DETERMINANTS OF LAPLACIANS ON GRAPHS

ROBIN FORMAN†

(Received 2 January 1991; in revised form 12 February 1992)

In recent years, it has been observed that the determinant of a Laplacian on a manifold can often be expressed in terms of the closed orbits of a flow on that (or a related) manifold. Examples include the work of many authors (see, for example [2], [3], [6], [14], [16], [19], [20]) which uses the Selberg trace formula to express the determinant of a Laplacian acting on sections of a vector bundle over a Riemann surface in terms of the closed geodesics on the surface. Other examples can be found in the work of D. Fried relating Reidemeister Torsion (a combinatorial invariant of finite C-W complexes which can be expressed in terms of determinants of combinatorial Laplacians) to the closed orbits of flows of various types ([5], [6], [7]). In this paper we show that this relationship is, in fact, fundamental, and can be seen on the level of graphs.

Let G be a finite graph (all terms will be defined precisely in Section 1) with a weight attached to each vertex and edge. These weights induce an inner product on the spaces V^* (the complex functions on the set of vertices of G) and E^* (the complex functions on the set of edges). If δ is the usual coboundary operator from V^* to E^* we define a (combinatorial) Laplacian Δ by

$$\Delta = \delta^* \delta$$

where δ^* is the adjoint of δ with respect to the inner products.

More generally, let $\rho : \pi_1(G) \to S^1 = \{z \in \mathbb{C} \text{s.t.} |z| = 1\}$ be a representation, and let V^*_ρ denote the complex functions on the vertices of \tilde{G}, the universal cover of G, which transform via ρ under the action of $\pi_1(G)$. (Note that $\dim V^*_\rho = \dim V^* = \text{the number of vertices in } G$).

There is a natural Laplacian

$$\Delta_\rho : V^*_\rho \to V^*_\rho.$$

We derive a formula for the characteristic polynomial of Δ_ρ in terms of the closed orbits of flows on G. In particular, we prove

Theorem 1. Write $\text{Det}(\Delta_\rho + \lambda) = \sum_k C_k \lambda^k$ then

$$C_k = \sum_{\text{vector fields } X \text{ on } G \text{ with exactly } k \text{ zeroes}} \frac{W(X)}{\prod_{\gamma \text{ of } X} (1 - \rho(\gamma))}$$

†Partially supported by an NSF postdoctoral fellowship.
where $W(X)$ is a weight attached to X and depends in a simple way on the weights attached to the vertices and edges. If the weights of the vertices and edges are all equal to 1, then $W(X) = 1$ for every X.

Rather than define precisely the terms on the right hand side (this will be done later) we present a very simply example.

Consider the following graph G:

![Graph G](image)

Fig. 1.

Note that $\pi_1(G)$ is a free group on one generator, which we have labelled θ. Suppose all vertices and edges are given a weight equal to 1. Given a representation

$$\rho : \pi_1(G) \to S^1$$

we have a Laplacian $\Delta_\rho : V^*_\rho \to V^*_\rho$. From Theorem 1 we learn

$$\text{Det} \Delta_\rho = \sum_{\text{nowhere zero prime closed orbits } y \text{ of } X} \sum_{\text{vector fields } X \text{ on } G} (1 - \rho(y)).$$ \hspace{1cm} (1)

A vector field on G is an assignment, to every vertex v, of an edge leaving v. There are 4 nowhere zero vector fields on G, represented schematically by the following 4 figures.

![Vector fields](image)

Fig. 2.

Each vector field induces a map on the vertices. Vector field (i), for example, maps v_1 to v_2 via edge e_1, and v_2 to v_1 via edge $(-e_1)$. This vector field has one prime closed orbit $v_1 \to v_2 \to v_1$ (an orbit is prime if it is not a multiple repetition of a smaller orbit), which traces out the path $y_1 = e_1 + (-e_1)$. The path y_1 represents the element 1 in $\pi_1(G)$, so $\rho(y_1) = 1$, $(1 - \rho(y_1)) = 0$ and thus the vector field (i) does not contribute to the sum (1).

The same is true for the vector field (ii).

The vector field (iii) has a closed orbit $y_3 : v_1$ goes to v_2 via e_1, and v_2 goes to v_1 via e_2. This closed orbit traces out the path $e_1 + e_2 = \theta$. In this case

$$\prod_{\text{prime closed orbits } \gamma} (1 - \rho(y)) = 1 - \rho(\theta).$$
The closed orbit of the vector field (iv) traces out the path θ^{-1} so

$$\prod_{\text{prime closed orbits } \gamma \text{ of (iv)}} (1 - \rho(\gamma)) = 1 - \rho(\theta^{-1}).$$

Summing the contributions from these 4 vector fields yields

$$\text{Det } \Delta_{\rho} = (1 - \rho(\theta)) + (1 - \rho(\theta^{-1})) = 2 - \rho(\theta) - \rho(\theta^{-1}).$$

Continuing further, here $\dim V^*_P = 2$, so

$$\text{Trace } (\Delta_{\rho}) = \text{Coefficient of } \lambda \text{ in } \text{Det}(\Delta_{\rho} + \lambda) = \sum_{\text{vector fields } X} \sum_{\text{non-stationary prime closed orbits } \gamma} (1 - \rho(\gamma)).$$

There are 4 vector fields which assign the zero vector to exactly one vertex.

