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Using Poincaré parametrization of AdS space, we study massive totally symmetric arbitrary spin fields in
AdS space of dimension greater than or equal to four. CFT adapted gauge invariant formulation for such
fields is developed. Gauge symmetries are realized by using Stueckelberg formulation of massive fields.
We demonstrate that the mass parameter, curvature and radial coordinate contributions to the gauge
transformation and Lagrangian of the AdS massive fields can be expressed in terms of ladder operators.
Three representations for the Lagrangian are discussed. Realization of the global AdS symmetries in the
conformal algebra basis is obtained. Modified de Donder gauge leading to simple gauge fixed Lagrangian
is found. The modified de Donder gauge leads to decoupled equations of motion which can easily be
solved in terms of the Bessel function. New simple representation for gauge invariant Lagrangian of
massive (A)dS field in arbitrary coordinates is obtained. Light-cone gauge Lagrangian of massive AdS
field is also presented.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Further progress in understanding AdS/CFT correspondence re-
quires, among other things, better understanding of field dynamics
in AdS space. Although many interesting approaches to AdS fields
are known in the literature (for review see Refs. [1–3]), analysis of
concrete dynamical aspects of such fields is still a challenging pro-
cedure. One of ways to simplify analysis of field and string dynam-
ics in AdS space is based on use of the Poincaré parametrization of
AdS space.2 Use of the Poincaré coordinates simplifies analysis of
many aspect of AdS field dynamics and therefore these coordinates
have extensively been used for studying the AdS/CFT correspon-
dence. In Ref. [8], we developed a approach which is based on
considering of AdS field dynamics in the Poincaré coordinates and
applied our approach to study of massless AdS fields. We think
that our approach might be useful for study of AdS string massive
modes. Therefore it is desirable to generalize our approach to the
case of massive AdS fields. This is that what we do in this Let-
ter. Namely, using the Poincaré parametrization of AdS space we
discuss massive totally symmetric arbitrary spin-s, s � 1, bosonic

E-mail address: metsaev@lpi.ru.
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2 Studying AdS5 × S5 superstring action [4] in Poincaré parametrization may be
found in Ref. [5]. Recent interesting application of Poincaré coordinates to studying
AdS5 × S5 string T -duality may be found in Refs. [6,7].
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field propagating in AdSd+1 space of dimension d + 1 � 4. Our re-
sults can be summarized as follows.

i) Using the Poincaré parametrization of AdS, we obtain gauge
invariant Lagrangian for free massive arbitrary spin AdS field. The
Lagrangian is explicitly invariant with respect to boundary Poincaré
symmetries, i.e., manifest symmetries of our Lagrangian are adapted
to manifest symmetries of boundary CFT. We show that all the
mass parameter, curvature and radial coordinate contributions to
our Lagrangian and gauge transformation are entirely expressed
in terms of ladder operators that depend on the mass parame-
ter, radial coordinate and radial derivative. General structure of the
Lagrangian we use is the same as the one for massless AdS fields.
Lagrangian of massive AdS field is distinguished by appropriate lad-
der operators. We find two new concise expressions for the gauge
invariant Lagrangian.

ii) We generalize modified de Donder gauge, found for mass-
less AdS fields in Ref. [8], to the case of massive fields. As in the
case of massless fields, the modified de Donder gauge leads to sim-
ple gauge fixed Lagrangian and decoupled equations of motion.3 Note
that the standard de Donder gauge leads to coupled equations of
motion whose solutions for s � 2 are not known in closed form
even for massless AdS fields. In contrast to this, our modified de
Donder gauge leads to simple decoupled equations which are eas-
ily solved in terms of the Bessel function.

3 Our modified de Donder gauge seems to be unique gauge that leads to decou-
pled equations of motion. Light-cone gauge [9] also leads to decoupled equations of
motion, but the light-cone gauge breaks boundary Lorentz symmetries.
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2. Lagrangian and its gauge and global symmetries

We begin with discussion of field content of our approach. In
Ref. [10], the massive spin-s field propagating in AdSd+1 space
is described by double-traceless so(d,1) algebra totally symmet-
ric tensor fields Φ A1...As′ , s′ = 0,1, . . . , s.4 These tensor fields can
be decomposed in real-valued scalar, vector, and totally symmetric
tensor fields of the so(d − 1,1) algebra:

φ
a1...as′
λ , λ = [

s − s′]
2, s′ = 0,1, . . . , s − 1, s. (2.1)

Henceforth, the notation λ = [n]2 implies that λ = −n,−n + 2,
−n + 4, . . . ,n − 4,n − 2,n. To illustrate the field content given in
(2.1) we use shortcut φ(s′,λ) for the field φ

a1...as′
λ and note that

fields in (2.1) can be represented as

φ(s,0)

φ(s−1,−1) φ(s−1,1)

. . . . . . . . .

φ(1,1−s) φ(1,3−s) . . . φ(1,s−3) φ(1,s−1)

φ(0,−s) φ(0,2−s) . . . φ(0,s−2) φ(0,s).

(2.2)

The fields φ
a1...as′
λ with s′ � 4 are double-traceless,5

φ
aabba5...as′
λ = 0, λ = [

s − s′]
2, s′ = 4,5, . . . , s. (2.3)

The fields in (2.1) subject to constraints (2.3) constitute a field con-
tent of our approach.

