Analogs of a Theorem of Schur on Matrix Transformations*

H. J. Ryser
California Institute of Technology, Pasadena, California 91109

Received January 25, 1972

1. Introduction

Let A and B be matrices of sizes m by t and t by n, respectively, with elements in a field F. Let x_{1}, \ldots, x_{t} denote t independent indeterminates over F and define

$$
\begin{equation*}
X=\operatorname{diag}\left[x_{1}, \ldots, x_{t}\right] \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
A X B=Y \tag{1.2}
\end{equation*}
$$

is a matrix of size m by n such that every element of Y is a linear form in x_{1}, \ldots, x_{i} over F. In the present paper we investigate the converse proposition. Thus let

$$
\begin{equation*}
Y=Y\left(x_{1}, \ldots, x_{t}\right) \tag{1.3}
\end{equation*}
$$

be a matrix of size m by n such that every element of Y is a linear form in x_{1}, \ldots, x_{t} over F. Then under what conditions are we assured of the existence of a factorization of Y of the form (1.2) ? Our conditions turn out to be very natural ones and they are easily described in terms of compound matrices. We now state in entirely elementary terms a special case of one of our conclusions.

Theorem 1.1. Let Y be a matrix of order $n \geqslant 3$ such that every element. of Y is a linear form in x_{1}, \ldots, x_{n} over F and let

$$
\begin{equation*}
X=\operatorname{diag}\left[x_{1}, \ldots, x_{n}\right] \tag{1.4}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\operatorname{det}(Y)=c x_{1} \cdots x_{n} \tag{1.5}
\end{equation*}
$$

[^0]where $c \neq 0$ and $c \in F$, and suppose further that every element of Y^{-1} is a linear form in $x_{1}^{-1}, \ldots, x_{n}^{-1}$ over F. Then there exist matrices A and B of order n with elements in F such that
\[

$$
\begin{equation*}
A X B=Y \tag{1.6}
\end{equation*}
$$

\]

Our work has been strongly motivated by the much earlier investigations of Kantor [2], Frobenius [1], and Schur [5]. These authors study a related problem but with X a matrix of size m by n and such that the elements of X are $m n$ independent variables over the complex field. A more recent account of this theory is available in [3].

Finally, we remark that the matrix equation (1.2) is of considerable combinatorial importance in its own right. For example, if A and B are (0,1)matrices, then (1.2) admits of a simple set theoretic interpretation. The special case

$$
\begin{equation*}
A X A^{T}=Y \tag{1.7}
\end{equation*}
$$

where A^{T} is the transpose of A, has been investigated briefly in [4]. But we do not pursue the combinatorial aspects of this subject here.

2. The Main Theorems

Throughout the discussion we let F denote an arbitrary field and we let x_{1}, \ldots, x_{t} denote t independent indeterminates over F. We define

$$
\begin{equation*}
X=\operatorname{diag}\left[x_{1}, \ldots, x_{t}\right] \tag{2.1}
\end{equation*}
$$

We then form all of the products of x_{1}, \ldots, x_{t} taken r at a time and we always denote these products written for convenience in the "lexicographic" ordering by

$$
\begin{equation*}
y_{1}, \ldots, y_{u} \quad\left(u=\binom{t}{r}\right) \tag{2.2}
\end{equation*}
$$

Now let

$$
\begin{equation*}
Y=Y\left(x_{1}, \ldots, x_{t}\right) \tag{2.3}
\end{equation*}
$$

denote a matrix of size m by n such that cvery element of Y is a linear form in x_{1}, \ldots, x_{t} over F. We further assume that

$$
\begin{equation*}
1 \leqslant r \leqslant \min (m, n) \tag{2.4}
\end{equation*}
$$

and we let $C_{r}(Y)$ denote the r th compound of the matrix Y. Thus $C_{r}(Y)$ is of size $\binom{m}{r}$ by $\binom{n}{r}$ and the elements of $C_{r}(Y)$ are the determinants of the
various submatrices of order r of Y displayed within $C_{r}(Y)$ in the "lexicographic" ordering. We note that the preceding terminology implies

$$
\begin{equation*}
C_{r}(X)=\operatorname{diag}\left[y_{1}, \ldots, y_{u}\right] \tag{2.5}
\end{equation*}
$$

We are now prepared to state one of our main conclusions.

Theorem 2.1. Let Y denote a matrix of size m by n such that every element of Y is a linear form in x_{1}, \ldots, x_{i} over F and let y_{1}, \ldots, y_{u} denote the products of x_{1}, \ldots, x_{t} taken r at a time. We assume that

$$
\begin{equation*}
2 \leqslant r \leqslant \operatorname{rank}(Y)-2 \tag{2.6}
\end{equation*}
$$

and that every element of $C_{r}(Y)$ is a linear form in y_{1}, \ldots, y_{u} over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$
\begin{equation*}
A X B=Y \tag{2.7}
\end{equation*}
$$

We begin with a simple lemma concerning the matrix Y of (2.3).