![Fig. 3.](image)

In these diagrams, the vertex without an indicated vector is assigned the zero vector, and is stationary under the induced map. In each case, there are no non-stationary closed orbits, so for each of these vector fields we have, vacuously,

$$\Pi(1 - \rho(\gamma)) = 1.$$

Summing over the vector field yields

$$\text{Trace } \Delta_{\rho} = 4.$$

The coefficient of λ^2 is a sum over the vector fields with exactly 2 zeroes. There is only one such vector field (which is zero at both v_1 and v_2) and it has no non-stationary closed orbits, so it contributes 1 to the sum. Therefore, (as is a priori clear), the coefficient of λ^2 is 1.

Summarizing, we have learned

$$\text{Det}(\Delta_{\rho} + \lambda) = (2 - \rho(\theta) - \rho(\theta^{-1})) + 4\lambda + \lambda^2.$$

We note that the expression

$$\prod_{\text{prime closed orbits } \gamma} (1 - \rho(\gamma))$$

also appears (modulo exponents of ± 1) in [5] and [7], and 'regularized' in [6], as the formula for the Reidemeister Torsion in terms of closed orbits of a flow.

Theorem 1 is related to a remarkable formula which first appeared in the work of Kirchoff [15] in the context of electrical circuits. As a special case, suppose G is a connected graph, and we consider Δ, the usual combinatorial Laplacian (i.e. take $\rho = 1$). This operator has a 1-dimensional kernel (corresponding to the constant function). Let $\text{Det}'\Delta$ denote the product of the non-zero eigenvalues of Δ. Then

Theorem 2. ([15]). $\text{Det}'\Delta = (\# \text{ of vertices of } G) \times (\# \text{ of maximal trees of } G)$
This formula has been rediscovered many times (see, for example [1], [4]) and in Section 3 we derive this result from the main theorem of this paper.

It is definitely worth noting that a different, more direct, graph-theoretic analogue of Selberg’s trace formula appears in the work of Hashimoto ([9], [10], [11]), and earlier in the work of Ihara ([12], [13], see also [18]). There, motivated by questions concerning the structure of discrete cocompact subgroups of algebraic groups over \(p \)-adic fields, the authors are lead to study a zeta function associated to a finite graph (see the discussion in [17]). They are able to relate this zeta function to the characteristic polynomial of the Laplacian when the graph \(G \) is regular (i.e. all vertices bound the same number of edges) [12], and, more generally, when \(G \) is a semi-regular bipartite graph (see [9] [10] for definitions and a precise statement of results).

1. PRELIMINARIES

In this section we quickly review the necessary definitions and notation

1.1 Graphs. In what follows, \(G \) will denote a finite oriented graph. This is, \(G \) consists of a finite set \(V \) of vertices, and a finite set \(E \) of edges. An element \(e \in E \) is an ordered pair \((v_1, v_2)\) of vertices. We write \(v_1 = o(e), v_2 = t(e) \) the origin of \(e \), and \(v_2 = t(e), v_1 \) is the terminus of \(e \). Together, \(v_1 \) and \(v_2 \) are the extremities of \(e \) and we write \(\{v_1, v_2\} = \text{ext}(e) \).

Note that we allow loops (edges \(e \) with \(o(e) = t(e) \)) and multiple edges (edges \(e_1 \) and \(e_2 \) with \(\text{ext}(e_1) = \text{ext}(e_2) \)).

A circuit in \(G \) is a sequence \(v_0, e_0, v_1, e_1, v_2, e_2, \ldots, v_{k-1}, e_{k-1}, v_k = v_0 \) where \(v_0, \ldots, v_{k-1} \) are distinct vertices \(e_0, \ldots, e_{k-1} \) are distinct edges, and for each \(i = 0, \ldots, k - 1 \), \(\{v_i, v_{i+1}\} = \text{ext}(e_i) \). A tree is a graph with no circuits.

If \(G' \) is another oriented graph, with vertices \(V' \) and edges \(E' \), a map \(\sigma \) from \(G \) to \(G' \) is a pair of maps

\[
\sigma_V : V \to V', \quad \sigma_E : E \to E'
\]

such that for all \(e \in E \)

\[
o(\sigma_E(e)) = \sigma_V(o(e)), \quad t(\sigma_E(e)) = \sigma_V(t(e)).
\]

An isomorphism is a map such that \(\sigma_V \) and \(\sigma_E \) are bijections.

