let A� =A & Qm, n ; S=Sm, n and K=Km, n are as defined in
Lemma 4.1. By Theorem 3.1, TA� is measurable. Set E=TG A� , then E is
also measurable since TG satisfies the conditions of Theorem 3.1. Now,
TS=T b TK on E, therefore by Lemma 2.1, |4S(w)|=|4(TK (w)| } |4K (w)|
on E. Let hi , i=1, 2, . . . be a C.O.N.B. on H and ?n, m is the projection on
Hm, n defined in Lemma 4.1.

w=[$h1 , $h2 , . . .]

wa=[$hi , i�n]

wb=[$hi , i�n+1]

w=wa�wb ,

where wa�wb denotes the concatenation of wa with wb .
Define Fa=_[$hi , i�n], Fb=_[$hi , i�n+1] and +a , +b the restric-

tion of + to Fa and Fb respectively. Then

EF(w)=|
W

F(wa �wb) +a(dwa) } +b(dwb).

Note that \(w, A) is Lipschitz continuous (cf. property (ii) of \(w, A).
Consequently for all w # E, K(w+h) and S(w+h) are Lipschitz continuous
on (w+h) # Qm, n and for any (wa �wb) in E, S(wa �wb) is Lipschitz con-
tinuous in the wa variables. Now, the area theorem of Federer (cf. [3,
p. 243, Theorem 3.2.3]), for a Lipschitz function f : Rn � Rn yields

|
A

Jm f (x) dx=|
Rn

Cardinality(A & f &1( y)) dy�|
Rn

1f (A)( y) dy

which extends the Sard inequality to Lipschitz functions. Therefore, setting

?n(wa�wb)=wa
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we have

E(1TS E (w) | Fb)�|
E & ?nW

|4S (wa �wb)| +a(dwa).

Consequently

+(TSE )�|
E

|4S (w)| +(dw)

=|
E

|4u (TK (w))| } |4K (w)| +(dw)

=|
W

[|1A� ( } ) } 4u ( } )| b (TKw)] } |4K (w)| +(dw).

Applying part (c) of Theorem 2.1 to TK yields

+(TSE)�|
A�

|4u(w)| } +(dw),

which completes the proof of the lemma, since TSE=TA� .
Turning to the proof of Theorem 4.1, cutting and pasting Qm, n to form

a partition of A & Q (keeping the same notation),

+(T(A & Q))=+(T( _ Qm, n))

=+( _ T(Qm, n))

�7+(T(Qm, n))

�: |
Qm, n

|4u | +(dw)

=|
A & Q

|4u | +(dw),

which completes the proof of the theorem.

V. APPLICATION: THE CHANGE OF VARIABLES FORMULA

If in Theorem 4.1, the set Q has full measure then we have

+(T(A & Q))�|
A

|4u | d+,
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we would like to have in this case that

+(T(A))�|
A

|4u | d+.

However, due to adding negligeable sets to A in the course of the proof of
Lemma 4.1, this result is not true unless the things are reinterpreted as
explained in the following extension of Theorem 5.2 of [12].

Theorem 5.1. 1. Suppose that u : W � H is locally in some Dp, 1(H)
and that it is '&H&C1 with +(Q)=+['>0]>0. Let T=IW+u. For any
positive, bounded, measurable functions f and g on W, we have

E[ f b Tg 1Q |4u | ]=E _ f :
y # T&1[w] & Q

g( y)& ,

where 4u=det2(IH+{u) exp[&$u& 1
2 |u| 2

H].

2. Furthermore, if u is H&C 1
loc , then there exists a modification of u,

denoted by u$ (i.e., +[u=u$]=1), such that the corresponding shift T $
satisfies

E[ f b T $g |4u$ |]=E _ f :
y # T $&1[w]

g( y)& .

In particular, we have

+(T $(A))�|
A

|4u$ | d+,

for any A # B(W ).

3. If moreover Q+H/Q, then the restriction of T to the set Q
satisfies the conclusion of (2) where T $ is replaced by T |Q . In other words
we can replace (W, H, +) by (Q, H, +) and think of it as an abstract Wiener
space on which it holds that

+(T(A))�|
A

|4u | d+,

for any A # B(Q), where B(Q) denotes the trace of B(W ) on Q.