To simplify presentation we use creation operators αa , αz , ζ

and the respective annihilation operators, ᾱa , ᾱz , ζ̄ . Then, fields
(2.1) can be collected into a ket-vector |φ〉 defined by6

|φ〉 =
s∑

s′=0

∑
λ=[s−s′]2

ζ
s−s′+λ

2 α
s−s′−λ

2
z αa1 . . . αas′

s′!
√

( s−s′+λ
2 )!( s−s′−λ

2 )!
φ

a1...as′
λ |0〉. (2.4)

From (2.4) we see that the ket-vector |φ〉 is degree-s homogeneous
polynomial in αa , αz , ζ .7 In terms of the ket-vector |φ〉, double-
tracelessness constraint (2.3) takes the form8

(
ᾱ2)2|φ〉 = 0. (2.5)

Action and Lagrangian we found take the form

S =
∫

ddx dz L, L = 1

2
〈φ|E|φ〉, (2.6)

4 A, B, C = 0,1, . . . ,d and a,b, c = 0,1, . . . ,d − 1 are the respective flat vector in-
dices of the so(d,1) and so(d − 1,1) algebras. In Poincaré parametrization of AdSd+1
space, ds2 = (dxa dxa + dz dz)/z2. We use the conventions: ∂a ≡ ∂/∂xa , ∂z ≡ ∂/∂z.
Vectors of so(d,1) algebra are decomposed as X A = (Xa, X z).

5 Note that so(d − 1,1) tensorial components of the Fronsdal–Zinoviev fields
Φ A1 ...As′ are not double-traceless. Using appropriate transformation (see (4.28))
those tensorial components can be transformed to our fields in (2.1).

6 We use oscillator formulation to handle the many indices appearing for tensor
fields (for review see Refs. [12,13]). In a proper way, oscillators arise in the frame-
work of world-line approach to higher-spin fields (see e.g. Refs. [14,15]).

7 Throughout this Letter we use the following notation for operators constructed
out the oscillators and derivatives: Nα ≡ αaᾱa , Nz ≡ αzᾱz , Nζ ≡ ζ ζ̄ , α2 = αaαa ,
ᾱ2 = ᾱaᾱa , � = ∂a∂a , α∂ = αa∂a , ᾱ∂ = ᾱa∂a .

8 We adapt the formulation in terms of the double-traceless gauge fields [11]
(see also Refs. [10,16]). Discussion of various formulations in terms of unconstrained
gauge fields may be found in Refs. [17–21]. Study of other interesting approaches
which seem to be most suitable for the theory of interacting fields may be found
e.g. in Refs. [22,23].
〈φ| ≡ (|φ〉)†. We now discuss various representations for operator
E and the Lagrangian in turn.

1st representation. This representation is given by

E = E(2) + E(1) + E(0), (2.7)

E(2) ≡ � − α∂ᾱ∂ + 1

2
(α∂)2ᾱ2 + 1

2
α2(ᾱ∂)2 − 1

2
α2�ᾱ2

− 1

4
α2α∂ᾱ∂ᾱ2, (2.8)

E(1) ≡ ē1 A + e1 Ā, (2.9)

E(0) ≡ m1 + α2ᾱ2m2 + m̄3α
2 + m3ᾱ

2, (2.10)

A ≡ α∂ − α2ᾱ∂ + 1

4
α2α∂ᾱ2, (2.11)

Ā ≡ ᾱ∂ − α∂ᾱ2 + 1

4
α2ᾱ∂ᾱ2, (2.12)

m1 = ē1e1 − 2
2s + d − 3 − 2Nz − 2Nζ

2s + d − 4 − 2Nz − 2Nζ

e1ē1, (2.13)

m2 = −1

2
ē1e1 + 1

4

2s + d − 2Nz − 2Nζ

2s + d − 4 − 2Nz − 2Nζ

e1ē1, (2.14)

m3 = 1

2
e1e1, m̄3 = 1

2
ē1ē1, (2.15)

−e1 = ζ rζ T−ν− 1
2

+ αzrz Tν− 1
2
,

−ē1 = Tν+ 1
2

rζ ζ̄ + T−ν+ 1
2

rzᾱ
z, (2.16)

Tν = ∂z + ν

z
, ν = κ + Nζ − Nz, κ ≡ E0 − d

2
, (2.17)

rζ =
(

(s + d−4
2 − Nζ )(κ − s − d−4

2 + Nζ )(κ + 1 + Nζ )

2(s + d−4
2 − Nζ − Nz)(κ + Nζ − Nz)(κ + Nζ − Nz + 1)

)1/2

,

(2.18)

rz =
(

(s + d−4
2 − Nz)(κ + s + d−4

2 − Nz)(κ − 1 − Nz)

2(s + d−4
2 − Nζ − Nz)(κ + Nζ − Nz)(κ + Nζ − Nz − 1)

)1/2

,

(2.19)

where subscript n in E(n) (2.7) tells us that E(n) is degree-n homo-
geneous polynomial in the flat derivative ∂a . The following remarks
are in order.

i) The parameter κ (2.17) is expressed in terms of spin-s mas-
sive field lowest energy E0. Using result in Ref. [24] we can express
κ in terms of the standard mass parameter m,