The universal cover of \(G \), denoted by \(\tilde{G} \) (and whose vertices and edges we will denote by \(\tilde{V} \) and \(\tilde{E} \)), is a tree equipped with a group of automorphisms \(\pi_1(G) \), and a map \(\pi : \tilde{G} \to G \), such that

1. \(\pi_1(G) \) acts freely on \(\tilde{G} \) (i.e. for all \(\gamma \in \pi_1(G) \), if \(\gamma \neq 1 \) then \(\gamma(\tilde{e}) \neq \tilde{e} \) for all \(\tilde{e} \in \tilde{E} \) and \(\gamma(\tilde{v}) \neq \tilde{v} \) for all \(\tilde{e} \in \tilde{E} \))

2. For any vertices \(\tilde{v}_1, \tilde{v}_2 \in \tilde{V} \), \(\pi(\tilde{v}_1) = \pi(\tilde{v}_2) \) if and only if there is a \(\gamma \in \pi_1(G) \) with \(\gamma \tilde{v}_1 = \tilde{v}_2 \). The same property must hold for edges.

It is a classical fact that \(\pi_1(G) \) is a free group. ([17] Theorem 4)

1.2. Laplacians on graphs. Let \(V^* \) denote the vector space of complex functions \(V \mapsto \mathbb{C} \) and \(E^* \) the vector space of complex functions \(E \mapsto \mathbb{C} \). There is a canonical “coboundary” map

\[
\delta : V^* \to E^*
\]

defined by

\[
(\delta f)(e) = f(t(e)) - f(o(e)).
\]
If V^* and E^* are equipped with inner products, we can form the operator δ^*, the adjoint of δ, and thus a Laplacian

$$\Delta = \delta^* \delta : V^* \to V^*.$$

We will restrict ourselves to inner products of a special type: Let

$$W : V \to \mathbb{R}^{>0}$$

be a weight function. Then for $f_1, f_2 \in V^*$ we define the L^2-inner product by

$$\langle f_1, f_2 \rangle = \sum_{v \in V} W(v) f_1(v) f_2(v).$$

We also choose a weight function for the edges, which we also denote by W, and define the analogous L^2-inner product on E^*.

Remark. If one is modelling a smooth manifold M by the graph G, with the vertices representing disjoint regions of M, one usually takes $W(v) =$ volume of region v. If G represents a simple electrical circuit, with vertices joined by resistors, one usually takes $W(v) = 1$ for all v and $W(e) =$ (resistance of edge $e)^{-1}$.

Let \tilde{V}^* denote the complex functions on the vertices of \tilde{G}. Then $\pi_1(G)$ acts on \tilde{V}^* by

$$(\gamma f)(\tilde{v}) = f(\gamma \tilde{v})$$

for $f \in \tilde{V}^*$, $\tilde{v} \in \tilde{V}$ and $\gamma \in \pi_1(G)$. The space V^* is naturally identified with the elements of \tilde{V}^* invariant under this action. Let

$$\rho : \pi_1(G) \to S^1 = \{ z \in \mathbb{C} \text{ with } |z| = 1 \}$$

be a homomorphism. We can now twist the space V^* by ρ. Define

$$V^*_{\rho} = \{ f \in \tilde{V}^* | \gamma f = \rho(\gamma) f \text{ for all } \gamma \in \pi_1(G) \}.$$

Define E^*_{ρ} in the analogous fashion. The coboundary operator δ on \tilde{G} maps V^*_{ρ} to E^*_{ρ}.

The weight functions on V and W induce inner products on V^*_{ρ} and E^*_{ρ} as follows: For every $v \in V$ choose a lift $\tilde{v} \in \tilde{V}$, that is a vertex \tilde{v} of \tilde{G} such that $\pi \tilde{v} = v$. Similarly, choose a lift $\tilde{e} \in \tilde{E}$ of every $e \in E$. Now for $f_1, f_2 \in V^*_{\rho}$ define

$$\langle f_1, f_2 \rangle = \sum_{v \in \tilde{V}} W(v) f_1(\tilde{v}) f_2(\tilde{v}).$$

Similarly, for $g_1, g_2 \in E^*_{\rho}$ define

$$\langle g_1, g_2 \rangle = \sum_{e \in \tilde{E}} W(e) g_1(\tilde{e}) g_2(\tilde{e}).$$

It is easy to see that these inner products are independent of the \tilde{v}'s and \tilde{e}'s that we've chosen.

