JOURNAL OF ALGEBRA 25, 176-184 (1973)

Analogs of a Theorem of Schur on Matrix Transformations*

H. J. Ryser

California Institute of Technology, Pasadena, California 91109 Received January 25, 1972

1. INTRODUCTION

Let A and B be matrices of sizes m by t and t by n, respectively, with elements in a field F. Let $x_1, ..., x_t$ denote t independent indeterminates over F and define

$$X = \text{diag}[x_1, ..., x_t].$$
(1.1)

Then

$$AXB = Y \tag{1.2}$$

is a matrix of size m by n such that every element of Y is a linear form in $x_1, ..., x_t$ over F. In the present paper we investigate the converse proposition. Thus let

$$Y = Y(x_1, ..., x_t)$$
(1.3)

be a matrix of size m by n such that every element of Y is a linear form in $x_1, ..., x_t$ over F. Then under what conditions are we assured of the existence of a factorization of Y of the form (1.2)? Our conditions turn out to be very natural ones and they are easily described in terms of compound matrices. We now state in entirely elementary terms a special case of one of our conclusions.

THEOREM 1.1. Let Y be a matrix of order $n \ge 3$ such that every element of Y is a linear form in $x_1, ..., x_n$ over F and let

$$X = diag[x_1, ..., x_n].$$
(1.4)

Suppose that

$$\det(Y) = cx_1 \cdots x_n \,, \tag{1.5}$$

* This research was supported in part by the Office of Naval Research under Contract N00014-67-A-0094-0010.

176

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form esserved. where $c \neq 0$ and $c \in F$, and suppose further that every element of Y^{-1} is a linear form in $x_1^{-1}, ..., x_n^{-1}$ over F. Then there exist matrices A and B of order n with elements in F such that

$$AXB = Y. \tag{1.6}$$

Our work has been strongly motivated by the much earlier investigations of Kantor [2], Frobenius [1], and Schur [5]. These authors study a related problem but with X a matrix of size m by n and such that the elements of X are mn independent variables over the complex field. A more recent account of this theory is available in [3].

Finally, we remark that the matrix equation (1.2) is of considerable combinatorial importance in its own right. For example, if A and B are (0, 1)matrices, then (1.2) admits of a simple set theoretic interpretation. The special case

$$AXA^{T} = Y, (1.7)$$

where A^T is the transpose of A, has been investigated briefly in [4]. But we do not pursue the combinatorial aspects of this subject here.

2. The Main Theorems

Throughout the discussion we let F denote an arbitrary field and we let $x_1, ..., x_t$ denote t independent indeterminates over F. We define

$$X = \text{diag}[x_1, ..., x_i]. \tag{2.1}$$

We then form all of the products of $x_1, ..., x_t$ taken r at a time and we always denote these products written for convenience in the "lexicographic" ordering by

$$y_1, ..., y_u \quad (u = {t \choose r}).$$
 (2.2)

Now let

$$Y = Y(x_1, ..., x_t)$$
(2.3)

denote a matrix of size m by n such that every element of Y is a linear form in $x_1, ..., x_t$ over F. We further assume that

$$1 \leqslant r \leqslant \min(m, n) \tag{2.4}$$

and we let $C_r(Y)$ denote the *r*th compound of the matrix Y. Thus $C_r(Y)$ is of size $\binom{m}{r}$ by $\binom{n}{r}$ and the elements of $C_r(Y)$ are the determinants of the

various submatrices of order r of Y displayed within $C_r(Y)$ in the "lexicographic" ordering. We note that the preceding terminology implies

$$C_r(X) = \text{diag}[y_1, ..., y_u].$$
 (2.5)

We are now prepared to state one of our main conclusions.

THEOREM 2.1. Let Y denote a matrix of size m by n such that every element of Y is a linear form in $x_1, ..., x_t$ over F and let $y_1, ..., y_u$ denote the products of $x_1, ..., x_t$ taken r at a time. We assume that

$$2 \leqslant r \leqslant \operatorname{rank}\left(Y\right) - 2 \tag{2.6}$$

and that every element of $C_r(Y)$ is a linear form in $y_1, ..., y_u$ over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$AXB = Y. \tag{2.7}$$

We begin with a simple lemma concerning the matrix Y of (2.3).

