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Abstract

This paper discusses a research project to support virtual design and verification of industrial process plant designs. Process
plants are a class of cyber-physical systems (CPS), and these research results should generally apply to other types of CPS such as
those associated with the Smart Grid. Modeling is an essential part of process plant design and integral in other applications such
as manufacturing. Models produced in design have obvious roles in system implementation, deployment and certification. For
manufacturing systems, models also have use in downstream activities including system certification, performance optimization,
real-time diagnostics and prognostics, and maintenance. The paper discusses the results associated with a prototype that uses
domain-specific models of different views of a system design that improves collaboration through integrated models and aligned
semantics and provides examples of how the integration with formal methods can identify defects in designs, and automatically
generate test vectors with requirement-to-test traceability.
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1. Introduction

Models should play a key role in the design, verification and validation (V&V) of process plants. Process plants,
and manufacturing facilities generally, are classes of cyber-physical systems (CPS) and types of systems within a
smart manufacturing system of system. The design of manufacturing systems involves collaborative effort among
multiple viewpoints and disciplines. Process plants and CPS continue to evolve; robots are playing more significant
roles and future systems will rely less on human decision-making and more on computational intelligence. The need
for verification is expected to increase with the increasing complexity of systems and automation'. The complexity
of manufacturing systems and their safety requirements place demands on system design, implementation, and
V&V. Models can serve in roles downstream of design such as system certification, performance optimization, real-
time diagnostics and prognostics, and maintenance. Model-based systems engineering (MBSE) is intended to
support many of these roles and address these requirement-to-test traceability challenges. In the particular context of
process plant design, however, neither the current generation of MBSE tools, nor commonplace practices are
particularly well suited to these ends.!

The current generation of MBSE tools provide general-purpose viewpoints? that oftentimes are not efficient at
conveying domain-specific information. Viewpoints and analysis tools are often not integrated and may not be
consistent across models. More importantly, many types of models lack the semantic richness to allow designers to
formalize critical aspects of the systems to leverage more rigorous analysis, simulation and synthesis capacities
required to ensure both performance and dependability requirements are achieved.

Commonplace practices of process plant design rely heavily on paper-based specifications generally referred to
as product data sheets. A data sheet provides information that specifies functional and physical characteristics of a
component of a system, plant or facility. Data sheets are used both by the system integrator to specify requirements
of equipment components, and by suppliers to describe how their product addresses these requirements. However,
the relationships between properties stipulated in the data sheet and design rationale and decisions are oftentimes not
obvious. The inability to trace from design commitments back to their rationale and requirements may have
consequences not only in V&V but also in the maintenance and operation of the systems and the plant. For example,
after years of operation, equipment identical to the original equipment used may become unavailable, making it
necessary to reference design requirements to identify suitable replacement equipment. Models used in activities
downstream of design, e.g., testing for safe operations, should be traceable to design decisions and operational
intent.

Automated test generation and formal methods of V&V may provide value by ensuring test coverage and by
linking tests to requirements. Knowledge of the testing performed relative to requirements can serve to further
describe the requirements. But applying formal methods to process plant system engineering presents its own
problems. The challenge is twofold: there is a burden on the engineer to specify the requirement in a form required
by the formal method, and with increasing formality, it becomes increasingly difficult to interpret the results of
testing in terms meaningful to the engineer. Both of these effects also impede the ability to relate testing back to
requirements.

This paper discusses an approach that uses domain-specific modeling (DSM) for capturing and sharing
equipment, system and facility-related requirements, design information, and constraints. DSM provides graphical
notations intended to facilitate the translation of stakeholder concerns into the information requirements of the
application. Our particular use of a DSM concerns the use of formal methods of V&V and associated tooling. It is
important to not burden the user with the mechanics of the formalism. The DSM representations provide the
semantic richness that is required to formalize requirements, design, and safety properties to support systems V&V
using formal method automation.

The unique contributions of this research are a methodology and prototype that demonstrate how some types of
formal methods (i.e., satisfiability, proof of properties) can be integrated into familiar manufacturing and systems
engineering viewpoints using domain-specific modeling. The paper describes the prototype DSM-based toolchain,
which supports different viewpoints of integrated models for a system design, and provides examples of how the
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integration with formal methods can identify defects in the design, and automatically generate test vectors with
requirement-to-test traceability. These results use a process plant design example, but the results should be equally
applicable to other CPSs such as smart grids. Finally, the DSM process described in this paper identifies how
researchers and technology specialists can leverage this type of DSM platform to integrate their latest analysis and
simulation capabilities for key CPS challenges in V&V.