Using these inner products, we can define an adjoint δ^*

$$\delta^* : E^*_{\rho} \to V^*_{\rho}$$

and thus a Laplacian

$$\Delta_{\rho} = \delta^* \delta : V^*_{\rho} \to V^*_{\rho}.$$

We now work more concretely. Using the above chosen lifts, we construct a convenient
basis for V^*_{p}: Given $v \in V$ define an element $v^* \in V^*_{p}$ by setting (for $\tilde{w} \in \tilde{V}$)

$$v^*_p(\tilde{w}) = \begin{cases}
\rho(\gamma) & \text{if } \tilde{w} = \gamma \tilde{v} \\
0 & \text{if } \pi(\tilde{w}) \neq v
\end{cases}$$

These v^*_p define a basis of V^*_{p}. We can define the analogous basis of E^*_p. With respect to these bases, the operator δ is represented by the "relationship matrix" R_p, whose rows are indexed by E and columns by V, where

$$\begin{cases}
0 & \text{if } v \notin \text{xt}(e) \\
\rho(\gamma_1) - \rho(\gamma_2) & \text{if } t(\tilde{e}) = \gamma_1 \tilde{v} \text{ and } o(\tilde{e}) = \gamma_2 \tilde{v} \\
\rho(\gamma) & \text{if } t(\tilde{e}) = \gamma \tilde{v} \text{ and } o(\tilde{e}) \neq v \\
- \rho(\gamma) & \text{if } o(\tilde{e}) = \gamma \tilde{v} \text{ and } t(\tilde{e}) \neq v
\end{cases}$$

Now let W_v denote the diagonal square matrix, with rows indexed by V, whose vth diagonal entry is $W(v)$. Similarly, define W_e to be the diagonal matrix, with rows indexed by E, whose eth diagonal entry is $W(e)$. With respect to the inner products induced by the weight function W, the adjoint of δ is represented by the matrix

$$W^{-1}_v R^t_p W_e$$

(where R^t_p is the conjugate transpose of the matrix R_p). Therefore with respect to our chosen basis, the operator Δ_p is represented by the matrix

$$W^{-1}_v R^t_p W_e R_p.$$ \hspace{1cm}(2)

1.3. Vector fields on graphs

A nowhere zero vector field X on the graph G is a map

$$X : V \to \{1, -1\} \times E$$

which satisfies $v = o(X(v))$ for all $v \in V$ (where we define $o(-e) = t(e)$ for $e \in E$). That is, for each $v \in V$ we choose an edge $X(v)$ leaving v. A vector field X induces a (discrete time) flow ϕ_X on the vertices, where

$$\phi_X : V \to V$$

maps each vertex v to the vertex in the direction $X(v)$. More precisely, for all $v \in V$,

$$\phi_X(v) = t(X(v)).$$

We can allow our vector fields to have zeroes. A vector field X with zeroes on G is a map

$$X : V \to \{1, -1\} \times E \cup \{0\}$$

where we require that for $v \in V$ either $X(v) = 0$ or $v = o(X(v))$. Then X induces a flow ϕ_X as before, with the additional stipulation that $\phi_X(v) = v$ if $X(v) = 0$.

A periodic orbit of X is sequence of distinct vectors, $\gamma = v_0, v_1, \ldots, v_k$ with $\phi_X(v_0) = v_1, \phi_X(v_1) = v_2, \ldots, \phi_X(v_k) = v_0$.

There is a natural way to lift this flow to \tilde{G}. In \tilde{G} we have

$$\phi^{k+1}_X(\tilde{v}_0) = \tilde{y} \tilde{v}_0$$

for some $\tilde{y} \in \pi_1(G)$. We will frequently identify the periodic orbit γ with the element \tilde{y}. In particular, we will write $\rho(\gamma)$ for $\rho(\tilde{y})$.

If $X(v) = 0$, then $\phi_X(v) = v$, so v itself forms a periodic orbit. In this case we call v a stationary point. A non-stationary periodic orbit is any periodic orbit not of this type. Note
that if \(X(u) \neq 0 \) and \(o(X(u)) = t(X(u)) = v \) then \(\phi_v(v) = v \) and again \(v \) itself forms a periodic orbit, but in this case it is a non-stationary periodic orbit.

2. THE MAIN THEOREM

Theorem 1. Write \(\text{Det}(\Delta \rho + \lambda) = \sum_{k=0}^{\lvert V \rvert} C_k \lambda^k \) then

\[
C_k = \sum_{\text{vector fields } X \text{ with exactly } k \text{ zeroes}} W(X) \prod_{\gamma \text{ non-stationary prime periodic orbits of } X} (1 - \rho(\gamma))
\]

where \(W(X) = \prod_{X(v) \neq 0} \frac{W(X(v))}{W(v)} \).

Proof of the Theorem. In Section 1.2 we defined a basis \(\{\tilde{v}_\rho\} \) of \(V^*_\rho \) whose elements are indexed by elements of \(V \). Expressing \(\Delta \rho \) as a matrix with respect to this basis we have

\[
C_k = \sum_{U \subseteq V} \sum_{\sigma \in \text{Perm}(U)} (-1)^{\lvert \sigma \rvert} \prod_{e \in U} (\Delta \rho)_{\pi_e, \sigma(e)}
\]

where \(\text{Perm}(U) \) denotes the permutation group of \(U \), and \(\lvert \sigma \rvert \) is the parity of \(\sigma \). For \(U \subseteq V \) let

\[
C_U = \sum_{\sigma \in \text{Perm}(U)} (-1)^{\lvert \sigma \rvert} \prod_{e \in U} (\Delta \rho)_{\pi_e, \sigma(e)}.
\]

The theorem follows from the identity

\[
C_U = \sum_{\text{vector fields } X \text{ such that } \text{zero}(X) = Y \subseteq U} W(X) \prod_{\gamma \text{ non-stationary prime periodic orbits of } X} (1 - \rho(\gamma)) \tag{3}
\]

which we now prove.