Proof. From Theorem 5.2 of [12], we have

E[ f b Tg 1Q |4u |]=E _ f :
y # T&1[w] & M & Q

g( y)& .
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Therefore, if g= g$ almost surely on Q then

:
y # T&1[w] & Q & M

g( y)= :
y # T&1[w] & Q & M

g$( y)

almost surely. Moreover, we have

E _f :
y # T&1[w] & M & Q

g( y)&=E _ f 1(T(Mc & Q))c :
y # T&1[w] & Q

g( y)&
and the first part of the theorem follows from Theorem 4.1. For the second
part, it suffices to define u$(w)=1Q(w) u(w) and to note that +(Q)=1.
Since 1T $(A)(w)�N$(w, A), where N$(w, A) is the cardinal of the set
T $&1[w] & A, which is equal to N(w, Q & A) almost surely, we have

+(T $(A))�E[N$(w, A)]

=E[N(w, A & Q)]

�E[1A |4u | ]

=E[1A |4u$ | ].

The third claim follows from the fact that T(Q)/Q whenever Q+H/Q
(note that in this case Qc is a slim set).

Below we give the proof of the inequality (1.2) in the setting of the
abstract Wiener space:

Corollary 5.1. Let u be a H&C 1
loc . Then there exists u$=u almost

surely and T $=IW+u$ satisfies

E[� 1T $(A)]�E[� b T $ 1A |4u$ |],

for any A # B(W ) and ��0 any measurable function on W. If u is H&C1,
then we can take T=T $ above provided that the triple (W, H, +) is replaced
by (Q, H, +).

Proof. Set u$=1Qu and let M=[w # W : det2(I+{u(w)){0]. From
Theorem 5.1, we have +(T(Mc & Q))=0, hence

E[� 1T $(A)]=E[� 1T(A & M)].

M has a countable partition (Mn) such that on each Mn , T=IW+u is
equal to a bijective transformation, say Tn (cf. [7, 13]) such that
d(T &1

n )* +=|4n | d+. Hence
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E[� 1T(A & M)]�:
n

E[� 1Tn(Mn & A)]

=:
n

E[� 1Mn & A b T &1
n ]

=:
n

E[� b Tn 1Mn & A |4n |]

=:
n

E[� b T 1Mn & A |4|]

=E[� b T |4u | 1A]

=E[� b T $ |4u$ | 1A].

VI. APPLICATIONS TO ABSOLUTE CONTINUITY

In the following three propositions we show how the Sard property and
the existence of a right inverse yield new results on the absolute continuity
of certain measures. The results will be presented under some general
assumptions.

Definition 6.1. Let (W, B(W ), +) be any probability space and T a
measurable transformation on W. The pair (T, +) will be said to possess
the Sard property with respect to Q # B(W ) if for every V # B(W )

(i) T(V & Q) is universally measurable.

(ii) +(T(V & Q))=0 whenever +(V & Q)=0.

Proposition 6.1. Let (T, +) possess the Sard property with respect to Q
and & another probability measure on (W, B(W)) for which &(Q)>0 such
that & |Q and + are mutually singular; then (T*(& | Q)) and + are mutually
singular.

Proof. Let N denote the set N/Q, +(N)=0, &(N)=&(Q), then
+(TN)=0 and

T*(& |Q)(TN)�&(N & Q)

=&(N)

=&(Q),

which completes the proof.
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Proposition 6.2. Assume that (T, +) possesses the Sard property with
respect to Q. Further assume that T has a measurable right inverse (i.e.
TSw=w for almost all w) then

+ |S&1(Q) RT*(+ |Q).

Therefore + |S&1(Q)RT*+.

Proof. S*+=&1+&2 where &1R+, &2 = +, then &2 |Q = +; hence by
Proposition 6.1,

T*(&2 |Q) = +.

On the other hand

T*(&1 | Q)+T*(&2 | Q)=T*((S*+) |Q)

=+ |S&1(Q) .

Hence T*(&2 |Q)R+ |S&1(Q) . Consequently T*(&2 | Q)=0 and + | S&1(Q)=
T*(&1 |Q)RT*(+ |Q), since +1R+2 implies T*+1RT*+2 .

Definition 6.2. (T, +) is said to possess the strong Sard property if, for
any measurable V, TV is universally measurable and there exists a non-
negative a.s. finite random variable 4 such that

+(TV)�|
V

4 d+.

Example VI.1. In the case of the abstract Wiener space, if u : W � H is
locally H&C1 such that the set Q=['>0] is H-invariant, i.e., Q+H/Q,
then T=IW+u satisfies the strong Sard property. In particular this is true
if u is H&C1.