LEMMA 2.2. Let

$$Y_i = Y(0,..., 0, x_i, 0,..., 0)$$
(2.8)

and suppose that

rank
$$(Y_i) \leq 1$$
 $(i = 1, ..., t)$. (2.9)

Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$AXB = Y. \tag{2.10}$$

Proof. The assertion rank $(Y_i) \leq 1$ implies that we may write

$$Y_i = \alpha_i x_i \beta_i , \qquad (2.11)$$

where

$$\alpha_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}, \quad \beta_i = (b_{i1}, \dots, b_{in})$$
(2.12)

are vectors with components in F. Here if rank $(Y_i) = 1$ we have $\alpha_i \neq 0$

and $\beta_i \neq 0$. But if rank $(Y_i) = 0$ we have $\alpha_i = 0$ and β_i arbitrary or $\beta_i = 0$ and α_i arbitrary. Thus

$$Y = Y_1 + \dots + Y_t = \alpha_1 x_1 \beta_1 + \dots + \alpha_t x_t \beta_t = [\alpha_1, \dots, \alpha_t] X \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_t \end{bmatrix}, \quad (2.13)$$

and our conclusion follows.

Notice further that if

rank
$$(Y_i) = 1$$
 $(i = 1,..., t)$ (2.14)

and if

$$A'XB' = Y, (2.15)$$

then there exists a nonsingular diagonal matrix D with elements in F such that

$$A' = AD^{-1}, \quad B' = DB.$$
 (2.16)

It is now clear that the following lemma is actually a reformulation of Theorem 2.1.

LEMMA 2.3. The matrix Y of Theorem 2.1 satisfies

$$\operatorname{rank}(Y_i) \leq 1$$
 $(i = 1, ..., t).$ (2.17)

Proof. We remark at the outset that the lemma is elementary for r = 2. In this case rank $(Y_i) \leq 1$ because otherwise we contradict the assumption that every element of $C_2(Y)$ is a linear form in $y_1, ..., y_u$ over F.

Hence we take $r \ge 3$. Let us suppose that

$$\operatorname{rank}\left(Y_{i}\right) = p > 1 \tag{2.18}$$

for some i = 1, ..., t. Then there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$PY_iQ = x_iI \oplus 0. \tag{2.19}$$

In (2.19) the matrix I is the identity matrix of order p, 0 is a zero matrix, and the sum is direct. The elements of the matrix

$$PYQ = Z \tag{2.20}$$

are linear forms in $x_1, ..., x_t$ over F. It follows from (2.13) and (2.19) that the structure of Z is such that the indeterminate x_i appears in positions (1, 1),..., (p, p), and in no other positions in Z. The familiar multiplicative property of the compound matrix implies

$$C_r(P)C_r(Y)C_r(Q) = C_r(Z),$$
 (2.21)

179

and by our assumption on $C_r(Y)$ we may conclude that each of the elements of $C_r(Z)$ is also a linear form in $y_1, ..., y_u$ over F.

We designate by F_i the quotient field of the polynomial ring

$$F[x_1, ..., x_{i-1}, x_{i+1}, ..., x_i].$$
(2.22)

In this notation the elements of Z and $C_r(Z)$ are scalars or polynomials in x_i of degree 1 over F_i . In what follows we apply certain elementary row and column operations to Z with respect to the field F_i . This means that we determine certain nonsingular matrices P' and Q' of orders m and n, respectively, with elements in F_i such that

$$P'ZQ' = Z'. \tag{2.23}$$

Then once again we have

$$C_r(P')C_r(Z)C_r(Q') = C_r(Z').$$
 (2.24)

Thus we see that the elements of Z' and $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i .

We now write Z in the form

$$Z = \begin{bmatrix} W & * \\ * & * \end{bmatrix}, \tag{2.25}$$

where W is of order p. We note that det(W) is a polynomial in x_i of degree p > 1 over F_i . Let the submatrix of Z in the lower right corner of Z of size m - p by n - p be of rank ρ . Then we may apply elementary row and column operations with respect to F_i to the last m - p rows and the last n - p columns of Z and replace Z by

$$Z' = \begin{bmatrix} W & * & * \\ * & I & 0 \\ W' & 0 & 0 \end{bmatrix}.$$
 (2.26)

In (2.26) the matrix I is the identity matrix of order ρ and the 0's denote zero matrices. We assert that

$$p + \rho \leqslant r - 1 \tag{2.27}$$

because $p + \rho \ge r$ contradicts the fact that all of the elements of $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i . Let the submatrix W' of Z' be of rank ρ' . We have rank $(Z') = \operatorname{rank}(Y)$ and hence we may conclude that

$$p + \rho + \rho' \ge \operatorname{rank}(Y).$$
 (2.28)