As in (2), with respect to our chosen basis, \(\Delta \rho \) is represented by the matrix

\[
W \cdot \tilde{R}_\rho \cdot W \cdot R_\rho.
\]

Thus, we have

\[
C_U = \sum_{\sigma \in \text{Perm}(U)} (-1)^{\lvert \sigma \rvert} \prod_{e \in U} \sum_{e \in E} W^{-1}_e (\tilde{R}^e)_{\pi_e, \sigma(e)} \cdot W_e R_e, \sigma(e)
\]

\[
= \sum_{\sigma} (-1)^{\lvert \sigma \rvert} \prod_{e \in U} \sum_{e \in E} W^{-1}_e \tilde{R}_e, \sigma(e)
\]

\[
= \sum_{\sigma} (-1)^{\lvert \sigma \rvert} \sum_{\text{Maps } Y: U \rightarrow E} \prod_{e \in U} W^{-1}_e \tilde{R}_{Y(e), \sigma(e)}
\]

\[
= \sum_{\text{Maps } Y: U \rightarrow E} \left(\prod_{e \in U} W^{-1}_e \tilde{R}_{Y(e)} \right) \sum_{\sigma \in \text{Perm}(U)} (-1)^{\lvert \sigma \rvert} \prod_{e \in U} \tilde{R}_{Y(e), \sigma(e)} \tag{4}
\]

Now define

\[
M(U) = \{ \text{Maps } Y: U \rightarrow E \text{ such that for all } v \in U, v \in \text{ext}(Y(v)) \}\]
and

\[P(U, Y) = \{ \sigma \in \text{Perm}(U) \text{ s.t. for all } v \in U, \, \sigma(v) \in \text{ext}(y(v)) \}. \]

It is enough for the first sum in (4) to be taken over \(M(U) \), and the second sum to be taken over \(P(U, Y) \), as otherwise either \(R_{Y(v), v} = 0 \) or \(R_{Y(v), \sigma(v)} = 0 \).

For \(Y \in M(U) \) define

\[W(Y) = \prod_{v \in U} W_v^{-1} W_{Y(v)}. \]

Then we have

\[C_U = \sum_{Y \in M(U)} W(Y) \prod_{v \in U} R_{Y(v), \sigma} R_{Y(v), v} \left(\prod_{v \in U} \sum_{\sigma \in \text{Perm}(U), \sigma} (-1)^{|\sigma|} \prod_{v \in U} R_{Y(v), \sigma} R_{Y(v), \sigma(v)}. \right) \]

To simplify further, we define the set \(U_0(Y) \subset U \) by

\[U_0(Y) = \{ v \in U \text{ s.t. } o(Y(v)) = t(Y(o)) = v \}. \]

That is, \(U_0 \) is the set of vertices such that the edge \(Y(v) \) goes from \(v \) to itself. Let \(U_1(Y) = U - U_0(Y) \). Then every \(\sigma \in P(U, Y) \) must fix every \(v \in U_0(Y) \), and thus \(\sigma \) is the extension to \(U \) of a permutation in \(P(U_1(Y), Y) \). Now we can rewrite (6) as

\[C_U = \sum_{Y \in M(U)} W(Y) \prod_{v \in U_0} \tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), v} \left(\prod_{v \in U_1} \sum_{\sigma \in \text{Perm}(U_1), \sigma} (-1)^{|\sigma|} \prod_{v \in U_1} \tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), \sigma(v)}. \right) \]

We will evaluate separately the expressions in the two pairs of brackets.

(i) Evaluation of \(\prod_{v \in U_0} \tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), v} \).

If \(v \in U_0(Y) \), then the oriented edge \(Y(v) \) describes a loop \(\gamma_v \in \pi_1(G) \). Thus the lift \(Y(v) \) satisfies

\[\tilde{Y}(v) = (\gamma_v, \gamma_v \tilde{v}) \]

for some \(\gamma \in \pi_1(G) \). This implies

\[\tilde{R}_{Y(v), v} = \rho(\gamma_v) \rho(\gamma) - \rho(\gamma) = (\rho(\gamma_v) - 1)^2 \]

and

\[\tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), v} = (\rho(\gamma_v^{-1}) - 1)(\rho(\gamma_v) - 1) = (1 - \rho(\gamma_v)) + (1 - \rho(\gamma_v^{-1})). \]