2. Concept Overview- DSM Integration with Formal Methods

We seek to efficiently and effectively apply V&V to these increasingly complex systems. V&V activities
reference requirements. The method of capturing and representing requirements must be comprehensible to the
various stakeholders involved in process plant engineering. In the current design of process plants, the product data
sheet is the key means by which equipment requirements are represented and communicated among suppliers and
designer. A DSM enables engineers who do not have detailed knowledge of the formal methods used to specify
V&V problems. Specifically, the engineer uses representations familiar to him such as piping and instrumentation
diagrams (P&IDs) and properties typically found on product data sheets that are captured in the model.

Our prototype supports: 1) capturing process system requirements, design, and property specifications, 2)
automating generation of system tests that represents the logical structure of an envisaged system, its components
and their interconnection, and 3) verifying that interaction of components achieves system goals.

A closed-loop, heat transfer, liquid circulating (CHL) system shown in Fig. 1 was used in the prototype. The
model uses P&ID graphical notations to represent components such as storage tanks, pumps, heat exchanges,
sensors, and valves. The CHL P&ID is part of a document-based system breakdown specification that includes a
system requirement tree with associated system, component and interface requirements. P&IDs are generated as
views of more detailed models of the system, e.g., the 3D model of the physical configuration and network and logic
models for control systems and operations.

DSM languages (DSML) are applied to the problem. A DSML is a modeling language defined using a
metamodel and used to mediate between a user viewpoint and the information needs of a software application.
DSMs are an emerging type of MBSE technology that enable domain subject matter experts (SME) to express
application concepts and design intent using notations that precisely match the domain’s semantics**. A DSM can
provide relevant and intuitive graphical abstraction for specific domains, which flatten learning curves for users.

Fig. 1. Closed-loop, Heat transfer, Liquid circulating (CHL) Process Flow Diagram.
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The DSM environment used for this research supports development of metamodels and associated graphics that
are used to create application-specific models. Fig. 2 shows images of integrated application models’ views from the
prototype DSM. The DSM tool environment provides built-in generators for producing documentation, simulations,
and representations to support analysis and test generation. Model concepts and properties can characterize the
physical and software aspects of the target system, all of which reference the same set of objects represented. This
type of approach supports evolvable modeling languages, which is critical as smart manufacturing components and
technologies are evolving at a rapid pace. While DSM approaches have been used in other domains (e.g., Simulink
for control engineers), they have not been used with formal methods and test generation automation to the extent
provided by this research or for smart manufacturing. Manufacturing models go beyond software control and require
analysis of other properties such as flow rate, pressure and temperature as described in Section 3.
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Fig. 2. Integrated process flow and mechanical control views corresponding to a domain-specific metamodel for formal methods of analysis

Fig. 3 provides a high-level perspective of the prototype toolchain. The process involved the creation of
metamodels (1). The prototype includes two metamodels (a), one for the process flow and another for mechanical
control that shares objects, relationship, roles, etc. A diagram editor (2) uses the metamodels (a) to create
application-specific models (b), which also share objects, as shown in Fig. 2. The generator (3) uses a template
language (c) to extract modeled information from one or more diagrams to produce the input representation used by
the formal methods tool called T-VEC (4)°. T-VEC is a theorem prover, which also produces analyses and other
types of reports, including test vectors with associated model-to-test traceability information.
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Fig. 3. Conceptual Representation of the DSM and Formal Methods Toolchain
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There are at least three roles involved in the development, usage, and evolution of this type of toolchain as shown
in Fig. 3. The DSM modeler creates and evolves metamodels. This requires collaboration between the DSM modeler
and domain SMEs, such as process plant, mechanical controls, and safety engineers. Application engineers and
SMEs use the created DSMs to produce the application-specific models. The last role involves development of
generators to transform the models to a form suitable for the simulation applications, analysis and test generation.
This effort can require collaboration between the DSM modeler, researchers and technology specialists.