Proposition 6.3. Let T possess the strong Sard property, set M=
[w : 4(|){0]. Assume that T possesses a measurable right inverse, then

+RT*(+ |M)

and

S*+R+ |M .
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Proof. Note that, since S is injective, the set S(A) is measurable for any
measurable subset A of W. We have

+(A)=+(TSA)�|
SA

4 d+

=|
W

1SA 4 d+�| 1A(T|) 4 d+

which proves the first part. In order to prove the second part

+(S&1(A))�+(TA)

�|
A

4 d+,

hence S*+R+ |M which completes the proof.

From here on, we shall be working again in the frame of an abstract
Wiener space (W, H, +).

Proposition 6.4. Suppose that u is '&H&C 1 with the corresponding
set Q and that there exists a measurable map S : T(W) [ W s.t. S(T(w))=
w+-a.s. (i.e., S is a left inverse). Then S*(+ |T(Q))r+ |M & Q where M=
[w : det2(I+{u(w)){0].

Proof. From the change of variables formula, we have, for any
f # C +

b (W ),

E[ f b S b T 1Q |4|]=E[ f b S } N(w, Q)]

where N(w, Q) is the multiplicity of T on Q and note that in this case we
have N(w, Q)=1T(Q)(w). Hence we have

E[ f } 1Q |4|]=E[ f b S } 1T(Q)]

and the proof follows.

Corollary 6.1. Suppose moreover that u is H&C 1
loc , then we have

S*(+ |T(Q))r+ |M .

We say that a shift T=IW+u is locally monotone if there exists an
increasing sequence (Wn) of measurable subsets of W which covers it
almost surely and some (un ; n # N)/�p>1 Dp, 1(H) such that u=un almost
surely on Wn and ( (IH+{un(w)) h, h) �0 almost surely for any h # H (the
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negligeable set may depend on h). For such a shift T (cf., [14]) it is known
that

E[ f b T |4|]�E[ f ],

for any f # C +
b (W).

Proposition 6.5. Let u : W [ H be H&C 1
loc and T=IW+u be locally

monotone. Then T possesses a left inverse S and we have

S*(+ |T(Q))r+ |M .

In fact

E[ f b S 1T(Q)]=E[ f |4|],

for any f # Cb(W ).
Moreover

dT*(+ |M)
d+

(w)=1T(Q)

1
|4u(Sw)|

,

+ almost surely.

Proof. Let us show that T possesses a measurable left inverse on Q. In
fact, from Theorem 5.1 and from the monotonicity assumption, we have
(c.f. [14]),

E[ f b T } |4|]=E[ f b N(w, Q)]�E[ f ],

for any f # C +
b (W ). Hence 0�N(w, Q)�1. We have T(Q)=[w :

N(w, Q)=1] almost surely. Let TQ be the restriction of T to Q and denote
by U the set

U=TQ(Q) & [w : N(w, Q)=1].

Define S : U � Q as S(TQ y)= y. Note that, if w=TQ y=TQ y$ then y= y$
since N(w, Q)=1, hence S is well-defined on U. If A # B(W ), then

S&1(A & Q)=[z # W : N(z, Q)=1] & T(A & Q),

as T(A & Q) is in the universal sigma algebra by Theorem 3.1, S is
measurable with respect to the trace of this sigma algebra on U. To show
the equivalence, note that we have

E[ f b T } |4|]=E[ f 1T(Q)],
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for any positive, bounded, measurable function f on W. Using this and the
construction of S,

E[ f 1U b T |4|]=E[ f 1U b T 1Q |4| ]

=E[ f b S b T 1U b T 1Q |4|]

=E[ f b S 1U 1T(Q)]

=E[ f b S 1T(Q)],

since U=T(Q) almost surely. Moreover

E[1U b T |4| ]=E[1U N(w, Q)]

=E[N(w, Q)]

=E[|4| ]

and this implies that 1U b T=1 almost surely on the set [4{0]. Combining
this with the above relation, we obtain

E[ f |4|]=E[ f b S 1T(Q)].

Note that f b S is well-defined on the set T(Q) since it is almost surely
equal to U. Let us now calculate the Radon�Nikodym density of T*(+|M):

E[ f b T 1M]=E _ f b T 1M
|4|
|4|&

=E _ f :
y # T&1[w] & Q

1
|4( y)|&

=E _ f 1U :
y # T&1[w] & Q

1
|4( y)|&

=E _ f
1

|4(Sw)|
1T(Q) & Q&

=E _ f
1

|4(Sw)|
1T(Q) & .

This completes the proof.

Remark. If H+Q/Q, then one can replace Q by W in the proposition.
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