Therefore

\[\prod_{v \in U_0(Y)} \tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), v} = \prod_{v \in U_0} (1 - \rho(\gamma_v)) + (1 - \rho(\gamma_v^{-1})). \]

(ii) Evaluation of

\[\sum_{\sigma \in \text{Perm}(U_1), \sigma} (-1)^{|\sigma|} \prod_{v \in U_1} \tilde{R}_{Y(v), \sigma} \tilde{R}_{Y(v), \sigma(v)}. \]

The map \(Y: U \rightarrow E \) defines a flow

\[\phi_Y: V \rightarrow V \]

by defining, for \(v \in U \), \(\phi_Y(v) = \tilde{v} \) where \(\{v, \tilde{v}\} = \text{ext}(Y(v)) \), and for \(v \notin U \), \(\phi_Y(v) = v \).

We can restate the definitions of \(U_1(Y) \) and \(P(U_1, Y) \) conveniently in terms of \(\phi_Y \) as follows:

\[U_1(Y) = \{ v \in V \text{ s.t. } \phi_Y(v) \neq v \} \]

\[P(U_1, Y) = \{ \sigma \in \text{Perm}(U_1) \text{ s.t. for all } v \in U_1, \sigma(v) = v \text{ or } \sigma(v) = \phi_Y(v) \}. \]
We now investigate how these concepts relate to the periodic orbits of ϕ_Y. Suppose $\gamma = \{v_0, v_1, \ldots, v_k\}$, $k \geq 1$, is a prime periodic orbit of Y (i.e. the v_i's are distinct, $\phi_Y(v_i) = v_{i+1}$ for $i = 0, 1, \ldots, k-1$, and $\phi_Y(v_k) = v_0$). Since $\phi_Y(v) = v$ for every $v \notin U_1$, we must have $\gamma \subset U_1$.

It follows from the above definition that for $\sigma \in P(U_1, Y)$ σ must map γ to itself. Furthermore, restricted to γ either $\sigma = \phi_Y$ or $\sigma = \text{identity}$.

Let $\{\gamma_1, \ldots, \gamma_t\}$ be the set of prime periodic orbits of Y which are contained in U_1. Then the γ_i's are disjoint, and σ maps each γ_i to itself. If $v \in U_1$ is not an element of a periodic orbit then for every $\sigma \in P(U_1, Y)$ $\sigma(v) = v$. This can be seen as follows:

Consider the sequence

$v, \phi_Y(v), \phi_Y^2(v), \ldots$

Since V is finite, the sequence must repeat, so that $\phi_Y^i(v) = \phi_Y^j(v)$ for some $i < j$. Thus $\phi_Y^i(v)$ belongs to a periodic orbit of ϕ_Y.

Suppose $\sigma(v) \neq v$. Then we must have

$\sigma(v) = \phi_Y(v)$, $\sigma(\phi_Y(v)) = \phi_Y^2(v)$, \ldots, etc.

Thus, since σ maps U_1 to itself, we must have $\phi_Y^k(v) \in U_1$ for all k. This implies that $\phi_Y^i(v)$ is an element of some γ_m. But then we have, for some n,

$\phi_Y^n(v) \notin \gamma_m$, $\sigma(\phi_Y^n(v)) = \sigma(\phi_Y^{n+1}(v)) \in \gamma_m$

which is a contradiction.

Summarizing, we have proven that for $\sigma \in P(U_1, Y)$, $\sigma = \text{identity}$ on the complement of the periodic orbits of ϕ_Y in U_1. Restricted to each periodic orbit γ in U_1, $\sigma = \phi_Y$ or $\sigma = \text{identity}$. Therefore, each $\sigma \in P(U_1, Y)$ can be identified with the set of closed orbits of ϕ_Y on which $\sigma = \phi_Y$.

If $\sigma = \phi_Y$ on the closed orbits $\{\gamma_1, \ldots, \gamma_t\}$ and $\sigma = \text{identity}$ otherwise, then it is easy to see that

$$|\sigma| = \sum_{i=1}^t |\gamma_i| - 1 \quad (9)$$

In addition,

$$\prod_{v \in U_1} R_{Y(v), e} R_{Y(v), \sigma(v)} = \prod_{i=1}^t \left(\prod_{v \in \gamma_i} R_{Y(v), e} R_{Y(v), \phi_Y(v)} \right)$$