When the design is elaborated in the process flow model, as shown in Fig. 4, a properties menu is displayed
requesting the user to enter property values (e.g., flow rate, flow rate units, valve type of: Normal, Manual, or
Control).
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Fig. 4. Conceptual Design integrates Process Diagram with Formal Methods Tools
3. Model Representations, Analysis and Test Generation Details

A goal of the DSM approach is to hide from the user irrelevant details required to leverage formal methods. For
purposes of explanation, this section describes some of these details about the DSM transformation and
representations required to support formal method analysis, test generation, and requirement-to-test traceability. One
example used by the project focused on flow path analysis and test generation, and uses images of translated models
and analysis reports from the T-VEC tools. Future efforts are planned to bring this type of information back into the
DSM environment.

The DSM generator ((3) in Fig. 3) allows the extracted model information to be formatted in a precise way
syntactically and semantically. The generator includes support to produce artifacts for a TwinCAT simulator® and T-
VEC Tabular Modeler (TTM). TTM has a modeling language based on the Naval Research Laboratory Software
Cost Reduction (SCR) language’, and has been extended to include other features for linking textual requirements,
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and modeling constructs such as first-order functions and assertions® 3. TTM integrates with T-VEC through a
translator, but this is hidden from the user; T-VEC provides formal method analysis and test vector generation. The
use of TTM and T-VEC in this prototype is similar to the work of the DARPA DSM initiative called the Producible,
Adaptive Model-based Software (PAMS)>*.

The generator extracts information associated with DSM metamodel concepts, such as diagrams, objects,
relations, roles and ports. The extracted information is transformed into TTM model constructs such as
requirements, types, constants, assertions, state machines, inputs, and event and condition tables. A TTM
requirement is created for every diagram, component, and pipe relation. Requirements in the TTM model are linked
to the modeled information, as depicted in Fig. 5 so that when test vectors are generated, the requirement is traced
and linked to the requirements providing requirement-to-test traceability. A TTM type is generated for each
component based on the properties. For example, a Heat Exchanger type is represented as a structure that includes
flow_rate, pressure, and temperature. Units are a formal property of each type. A TTM input is created for each
component and associated with a type (e.g., Hx1 is of the type Heat Exchanger_type).

A TTM table represents each flow path through the model, which is derived from each pipe that relates
components. A TTM table can be thought of as a precondition and postcondition pair. The precondition describes
constraints on inputs and the postcondition describes the output relations in terms of the constrained inputs. Each
component has a corresponding TTM table representation with a precondition that constrains the input to the limits
associated with the attributes (e.g., Hx1.flow_rate <= 11000 AND HxI.pressure <= 200 AND Hx1.temperature <=
200) and a postcondition associated with the possible outputs for that component, based on the inputs. Each TTM
table is labeled with a “t ” prefix (e.g., valve V1 has a table named t V1). Pipes are named using the object
identifier that is generated by the DSM tool. For example, the TTM table for pipe t 2306 relates valve V1 and heat
exchanger Hx1 as shown in Fig. 4.

t_2306 Coverage Analysis FAILED | TTM Table t_2306 |
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Fig. 5. Each Pipe Has Instance Specification Plus Flow Dependencies where Flow Dependencies can be Incompatible

The DSM generator adds constraints such as a flow rate limit in the transformation of each pipe relation; these
constraints support formal analysis to ensure the flow path output flow rate, pressure, and temperature of a
component is not too high for downstream elements such as valves or other heat exchangers. To confirm the flow
rate limit, the generator creates two disjunctions for each pipe relation (e.g., t 2306); this is represented by the two
different rows in the table, as shown in Fig. 5. The Condition (i.e., precondition) describes the constraints. For
example, the first row has six Boolean-valued constraints. The first three establish constraints that are used to test
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the boundary of the maximum value for the heat exchange H1 (e.g., Hx1.flow_rate = 11000 gps). These values are
extracted from the component properties of the model. The last three constraints confirm that the transformed model
associated with the valve can satisfy these constraints. The variable t V1 is a reference to the TTM table that has the
component constraints for the value V1 (i.e., V1.flow_rate <= 1200). Row #2 of the table t 2306 uses the constraint
with a “<=" relation, which allows for all values between the upper and lower-bound to be satisfied. In addition, it
causes both upper and low-bound values to be generated by the test vector generation system as shown in Fig. 6.
The Assignment column (i.e., postcondition) is associated with the flow properties out of the pipe. The generator
performs a type of transitive closure operation to ensure that every pipe and junction is related to every other pipe
and component to ensure the analysis covers all of the flow paths.