κ =
√

m2 +
(

s + d − 4

2

)2

. (2.20)

ii) Operator E(2) (2.8) is the symmetrized Fronsdal operator rep-
resented in terms of the oscillators. This operator takes the same
form as the one of massless field in d-dimensional flat space. Thus,
the operator E (2.7) is given by the sum of the standard Fronsdal
operator E(2) and new operators E(1) , E(0) which depend on the
mass parameter m, the radial coordinate and derivative, z, ∂z .

iii) Dependence of E (2.7) on the mass parameter m, the radial
coordinate and derivative, z, ∂z , is entirely governed by the opera-
tors e1 and ē1 (2.16) which we will refer to as ladder operators.9

iv) Representation for the Lagrangian in (2.6)–(2.15) is univer-
sal and is valid for arbitrary Poincaré invariant theory. Various

9 Interesting application of other ladder operators to studying AdS/QCD corre-
spondence may be found in Ref. [25]. We believe that our approach will also
be useful for better understanding of various aspects of AdS/QCD correspondence
which are discussed e.g. in Refs. [25,26].
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Poincaré invariant theories are distinguished by ladder operators
entering the operator E . This is to say that the operators E of mas-
sive and conformal fields in flat space depend on the oscillators αa ,
ᾱa and the flat derivative ∂a in the same way as the operator E of
AdS fields (2.7). In other words, the operators E for massless and
massive AdS fields, massive and conformal fields in flat space are
distinguished only by the operators e1 and ē1. We note that it is
finding the ladder operators that provides real difficulty. Expres-
sions for e1, ē1 appropriate for conformal and massive fields in flat
space may be found in Refs. [27,28].

2nd representation for the operator E . Lagrangian can be presented
in the form given in (2.6) with the following concise expression for
the operator E:

E = μ
(� − M2

ν

) − CC̄ , (2.21)

M2
ν ≡ −∂2

z + 1

z2

(
ν2 − 1

4

)
, (2.22)

C̄ ≡ ᾱ∂ − 1

2
α∂ᾱ2 − ē1Π

[1,2] + 1

2
e1ᾱ

2, (2.23)

C ≡ α∂ − 1

2
α2ᾱ∂ − e1Π

[1,2] + 1

2
ē1α

2, (2.24)

μ ≡ 1 − 1

4
α2ᾱ2, Π [1,2] ≡ 1 − α2 1

2(2Nα + d)
ᾱ2, (2.25)

where ν is given in (2.17). Operator E in (2.21) differs from the
one in (2.7) by terms proportional to (α2)2 and (ᾱ2)2. Therefore, in
view of double-tracelessness constraint (2.5), these two represen-
tations for E lead to the same Lagrangian (2.6). We note that op-
erator E in (2.21) respects, in contrast to the one in (2.7), double-
tracelessness constraint (2.5). For massless field in d-dimensional
flat space, e1 = ē1 = 0, operator C̄ (2.23) coincides with the stan-
dard de Donder operator. In terms of the ladder operators, mass
operator M2 takes the form

M2 ≡ −ē1e1 + 2s + d − 2 − 2Nz − 2Nζ

2s + d − 4 − 2Nz − 2Nζ

e1ē1, (2.26)

while the M2
ν (2.22) is obtained form (2.26) by using ladder oper-

ators given in (2.16).
CFT adapted representation of the Lagrangian. Taking into account

representation for operator E in (2.21) and noticing the relations
M2

ν = T †
ν− 1

2
Tν− 1

2
, C = −C̄ †, where Tν is given in (2.17), we see

that Lagrangian (2.6) can be represented as (up to total derivatives)

L = −1

2

〈
∂aφ

∣∣μ∣∣∂aφ
〉 − 1

2
〈Tν− 1

2
φ|μ|Tν− 1

2
φ〉 + 1

2
〈C̄φ||C̄φ〉.

(2.27)

This form of the Lagrangian turns out to be very convenient for
studying AdS/CFT correspondence.

Gauge symmetries. We now discuss gauge symmetries of La-
grangian (2.6). To this end we introduce the following set of gauge
transformation parameters:

ξ
a1...as′
λ , λ = [

s − 1 − s′]
2, s′ = 0,1, . . . , s − 1. (2.28)

The gauge parameters ξλ , ξa
λ , and ξ

a1...as′
λ , s′ � 2 in (2.28), are the

respective scalar, vector, and rank-s′ totally symmetric tensor fields
of the so(d−1,1) algebra. The gauge parameters ξ

a1...as′
λ with s′ � 2

are subjected to the tracelessness constraint,

ξ
aaa3...as′
λ = 0, λ = [

s − 1 − s′]
2, s′ = 2,3, . . . , s − 1. (2.29)

We now, as usually, collect gauge transformation parameters in
ket-vector |ξ〉 defined by
|ξ〉 =
s−1∑
s′=0

∑
λ=[s−1−s′]2

ζ
s−1−s′+λ

2 α
s−1−s′−λ

2
z αa1 . . . αas′

s′!
√

( s−1−s′+λ
2 )!( s−1−s′−λ

2 )!
ξ

a1...as′
λ |0〉.