because if $v \in U_1$ and $\sigma(v) = v$ then

$$R_{Y(v), e} R_{Y(v), \sigma(v)} = |R_{Y(v), e}|^2 = 1.$$

Fixing $i, 1 \leq i \leq r$, we will now evaluate

$$\prod_{v \in \gamma_i} R_{Y(v), e} R_{Y(v), \phi_Y(v)}.$$

We can simplify this product by noticing that it is independent of the orientation on the edges, the chosen lifts of the edges, and the chosen lifts of the vertices: Changing the orientation of $Y(v)$ multiplies both $R_{Y(v), e}$ and $R_{Y(v), \phi_Y(v)}$ by -1, leaving the product unchanged. Varying the lift of $Y(v)$, replacing $Y(v)$ by $\gamma Y(v)$, multiplies $R_{Y(v), e}$ and $R_{Y(v), \phi_Y(v)}$ by $\rho(\gamma)$, so $R_{Y(v), e} R_{Y(v), \phi_Y(v)} \phi_Y(v)$ is unchanged. Varying the lift of v, replacing \tilde{v} by $\gamma \tilde{v}$ multiplies $R_{Y(v), e}$ by $\rho(\gamma^{-1})$. But $v = \phi_Y(v)$ for some $v' \in \gamma_i$ and $R_{Y(v'), \phi_Y(v')}$ is also multiplied by $\rho(\gamma^{-1})$ so again the product is unchanged.

Now if $\gamma_i = \{v_0, v_1, \ldots, v_k\}$, choose orientations and lifts so that $Y(v_0)$ goes from \tilde{v}_0 to \tilde{v}_1, $Y(v_1)$ goes from \tilde{v}_1 to \tilde{v}_2, etc. Continue in this fashion, eventually choosing $Y(v_k)$ so that it leaves from \tilde{v}_k. Then $t(Y(v_0)) = \gamma_i \tilde{v}_0$, where $\gamma_i \in \pi_1(G)$ is the image in $\pi_1(G)$ of the curve γ_i.
(so that \(\rho(\gamma_i) = \rho(\tilde{\gamma}_i) \)). Then

\[
R_Y(v_i), v_i = -1 \text{ for } i = 0, 1, \ldots, k
\]

\[
R_Y(v_i), \phi Y(v_i) = 1 \text{ for } i = 0, 1, \ldots, k - 1
\]

\[
R_{Y(v_k), \phi Y(v_k)} = \rho(\gamma_i).
\]

Thus

\[
\prod_{v \in \gamma_i} R_Y(v), v \cdot R_Y(v), \phi Y(v) = (-1)^{|\gamma_i|} \rho(\gamma_i)
\]

Combining (9) and (10), if \(\sigma = \{\gamma_1, \ldots, \gamma_r\} \) we have

\[
(-1)^{|\sigma|} \prod_{j = 1}^r \prod_{v \in \gamma_j} R_Y(v), v \cdot R_Y(v), \sigma(v) = (-1)^r \prod_{i = 1}^r \rho(\gamma_i)
\]

Therefore, the sum (8) is equal to

\[
\sum_{\text{subsets } \{\gamma_1, \ldots, \gamma_r\} \text{ of the set of periodic orbits of } Y \text{ in } U} (-1)^r \prod_{i = 1}^r \rho(\gamma_i) = \prod_{\text{periodic orbits } \gamma \text{ of } Y \text{ in } U} (1 - \rho(\gamma)).
\]

Combining (7) and (11) we learn

\[
\mathcal{E}_U = \sum_{Y \in \mathcal{M}(U)} W(Y) \prod_{v \in \text{ext}(Y)} ((1 - \rho(\gamma_v)) + (1 - \rho(\gamma_v^{-1}))) \prod_{\text{periodic orbits } \gamma \text{ of } Y \text{ in } U} (1 - \rho(\gamma)).
\]

(iii) Interpretation of (12) in terms of vector fields.

Let \(X(U) \) denote the vector fields on \(G \) whose zero set is precisely \(V \setminus U \). Recall that \(X \in X(U) \) is a map \(X: U \to \{1, -1\} \times E \) satisfying \(u = 0(X(u)) \) for every \(u \in U \). Projecting onto the second factor (i.e. ignoring the \(\pm 1 \)) we get a map \(\tilde{X}: U \to E \) satisfying \(v = o(X(v)) \) for every \(v \in U \). For each \(X \in \tilde{X} \), \(X(v) = \pm Y(v) \) and satisfies \(v = o(Y(v)) \). For \(v \in U_1(Y) \), \(v \) is only one endpoint of \(Y(v) \), so the sign is uniquely determined. For \(v \in U_0(Y) \), \(v \) is both endpoints of \(Y(v) \) so the sign can be chosen arbitrarily.

For every such \(X \), the closed orbits of \(X \) will include the periodic orbits of \(Y \) in \(U_1 \), and, for each \(v \in U_0(Y), \gamma_v \) or \(\gamma_v^{-1} \), depending on the sign attached to \(Y(v) \). Thus

\[
\mathcal{E}_U = \sum_{\tilde{X} \in \mathcal{M}(U)} W(X) \prod_{v \in U_0(Y)} ((1 - \rho(\gamma_v)) + (1 - \rho(\gamma_v^{-1}))) \prod_{\text{periodic orbits } \gamma \text{ of } Y \text{ in } U_1} (1 - \rho(\gamma))
\]

\[
= \sum_{\tilde{X} \in \mathcal{M}(U)} \sum_{\text{vector fields } X \in \tilde{X}(U) \text{ at } Y = \tilde{Y}} W(X) \prod_{\text{non-stationary periodic orbits } \gamma \text{ of } X} (1 - \rho(\gamma))
\]

\[
= \sum_{\text{vector fields } X \in \tilde{X}(U) \text{ at } Y = \tilde{Y}} W(X) \prod_{\text{non-stationary periodic orbits } \gamma \text{ of } X} (1 - \rho(\gamma))
\]

as desired.