180

It now follows from (2.6), (2.27), and (2.28) that

$$\rho' \geqslant 3.$$
(2.29)

We permute the last $m - (p + \rho)$ rows and the first p columns of Z' so that the submatrix of order 2 in the lower left corner of W' has a nonzero determinant. We then further permute the first p rows of Z' so that the p polynomials in x_i of degree 1 over F_i again occupy the main diagonal positions of W. By elementary row operations with respect to F_i we may replace the matrix of order 2 in the lower left corner of W' by the identity matrix. We then apply further elementary row operations with respect to F_i and make all elements in columns 1 and 2 of Z' equal to 0, apart from the elements in the (1, 1), (2, 2), (m - 1, 1), (m, 2) positions, and these elements are equal to $x_i, x_i, 1, 1$, respectively.

We delete rows 1, 2, m - 1, m and columns 1, 2 from Z' and call the resulting submatrix \tilde{Z} . Then we have

$$Z' = \begin{bmatrix} x_i & 0 & & * \\ 0 & x_i & & * \\ 0 & 0 & & & \\ \vdots & \vdots & \tilde{Z} & \\ 0 & 0 & & & \\ 0 & 1 & & * \end{bmatrix}$$
(2.30)

The matrix \tilde{Z} is of size m - 4 by n - 2. Let \tilde{Z} be of rank $\tilde{\rho}$. We have rank $(Z') = \operatorname{rank}(Y)$ and hence

$$\tilde{\rho} + 4 \ge \operatorname{rank}(Y).$$
 (2.31)

We assert that

$$C_{r-2}(\tilde{Z}) \neq 0. \tag{2.32}$$

Suppose on the contrary that $C_{r-2}(\tilde{Z}) = 0$. Then

$$\tilde{\rho} \leqslant r - 3. \tag{2.33}$$

But then by (2.6), (2.31), and (2.33) we have

$$\operatorname{rank}(Y) \leqslant \tilde{\rho} + 4 \leqslant r + 1 \leqslant \operatorname{rank}(Y) - 1, \qquad (2.34)$$

and this is a contradiction. Hence $C_{r-2}(\tilde{Z}) \neq 0$. This means that \tilde{Z} has a submatrix of order r-2 with a nonzero determinant. But this submatrix of \tilde{Z} in conjunction with the first two rows and columns of Z' yields a submatrix of Z' of order r whose determinant is a polynomial in x_i of degree 2

or higher over F_i . This contradicts the fact that the elements of $C_r(Z')$ are scalars or polynomials in x_i of degree 1 over F_i . Hence we have

rank
$$(Y_i) \leq 1$$
 $(i = 1, ..., t).$ (2.35)

This proves Lemma 2.3 and Theorem 2.1.

The range of r in the preceding theorem cannot in general be extended to $r = \operatorname{rank} (Y) - 1$. We define

$$Y = \operatorname{diag} [x_1, ..., x_n] + \left[\begin{array}{c|c} 0 & 0 \\ \hline x_{n+1} & 0 \\ 0 & x_{n+1} \end{array} \right], \quad (2.36)$$

where the 0's denote zero matrices. Then we have t = n + 1 and if $n \ge 4$ we have

$$Y^{-1} = \operatorname{diag}\left[\frac{1}{x_{1}}, ..., \frac{1}{x_{n}}\right] + \left[\begin{array}{c|c} 0 & 0\\ \hline \\ \hline \\ -\frac{x_{n+1}}{x_{1}x_{n-1}} & 0\\ 0 & \frac{-x_{n+1}}{x_{2}x_{n}} \end{array}\right].$$
(2.37)

Hence for r = n - 1 we see that every element of $C_r(Y)$ is a linear form in $y_1, ..., y_u$ over F. But clearly rank $(Y_{n+1}) = 2$.

The preceding theorem, however, is valid for $r = \operatorname{rank} (Y) - 1$ under the added assumption $t = \operatorname{rank} (Y)$. This theorem is actually a generalization of Theorem 1.1 described in Section 1.

THEOREM 2.4. Let Y denote a matrix of size m by n such that every element of Y is a linear form in $x_1, ..., x_t$ over F and let $y_1, ..., y_u$ denote the products of $x_1, ..., x_t$ taken r at a time. We assume that

$$2 \leqslant r = \operatorname{rank}(Y) - 1, \tag{2.38}$$

$$t = \operatorname{rank}(Y), \tag{2.39}$$

and that every element of $C_r(Y)$ is a linear form in $y_1, ..., y_u$ over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$AXB = Y. \tag{2.40}$$

LEMMA 2.5. Let Y be a nonsingular matrix of order $t \ge 3$ such that every

element of Y is a linear form in $x_1, ..., x_t$ over F. Let r = t - 1 and suppose that every element of $C_r(Y)$ is a linear form in $y_1, ..., y_u$ over F. Then

$$\det(Y) = c x_1 \cdots x_t , \qquad (2.41)$$

where $c \neq 0$ and $c \in F$.