(2.30)

We note that the ket-vector |ξ〉 is a degree-(s − 1) homogeneous
polynomial in the oscillators αa , αz , ζ . In terms of the ket-vector
|ξ〉, tracelessness constraint (2.29) takes the form

ᾱ2|ξ〉 = 0. (2.31)

Lagrangian (2.6) is invariant under the following gauge transforma-
tion:

δ|φ〉 = G|ξ〉, G = α∂ − e1 − α2 1

2Nα + d − 2
ē1, (2.32)

where e1, ē1 are given in (2.16). From (2.32), we see that the mass
parameter, radial coordinate and derivative contributions to gauge
transformation (2.32) are entirely expressed in terms of the lad-
der operators e1 and ē1. We note that use of operator G (2.32)
allows us to write new representation for the operator E entering
Lagrangian (2.6),

E = μ
(� − M2

ν − GC̄
)
. (2.33)

Global so(d,2) symmetries. Relativistic symmetries of AdSd+1
space are described by the so(d,2) algebra. In our approach, the
massive spin-s AdSd+1 field is described by the set of the so(d −
1,1) algebra fields (2.1). Therefore it is reasonable to represent the
so(d,2) algebra so that to respect manifest so(d −1,1) symmetries.
For application to the AdS/CFT correspondence, most convenient
form of the so(d,2) algebra that respects the manifest so(d − 1,1)

symmetries is provided by nomenclature of the conformal algebra.
This is to say that the so(d,2) algebra consists of translation gen-
erators P a , conformal boost generators K a , dilatation generator D ,
and generators J ab which span so(d − 1,1) algebra. Normalization
for commutators of the so(d,2) algebra generators we use may be
found in formulas (3.1)–(3.4) in Ref. [8].

Requiring so(d,2) symmetries implies that the action is invari-
ant with respect to transformation δĜ |φ〉 = Ĝ|φ〉, where the re-

alization of so(d,2) algebra generators Ĝ in terms of differential
operators acting on the ket-vector |φ〉 takes the form

P a = ∂a, J ab = xa∂b − xb∂a + Mab, (2.34)

D = x∂ + ,  ≡ z∂z + d − 1

2
, (2.35)

K a = −1

2
x2∂a + xa D + Mabxb + Ra, (2.36)

x∂ ≡ xa∂a , x2 ≡ xaxa . In (2.34), (2.36), Mab is spin operator of the
so(d − 1,1) algebra. Representation of Mab and operator Ra (2.36)
on space of ket-vector |φ〉 (2.4) takes the form

Mab = αaᾱb − αbᾱa, (2.37)

Ra = zĨa(rζ ζ̄ + rzᾱ
z) − z

(
ζ rζ + αzrz

)
ᾱa − 1

2
z2∂a, (2.38)

Ĩa ≡ αa − α2 1

2Nα + d − 2
ᾱa, (2.39)

where rζ , rz are given in (2.18), (2.19). We see that realization of
Poincaré symmetries on bulk AdS fields (2.34) coincide with re-
alization of Poincaré symmetries on boundary CFT operators. Note
that realization of D- and K a-symmetries on bulk AdS fields (2.35),
(2.36) coincides, by module of contributions of operators  and
Ra , with the realization of D- and K a-symmetries on boundary CFT
operators. Realizations of the so(d,2) algebra on bulk AdS fields
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and boundary CFT operators are distinguished by  and Ra . The
realization of the so(d,2) symmetries given in (2.34)–(2.36) turns
out to be very convenient for studying AdS/CFT correspondence
[28].

3. Modified de Donder gauge

To discuss modified de Donder gauge we use representation for
Lagrangian given in (2.6), (2.21). It is easy to see that use of the
following modified de Donder gauge-fixing term

Lg.fix = 1

2
〈φ|CC̄ |φ〉, (3.1)

leads to the surprisingly simple gauge fixed Lagrangian Ltotal,
Ltotal ≡ L + Lg.fix,

Ltotal = 1

2
〈φ|Etotal|φ〉,

Etotal =
(

1 − 1

4
α2ᾱ2

)(� − M2
ν

)
, (3.2)

where M2
ν is given in (2.22). We note that our gauge-fixing term

(3.1) respects the Poincaré and dilatation symmetries but breaks
the conformal boost K a-symmetries, i.e., the simple form of gauge
fixed Lagrangian (3.2) is achieved at the cost of the K a-symmetries.
In terms of tensorial components, gauge fixed Lagrangian (3.2)
takes the form

Ltotal =
s∑

s′=0

∑
λ=[s−s′]2

Ls′,λ, (3.3)

Ls′,λ = 1

2s′!
(

φ
a1...as′
λ �κ+λφ

a1...as′
λ

− s′(s′ − 1)

4
φ

aaa3...as′
λ �κ+λφ

bba3...as′
λ

)
, (3.4)

�κ+λ ≡ � + ∂2
z − 1

z2

(
(κ + λ)2 − 1

4

)
. (3.5)

We see that the modified de Donder gauge fixing leads to simple
gauge fixed Lagrangian.

We now discuss gauge-fixing procedure at the level of equa-
tions of motion. Representation for the operator E in (2.33) turns
out to be convenient for this purpose.10 This is to say that La-
grangian with E in (2.33) leads to the following gauge invariant
equations of motion

(� − M2
ν − GC̄

)|φ〉 = 0. (3.6)

Modified de Donder gauge condition is then defined to be

C̄ |φ〉 = 0, (3.7)

where C̄ is given in (2.23). The fact that this gauge is accessible
with gauge transformation (2.32) can be proved as follows. i) By
virtue of (2.5), we have the relation ᾱ2C̄ |φ〉 = 0 which implies
that gauge condition (3.7) respects constraint for gauge transfor-
mation parameter |ξ〉, (2.31); ii) Gauge variation of C̄ |φ〉 is given
by δ(C̄ |φ〉) = (� − M2

ν)|ξ〉. Making standard assumption that the
operator � − M2

ν is invertible, we see that gauge condition (3.7)
is indeed accessible.