This proves formula (3) and completes the proof of the theorem.
3. KIRCHHOFF’S THEOREM

Let G be a connected graph. Suppose we set the weights $W(v)$ to be 1 and allow the $W(e)$'s to be arbitrary positive real numbers. One arrives at this situation when modelling electrical circuits, where $W(e) = (\text{resistance of } e)^{-1}$ ([1]). Furthermore, we take our representation to be trivial ($\rho(\gamma) = 1$ for all $\gamma \in \pi_1(G)$). We denote the resulting Laplacian by Δ. This operator has a 1 dimensional kernel, corresponding to the constant function. Write $\text{Det}'\Delta$ for the product of the non-zero eigenvalues of Δ. Then the following theorem appears implicitly in the work of Kirchoff ([15], see also [1] [4]).

\textbf{Theorem 2.}

\[\text{Det}'\Delta = (\text{# of vertices in } G) \times \sum_{T \text{ maximal tree in } G} \prod_{\text{edges in } T} W(e) \]

where a maximal tree (also called a spanning tree) is a connected subgraph of G which contains every vertex and has no circuits.

In this section we indicate the relationship between Kirchoff’s theorem and Theorem 1 of this paper.

It follows from Theorem 1 that

\[\text{Det}'\Delta = \text{the coefficient of } \lambda \text{ in } \text{Det}(\Delta + \lambda) \]

\[= \sum_{\text{vector fields } X \text{ with exactly 1 zero}} \prod_{\text{edges in } X} W(e) \prod_{\text{non-stationary prime periodic orbits } \gamma \text{ of } X} (1 - \rho(\gamma)). \]

Since $\rho(\gamma) = 1$ for every γ, the only vector fields which contribute to this sum are those with no periodic orbits. Therefore

\[\text{Det}'\Delta = \sum_{\text{vector fields } X \text{ with 1 zero and no periodic orbits}} \sum_{\text{edges in } X} W(e). \]

(13)

For $v \in V$, define $X(v)$ by

\[X(v) = \{ \text{vector fields } X \text{ with } \text{zero}(X) = \{v\} \text{ such that } X \text{ has no non-stationary periodic orbits} \}. \]

Now (13) becomes

\[\text{Det}'\Delta = \sum_{\text{vector fields } X \text{ with 1 zero and no periodic orbits}} \sum_{\text{edges in } X} W(e). \]

(14)

Every $X \in X(v)$ is a map

\[X : V \setminus \{v\} \to \pm E. \]

The edges in the image of X form a tree (since X has no periodic orbit). Furthermore, the image contains $|V| - 1$ edges and thus must be a maximal tree ([17] Proposition 12). In fact, we have the following lemma.

\textbf{Lemma 3.} For every $v \in V$, every maximal tree in G appears as the image of exactly one $X \in X(v)$.

\textbf{Proof.} Fix the vertex $v \in V$ and let T be a maximal tree in G. By ([8] Theorem 1.2.3) there are at least 2 vertices of G which are extremities of exactly one edge in T. Thus, we can find a vertex $v' \neq v$ with this property. Say $v' \in \text{ext}(e')$. We begin our construction of $X \in X(v)$ by setting $X(v) = \pm e'$, where the sign is uniquely determined by the property $v' = o(X(v))$. Note that if T is to be the image of X we must define $X(v)$ in this fashion.
Consider the subtree $T' = T - \{v', e'\}$. There are at least 2 vertices of C_1 which are the extremities of exactly 1 edge in T (note that v' is not an extremity of any edge in T'), so we can repeat the above process, defining X on another vertex. Continuing this process yields a vector field $X \in X(o)$ such that $T = \text{image}(X)$ and from the above construction it is clear that such an X is unique. \[\Box \]

In particular, for every $v \in V$

$$\sum_{X(v)} \prod_{e \in X(v)} W(e) = \sum_{\text{maximal trees } T} \prod_{e \in T} W(e). \quad (15)$$

Substituting (15) into (14) yields Kirchhoff's theorem.

Generalizing this formula, if we allow the weights $W(v)$ to be arbitrary, the above argument shows

$$\text{Det} \Delta = \left[\sum_{v \in V} \left(\prod_{v' \neq v} W(v') \right)^{-1} \right] \times \left[\sum_{\text{maximal trees } T} \left(\prod_{e \in T} W(e) \right) \right].$$

REFERENCES

Department of Mathematics
Rice University
Houston, TX 77251
U.S.A.