Proof. Let

$$\operatorname{rank}\left(Y_{i}\right) = p. \tag{2.42}$$

We apply the same elementary row and column operations as in Lemma 2.3. Thus we know that there exist nonsingular matrices P and Q of order t with elements in F such that

$$PYQ = Z. \tag{2.43}$$

The elements of Z are linear forms in $x_1, ..., x_t$ over F. But the structure of Z is such that x_i appears in positions (1, 1), ..., (p, p), and in no other positions in Z. We know that every element of $C_r(Z)$ is a linear form in $y_1, ..., y_u$ over F. Hence $t \ge 3$ implies that we cannot have x_i in the (t, t) position of Z. Thus x_i does not occur in the last column of Z. An evaluation of det(Z) by this column implies that no term of det(Z) contains x_i to a power higher than the first. Thus no term of det(Y) contains x_i to a power higher than the first, and this is valid for each i = 1, ..., t. Hence by the structure of Y we conclude that det(Y) is a nonzero scalar multiple of $x_1 \cdots x_t$.

The following lemma completes the proof of Theorem 2.4.

LEMMA 2.6. The matrix Y of Theorem 2.4 satisfies

rank
$$(Y_i) \leqslant 1$$
 $(i = 1, ..., t)$. (2.44)

Proof. We assume that

$$\operatorname{rank}\left(Y_{i}\right) = p > 1 \tag{2.45}$$

for some i = 1, ..., t. Once again there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$PYQ = Z. (2.46)$$

The elements of Z are linear forms in $x_1, ..., x_t$ over F. But the structure of Z is such that the indeterminate x_i appears in positions (1, 1), ..., (p, p), and in no other positions in Z. Furthermore, every element of $C_r(Z)$ is a linear form in $y_1, ..., y_u$ over F.

The submatrix W of order p in the upper left corner of Z is nonsingular because its determinant is a polynomial in x_i of degree p over F_i . We have

$$t = \operatorname{rank}(Y) = \operatorname{rank}(Z) \ge 3 \tag{2.47}$$

and hence Z contains a nonsingular submatrix Z' of order t with W in its upper left corner. We now write

$$Z'Z'^{-1} = I. (2.48)$$

The elements of Z' are of the form $ax_i + b$, where $a, b \in F_i$. Moreover, the polynomials in x_i of degree 1 over F_i appear in positions (1, 1), ..., (p, p), and in no other positions in Z'. Every element of $C_r(Z')$ is a linear form in $y_1, ..., y_u$ over F. Hence by Lemma 2.5 every element of Z'^{-1} is of the form $cx_i^{-1} + d$, where $c, d \in F_i$. We now multiply row 1 of Z' by column j of Z'^{-1} . This product is 0 or 1. Hence the element in the (1, j) position of Z'^{-1} is of the form cx_i^{-1} , where $c \in F_i$. Similarly, each of the elements in the first p rows of Z'^{-1} is of this form. Hence

$$\det (Z'^{-1}) = x_i^{-p} f(x_i^{-1}), \qquad (2.49)$$

where $f(x_i^{-1})$ is a nonzero polynomial in x_i^{-1} over F_i . But by Lemma 2.5 we have

$$\det (Z'^{-1}) = ex_i^{-1}, \tag{2.50}$$

where $e \neq 0$ and $e \in F_i$. This contradicts p > 1. Hence p = 1 and the lemma is established.

References

- 1. G. FROBENIUS, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Berliner Akad. (1897), 994–1015.
- S. KANTOR, Theorie der Äquivalenz von linearen ∞^λ-Scharen bilinearer Formen, Sitzungsber. Münchener Akad. (1897), 367-381.
- M. MARCUS AND F. MAY, On a theorem of I. Schur concerning matrix transformations, Archiv. Math. 11 (1960), 401-404.
- H. J. RYSER, A fundamental matrix equation for finite sets, Proc. Amer. Math. Soc. 34 (1972), 332-336.
- 5. I. SCHUR, Einige Bemerkungen zur Determinantentheorie, Sitzungsber. Berliner Akad. (1925), 454-463.

184