10 Operators E in (2.21), (2.33) respect, in contrast to operator E in (2.7), double-
tracelessness constraint (2.5).
Using the modified de Donder gauge condition in gauge invari-
ant equations of motion (3.6) leads to the following gauge fixed
equations of motion:(� − M2

ν

)|φ〉 = 0, (3.8)

where M2
ν is defined in (2.22). In terms of fields (2.1), Eqs. (3.8)

can be represented as

�κ+λφ
a1...as′
λ = 0, λ = [

s − s′]
2, s′ = 0,1, . . . , s, (3.9)

where �κ+λ is given in (3.5). Thus, our modified de Donder gauge
condition (3.7) leads to decoupled equations of motion (3.9) which can
easily be solved in terms of the Bessel function.11 For spin-1 field,
gauge condition (3.7) turns out to be a modification of the Lorentz
gauge.

4. Comparison of standard and modified de Donder gauges

Our approach to the massive spin-s field in AdSd+1 is based
on use of double-traceless so(d − 1,1) algebra fields (2.1). One of
popular approaches to the massive spin-s field in AdSd+1 is based
on use of double-traceless so(d,1) algebra fields Φ A1...As′ , s′ =
0,1, . . . , s, [10]. In this section, our aims are as follows. i) Using
the fields Φ A1...As′ and arbitrary parametrization of (A)dS space,
we find new representation for gauge invariant Lagrangian of mas-
sive (A)dS field and standard de Donder gauge condition.12 ii) We
explain how our modified de Donder gauge (3.7) is represented in
terms of the fields Φ A1...As′ . iii) We show explicitly how our fields
(2.1) are related to the fields Φ A1...As′ .

New representation for gauge invariant Lagrangian of massive field in
(A)dSd+1. We begin with discussion of gauge invariant Lagrangian
using arbitrary coordinates of (A)dS. To simplify the presentation
we introduce ket-vector |Φ〉,

|Φ〉 ≡
s∑

s′=0

ζ s−s′αA1 . . . αAs′

s′!√(s − s′)! Φ A1...As′ |0〉, (4.1)

(
ᾱ2)2|Φ〉 = 0, (4.2)

α2 ≡ αAαA , ᾱ2 ≡ ᾱAᾱA , where (4.2) tells us that the Φ A1...As′

are double-traceless. We find the following concise expression for
gauge invariant Lagrangian of massive spin-s field in (A)dSd+1:

L = 1

2
e〈Φ|E|Φ〉, (4.3)

E =
(

1 − 1

4
α2ᾱ2

)(�(A)dS + m1 + ρα2ᾱ2) − CstC̄st, (4.4)

m1 = −m2 + ρ
(
s(s + d − 5) − 2d + 4 + Nζ (2s + d − 1 − Nζ )

)
,

(4.5)

C̄st ≡ ᾱD − 1

2
αDᾱ2 − ē1Π

[1,2] + 1

2
e1ᾱ

2, (4.6)

Cst ≡ αD − 1

2
α2ᾱD − e1Π

[1,2] + 1

2
ē1α

2, (4.7)

11 Interesting method of solving AdS field equations of motion which is based on
star algebra products in auxiliary spinor variables is discussed in Refs. [29,30]. As a
side of remark we note that our modified de Donder gauge can be generalized to
conformal flat spaces (see Appendix D in Ref. [28]).
12 To our knowledge, the standard de Donder gauge for arbitrary spin massive
(A)dS fields has not been discussed in earlier literature. Study of the standard de
Donder gauge for flat arbitrary spin massive fields may be found in Ref. [28]. Recent
applications of the standard de Donder gauge to the various problems of massless
fields may be found in Refs. [31,32].
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Π[1,2] = 1 − α2 1

2(2Nα + d + 1)
ᾱ2, Nα ≡ αAᾱA, (4.8)

e1 = ζ ẽ1, ē1 = −ẽ1ζ̄ , (4.9)

ẽ1 =
(

2s + d − 3 − Nζ

2s + d − 3 − 2Nζ

)1/2(
m2 − ρNζ (2s + d − 4 − Nζ )

)1/2
,

(4.10)

�(A)dS ≡ D A D A + ωA AB D B ,

ᾱD ≡ ᾱA D A, αD ≡ αA D A, (4.11)

where e = det e A
μ , e A

μ stands for vielbein of (A)dSd+1 space, and D A

is covariant derivative (for details of notation, see Appendix A). We
use ρ = −1 for AdS space, ρ = 0 for flat space, and ρ = 1 for dS
space. It is the use of operators C̄st, Cst (4.6), (4.7) that allows us
to write down the concise expression for operator E in (4.4). For
massless field in (A)dS, e1 = ē1 = 0, our operator C̄st (4.6) coin-
cides with the standard de Donder operator in (A)dS background.