The T-VEC analysis identifies those components that violate the properties, which could impact operational
usage or safety. Fig. 5 shows images of three-hyperlinked report elements produced by T-VEC. The main report
captures the t 2306 coverage analysis, indicating that a particular path (i.e., called a domain convergence path
[DCP]) through the model is not satisfiable. This error report has a hyperlink to the highlighted Condition column
for Row #1 of the t 2306 table. The image at the bottom of Fig. 5 shows that the failed pre-condition relation
occurred under the condition when the flow rate for the heat exchange H1 is 11,000 gallons per minute (gpm) and
the flow rate for the valve has only possible values between 0 to 1,200 gpm, which cannot satisfy the equality
constraint. This is a seeded defect used in this example, but this could result from an input entry error or an actual
situation where the actual valve does not have adequate capacity. Conceptually, each model path characterizes one
set of component connections. This analysis is based on the assumption that it is important to know if there are any
elements where this flow rate (pressure and temperature) can exceed the capacity (property) of other elements in the
flow path. This example shows how a formal methods tool can identify where a requirement is not met, which can
be a potential safety or operational issue that can be corrected during design.
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Fig. 6. Generated Test Vector with Requirement Traceability

When the seeded defect is corrected by changing the Hx1 heat exchanger flow rate to 1200 gps, the model errors
are resolved. There were a total of 36 test vectors produced for all of the paths through the pipes and components.
An example test vector, with requirement traceability is shown in Fig. 6 for the pipe relation t 1697. As shown in
the Requirement ID column of table t 1697, the model generation associates the requirement link with the generated
TTM tables. For example, the requirement includes both the pump object CP and the valve object V1. During the
test vector generation process, the linked requirements are output and associated with the corresponding test vector
to provide requirement-to-test traceability. A test vector includes the expected outputs and test input values, type,
and associated domain.
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4. Conclusions

This paper describes a research project to support virtual design and verification of industrial process plants’
designs. The prototype developed for this project uses DSMs and DSMLs of differing views of a system design, and
provides examples of how the integration with formal methods can identify defects in the design, and automatically
generate test vectors with requirement-to-test traceability.

The project research involved three main roles: 1) developing the DSM metamodel for integrated system designs,
2) creating application-specific models, using two graphical DSMLs, and 3) producing the generator required to
demonstrate analysis and test generation. This type of DSM-based toolchain approach supports model evolution
when new technologies are created in the domain (e.g., cyber-physical systems). This is particularly important as
new technologies for smart manufacturing, especially those with computational intelligence are emerging at an
accelerating rate. When new or enhanced products or systems are created, they can be characterized in the
metamodel(s), and then are available in the application editors for users of the system. Updates to the metamodel
will often require updates to the generators to support analysis for these new types of enhanced capabilities.

While it is possible to find P&ID tools to create these types of diagrams, there are significant advances needed in
the industry to support a broad range of formal analysis. Further, the research is focused on viewpoint integration
and leveraging appropriate types of formal methods to address the various types of complexity in these systems. The
need for such integration is relevant to CPS in general.

It is too early to quantify the efficiencies and benefits of this approach for smart manufacturing. However, the
conceptual approach proposed for this project is similar to the DARPA Disruptive Manufacturing Technologies
PAMS initiative®. This same pattern was used on the PAMS project for an avionic flight control DSM, where
quantitative comparisons against legacy development processes indicate greater than 60 percent reduction in
development time and greater than 80 percent reduction in lifecycle cost’. These efforts represent the tip of the
iceberg, as there are many other types of analyses needed for CPS. Future efforts will continue to extend the V&V
support and work to create a better veneer to increase the usability that integrates the modeling and analysis
information.

This integrated prototype provides a higher-level representation that leverages two types of transformations to
provide engineers a more natural interface for performing process plant engineering and getting rigorous analysis at
design time. A key benefit of the DSM approach is that it raises the level of abstraction and hides details that are
embedded within the generators. Finally, these efforts reflect how this DSM approach can support new contributions
and collaboration made by researchers and technology specialists across many domains where they can more easily
leverage and integrate advanced analysis and computer automation through model-integrated platforms.
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