Lagrangian (4.3) is invariant under gauge transformation

δ|Φ〉 = G|Ξ〉, G ≡ αD − e1 − α2

2s + d − 5 − 2Nζ

ē1, (4.12)

|Ξ〉 ≡
s−1∑
s′=0

ζ s−1−s′αA1 . . . αAs′

s′!√(s − 1 − s′)! Ξ A1...As′ |0〉, (4.13)

where gauge transformation parameters Ξ A1...As′ are traceless,
Ξ A A A3...As′ = 0, i.e., ᾱ2|Ξ〉 = 0. Also we note that Lagrangian (4.3)
can alternatively be represented as

L = 1

2
e〈Φ|

(
1 − 1

4
α2ᾱ2

)
E |Φ〉, (4.14)

E = �(A)dS + m1 + ρα2ᾱ2 − GC̄st. (4.15)

Using (4.10) and denoting eigenvalues of Nζ by k, we find the
critical values of the mass parameter, m2

k = ρk(2s + d − 4 − k),
k = 0,1, . . . , s − 1. The case k = 0 corresponds to massless field,
while k = 1,2, . . . , s − 1 correspond to the partial massless fields
[33,34] (see also [10,16,35]).

Standard de Donder gauge. We proceed with discussion of stan-
dard de Donder gauge for (A)dS massive field. Representation for
Lagrangian given in (4.3), (4.4) is well adopted for this purpose.
This is to say that use of the following de Donder gauge-fixing term

Lg.fix = 1

2
e〈Φ|CstC̄st|Φ〉, (4.16)

leads to de Donder gauge fixed Lagrangian Ltotal, Ltotal ≡ L + Lg.fix,

Ltotal = 1

2
e〈Φ|

(
1 − 1

4
α2ᾱ2

)
Etotal|Φ〉, (4.17)

Etotal = �(A)dS + m1 + ρα2ᾱ2. (4.18)

Note that Lagrangian (4.14) leads to the following gauge invariant
equations of motion E |Φ〉 = 0, where E is given in (4.15). It easy to
see that imposing standard de Donder gauge C̄st|Φ〉 = 0 we obtain
gauge fixed equations of motion Etotal|Φ〉 = 0, where Etotal is given
in (4.18).

Modified de Donder gauge. We now discuss modified de Donder
gauge. From now on we consider fields in AdS, i.e. we set ρ = −1,
and use Poincaré parametrization of AdS. The modified de Donder
gauge fixing is defined to be

Lg.fix = 1

2
e〈Φ|CC̄|Φ〉, (4.19)

C ≡ Cst − 2Cz⊥, C̄ ≡ C̄st + 2C̄z⊥, (4.20)

Cz⊥ ≡ αz − 1
α2ᾱz, C̄z⊥ ≡ ᾱz − 1

αzᾱ2. (4.21)

2 2
We now make sure that gauge fixed Lagrangian Ltotal, Ltotal ≡ L +
Lg.fix, takes the form

Ltotal = 1

2
e〈Φ|

(
1 − 1

4
α2ᾱ2

)
Etotal|Φ〉, (4.22)

Etotal = �0 AdS − m2 − α2ᾱzᾱz −
(

s + d − 4

2
− Nz

)2

− Nζ (2s + d − 2 + 2Nz − Nζ ) + d2

4
+ 2Ĩzē1 − 2e1ᾱ

z,

(4.23)

�0 AdS ≡ z2(� + ∂2
z

) + (1 − d)z∂z,

Ĩz = αz − α2 1

2Nα + d − 1
ᾱz. (4.24)

We proceed with discussion of gauge-fixing procedure at the
level of equations of motion. To this end we note that gauge invari-
ant Lagrangian (4.14) leads to the following equations of motion:

E |Φ〉 = 0, (4.25)

where E is given in (4.15). We now define modified de Donder
gauge conditions as

C̄|Φ〉 = 0, (4.26)

where C̄ is given in (4.20). Using (4.26) in (4.25) we get gauge fixed
equations of motion

Etotal|Φ〉 = 0, (4.27)

where Etotal is given in (4.23). We note that, because of Cz⊥-
and C̄z⊥-terms, the modified de Donder gauge breaks some of
the so(d,2) symmetries. In the conformal algebra nomenclature,
these broken symmetries correspond to broken conformal boost
K a-symmetries.

From Etotal (4.23), we see that, because of terms like α2ᾱzᾱz ,
Ĩzē1, and e1ᾱ

z the modified de Donder gauge itself does not
lead automatically to decoupled gauge fixed equations for the ket-
vector |Φ〉. It turns out that in order to obtain decoupled gauge
fixed equations of motion we should introduce our fields in (2.1).
We remind that |Φ〉 is a double-traceless field (4.2) of the so(d,1)

algebra, while |φ〉 describes double-traceless fields (2.5) of the
so(d − 1,1) algebra. This is to say that to get decoupled equations
of motion we have to make transformation from the so(d,1) ket-
vector |Φ〉 to so(d − 1,1) ket-vector |φ〉. We find a transformation
from the ket-vector |Φ〉 to our ket-vector |φ〉 and the correspond-
ing inverse transformation,

|φ〉 = z
1−d

2 V † N ΠφΦ |Φ〉, (4.28)

|Φ〉 = z
d−1

2 ΠΦφ N V |φ〉, (4.29)

where V is unitary operator, V † V = 1, and we introduce the z-
factor in r.h.s. of (4.28) to obtain canonically normalized ket-vector
|φ〉. Operators ΠΦφ , ΠφΦ , N , and V are defined in Appendix A.

We now ready to compare modified de Donder gauges for |φ〉
(3.7) and |Φ〉 (4.26). Inserting (4.29) in (4.26), we make sure that
modified de Donder gauge for |Φ〉 (4.26) amounts to one for |φ〉
(3.7) i.e., modified de Donder gauges for |φ〉 (3.7) and |Φ〉 (4.26)
match. Also one can make sure that gauge invariant Lagrangian for
|Φ〉 (4.3) and the one for |φ〉 (2.6) match.

We now compare gauge transformation of |φ〉 (2.32) and gauge
transformation of |Φ〉 given in (4.12). To this end we note that
gauge transformation parameters |ξ〉 and |Ξ〉 are related as
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|ξ〉 = z
3−d

2 V † N ′Π [1]
α |Ξ〉, |Ξ〉 = z

d−3
2 Π

[1]
α N ′V |ξ〉, (4.30)

N ′ ≡ N |Nα→Nα+1, (4.31)

where Π
[1]
α , Π

[1]
α are defined in Appendix A. Using (4.29), (4.30),

we make sure that gauge transformations (2.32) and (4.12) match.
Finally we compare realization of so(d,2) symmetries on the

ket-vectors |φ〉 and |Φ〉. To this end we note that on space of |Φ〉
realization of the so(d,2) algebra transformations takes the form

δPa |Φ〉 = ∂a|Φ〉,
δ Jab |Φ〉 = (

xa∂b − xb∂a + Mab)|Φ〉, (4.32)

δD |Φ〉 = xB∂ B |Φ〉,
δK a |Φ〉 =

(
−1

2
xB xB∂a + xaxB∂ B + MaB xB

)
|Φ〉, (4.33)

where xB xB = xbxb + z2, xB∂ B = xb∂b + z∂z , MaB xB = Mabxb −
Mzaz. Comparing (2.34) and (4.32), we see that the realizations
of Poincaré symmetries on |φ〉 and |Φ〉 match from the very be-
ginning. Taking into account z-factor in (4.29), it is easily seen that
D-transformations for |φ〉 (2.35) and |Φ〉 (4.33) match. After this,
we make sure that realizations of the operator K a on |φ〉 (2.36)
and on |Φ〉 (4.33) also match.

Light-cone Lagrangian. Using gauge invariant action (2.6) and im-
posing light-cone gauge, we find the light-cone Lagrangian

Ll.c. =
s∑

s′=0

∑
λ=[s−s′]2

1

2s′!φ
i1...is′
λ �κ+λφ

i1...is′
λ , (4.34)

where �κ+λ is defined in (3.5) and transverse indices take values

i = 1,2, . . . ,d − 2. As usually, the light-cone fields φ
i1...is′
λ = 0 are

traceless, φ
iii3...is′
λ = 0.

To summarize, using the Poincaré parametrization of AdS space,
we have developed the CFT adapted formulation of massive totally
symmetric arbitrary spin AdS field. In recent years, mixed symme-
try fields have attracted considerable interest (see e.g. Refs. [36–
40]). We think that generalization of our approach to the case of
mixed symmetry massless and massive AdS fields might be use-
ful for study of dynamical aspects of such fields. In this respect,
it would be interesting to find generalization of the modified de
Donder gauge to the case of mixed symmetry fields.

Appendix A. Notation

Vector indices of the so(d − 1,1) algebra take the values
a,b, c = 0,1, . . . ,d − 1, while vector indices of the so(d,1) algebra
take the values A, B, C = 0,1, . . . ,d − 1,d. We use mostly positive
flat metric tensors ηab , ηAB . To simplify our expressions we drop
ηab , ηAB in the respective scalar products, i.e., we use XaY a ≡
ηab XaY b , X A Y A ≡ ηAB X A Y B , ηAB = (ηab,1). Using the identifi-
cation Xd ≡ X z gives the following decomposition of the so(d,1)

algebra vector: X A = Xa, X z . This implies X A Y A = XaY a + X zY z .
We use the creation operators αa , αz , ζ and the respective an-

nihilation operators ᾱa , ᾱz , ζ̄[
ᾱa,αb] = ηab,

[
ᾱz,αz] = 1, [ζ̄ , ζ ] = 1,

ᾱa|0〉 = 0, ᾱz|0〉 = 0, ζ̄ |0〉 = 0. (A.1)

These operators are referred to as oscillators in this Letter. The os-
cillators αa , ᾱa and αz , ζ , ᾱz , ζ̄ , transform in the respective vector
and scalar representations of the so(d − 1,1) algebra and satisfy
the hermitian conjugation rules, αa† = ᾱa , αz† = ᾱz , ζ † = ζ̄ . Oscil-
lators αa , αz and ᾱa , ᾱz are collected into the respective so(d,1)

algebra oscillators αA = αa,αz and ᾱA = ᾱa, ᾱz .
xA = xa , z denote coordinates in d + 1-dimensional AdSd+1
space,

ds2 = 1

z2

(
dxa dxa + dz dz

)
, (A.2)

while ∂A = ∂a, ∂z denote the respective derivatives, ∂a ≡ ∂/∂xa ,
∂z ≡ ∂/∂z. We use the notation � = ∂a∂a , α∂ = αa∂a , ᾱ∂ = ᾱa∂a ,
α2 = αaαa , ᾱ2 = ᾱaᾱa , Nα = αaᾱa , Nz = αzᾱz , Nζ = ζ ζ̄ . The co-
variant derivative D A is given by D A = ηAB D B ,

D A ≡ eμ
A Dμ, Dμ ≡ ∂μ + 1

2
ωAB

μ M AB ,

M AB ≡ αAᾱB − αB ᾱA, (A.3)

∂μ = ∂/∂xμ , where eμ
A is inverse vielbein of AdSd+1 space, Dμ

is the Lorentz covariant derivative and the base manifold index
takes values μ = 0,1, . . . ,d. The ωAB

μ is the Lorentz connection of

AdSd+1 space, while M AB is a spin operator of the Lorentz algebra
so(d,1). Note that AdSd+1 coordinates xμ carrying the base man-
ifold indices are identified with coordinates xA carrying the flat
vectors indices of the so(d,1) algebra, i.e., we assume xμ = δ

μ
A xA ,

where δ
μ
A is Kronecker delta symbol. AdSd+1 space contravariant

tensor field, Φμ1...μs , is related with field carrying the flat indices,
Φ A1...As , in a standard way Φ A1...As ≡ e A1

μ1 . . . e As
μs Φ

μ1...μs . Helpful
commutators involving the covariant derivative D A and the oscil-
lators αA , ᾱA may be found in Appendix in Ref. [8].

For the Poincaré parametrization of AdSd+1 space, vielbein e A =
e A
μ dxμ , Lorentz connection ωAB = ωAB

μ dxμ , and ωABC = e AμωBC
μ

are given by

e A
μ = 1

z
δA
μ, ωAB

μ = 1

z

(
δA

z δB
μ − δB

z δA
μ

)
,

ωABC = ηAC δB
z − ηABδC

z . (A.4)

With choice made in (A.4), the covariant derivative takes the form
D A = z∂ A + Mz A , ∂ A = ηAB∂B .

The operators ΠφΦ , ΠΦφ used in Section 4 are defined by re-
lations

ΠφΦ ≡ Π [1]
α + α2 1

2(2Nα + d)
Π [1]

α

(
ᾱ2 + 2Nα + d

2Nα + d − 2
ᾱzᾱz

)
,

(A.5)

Π [1]
α ≡ Π [1](α,0, Nα, ᾱ,0,d), (A.6)

N ≡
(

2Nz Γ (Nα + Nz + d−3
2 )Γ (2Nα + d − 3)

Γ (Nα + d−3
2 )Γ (2Nα + Nz + d − 3)

)1/2

, (A.7)

ΠΦφ ≡ Π
[1]
α + α2 1

2(2Nα + d + 1)
Π

[1]
α

×
(
ᾱ2 − 2

2Nα + d − 1
ᾱzᾱz

)
, (A.8)

Π
[1]
α ≡ Π [1](α,αz, Nα, ᾱ, ᾱz,d + 1

)
, (A.9)

Π [1](α,αz, X, ᾱ, ᾱz, Y
)

≡
∞∑

n=0

(
α2 + αzαz)n (−)nΓ (X + Y −2

2 + n)

4nn!Γ (X + Y −2
2 + 2n)

(
ᾱ2 + ᾱzᾱz)n

,

(A.10)

where Nα = Nα + Nz , α2 = α2 + αzαz , and Γ is Euler gamma
function. We note that the Π

[1]
α in (A.6) is obtained from (A.10)

by equating αz = ᾱz = 0, X = Nα , Y = d, while Π
[1]
α in (A.9) is

obtained from (A.10) by equating X = Nα , Y = d + 1.
The operator V used in Section 4 is defined by relations
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V =
s∑

N=0

V (N), V (N) =
∑

l,n=0,1,...,N

V (N)

ln , (A.11)

V (N)

ln = v(N)

ln αN−l
z ζ l|0〉〈0|ᾱN−n

z ζ̄n, v(N)

nl = N (N)

nl X (N)

nl , (A.12)

X (N)

nl =
l∑

t=0

(−)t(κ − N + l)t

t!(l − t)!(κ + 1)t
Xnt, (A.13)

Xnt =
min n,t∑

p=0

(n + 1 − p)p(t + 1 − p)p(2s + d − 2 − n − p)p

p!(s + d−2
2 − p)p(κ − s − d−4

2 )p
,

(A.14)

N (N)

nl = (−)n

n!(N − n)!
(

κ − N + 2l

κ

)1/2(2s + d − 3 − 2n

2s + d − 3 − n

)1/2

×
(

(s + d−2
2 − l)l(s + d−2

2 − N + l)N−l

(2s + d − 3 − n − N)N

)1/2

×
(

(κ − s − d−4
2 )n(κ − s − d−4

2 )l(κ + s + d−2
2 − N + l)N−l(κ + 1)l

(κ + s + d−2
2 − n)n(κ − N + l)N−l

)1/2

,

(A.15)

where in (A.13)–(A.15) we use the notation (a)b for the Pochham-
mer symbol, (a)b ≡ Γ (a+b)

Γ (a)
.
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