Lemma 2.2. Let

$$
\begin{equation*}
Y_{i}=Y\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right) \tag{2.8}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right) \leqslant 1 \quad(i=1, \ldots, t) \tag{2.9}
\end{equation*}
$$

Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$
\begin{equation*}
A X B=Y \tag{2.10}
\end{equation*}
$$

Proof. The assertion rank $\left(Y_{i}\right) \leqslant 1$ implies that we may write

$$
\begin{equation*}
Y_{i}=\alpha_{i} x_{i} \beta_{i} \tag{2.11}
\end{equation*}
$$

where

$$
\alpha_{i}=\left(\begin{array}{c}
a_{1 i} \tag{2.12}\\
\vdots \\
a_{m i}
\end{array}\right), \quad \beta_{i}=\left(b_{i 1}, \ldots, b_{i n}\right)
$$

are vectors with components in F. Here if rank $\left(Y_{i}\right)=1$ we have $\alpha_{i} \neq 0$
and $\beta_{i} \neq 0$. But if rank $\left(Y_{i}\right)=0$ we have $\alpha_{i}=0$ and β_{i} arbitrary or $\beta_{i}=0$ and α_{i} arbitrary. Thus

$$
Y=Y_{1}+\cdots+Y_{t}=\alpha_{1} x_{1} \beta_{1}+\cdots+\alpha_{t} x_{t} \beta_{t}=\left[\alpha_{1}, \ldots, \alpha_{t}\right] X\left[\begin{array}{c}
\beta_{1} \tag{2.13}\\
\vdots \\
\beta_{t}
\end{array}\right]
$$

and our conclusion follows.
Notice further that if

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right)=1 \quad(i=1, \ldots, t) \tag{2.14}
\end{equation*}
$$

and if

$$
\begin{equation*}
A^{\prime} X B^{\prime}=Y \tag{2.15}
\end{equation*}
$$

then there exists a nonsingular diagonal matrix D with elements in F such that

$$
\begin{equation*}
A^{\prime}=A D^{-1}, \quad B^{\prime}=D B \tag{2.16}
\end{equation*}
$$

It is now clear that the following lemma is actually a reformulation of Theorem 2.1.

Lemma 2.3. The matrix Y of Theorem 2.1 satisfies

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right) \leqslant 1 \quad(i=1, \ldots, t) \tag{2.17}
\end{equation*}
$$

Proof. We remark at the outset that the lemma is elementary for $r=2$. In this case rank $\left(Y_{i}\right) \leqslant 1$ because otherwise we contradict the assumption that every element of $C_{2}(Y)$ is a linear form in y_{1}, \ldots, y_{u} over F.

Hence we take $r \geqslant 3$. Let us suppose that

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right)=p>1 \tag{2.18}
\end{equation*}
$$

for some $i=1, \ldots, t$. Then there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$
\begin{equation*}
P Y_{i} Q=x_{i} I \oplus 0 . \tag{2.19}
\end{equation*}
$$

In (2.19) the matrix I is the identity matrix of order $p, 0$ is a zero matrix, and the sum is direct. The elements of the matrix

$$
\begin{equation*}
P Y Q=Z \tag{2.20}
\end{equation*}
$$

are linear forms in x_{1}, \ldots, x_{t} over F. It follows from (2.13) and (2.19) that the structure of Z is such that the indeterminate x_{i} appears in positions $(1,1), \ldots,(p, p)$, and in no other positions in Z. The familiar multiplicative property of the compound matrix implies

$$
\begin{equation*}
C_{r}(P) C_{r}(Y) C_{r}(Q)=C_{r}(Z) \tag{2.21}
\end{equation*}
$$

and by our assumption on $C_{r}(Y)$ we may conclude that each of the elements of $C_{r}(Z)$ is also a linear form in y_{1}, \ldots, y_{u} over F.

We designate by F_{i} the quotient field of the polynomial ring

$$
\begin{equation*}
F\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{t}\right] \tag{2.22}
\end{equation*}
$$

In this notation the elements of Z and $C_{r}(Z)$ are scalars or polynomials in x_{i} of degree 1 over F_{i}. In what follows we apply certain elementary row and column operations to Z with respect to the field F_{i}. This means that we determine certain nonsingular matrices P^{\prime} and Q^{\prime} of orders m and n, respectively, with elements in F_{i} such that

$$
\begin{equation*}
P^{\prime} Z Q^{\prime}=Z^{\prime} \tag{2.23}
\end{equation*}
$$

Then once again we have

$$
\begin{equation*}
C_{r}\left(P^{\prime}\right) C_{r}(Z) C_{r}\left(Q^{\prime}\right)=C_{r}\left(Z^{\prime}\right) \tag{2.24}
\end{equation*}
$$

Thus we see that the elements of Z^{\prime} and $C_{r}\left(Z^{\prime}\right)$ are scalars or polynomials in x_{i} of degree 1 over F_{i}.

We now write Z in the form

$$
Z=\left[\begin{array}{ll}
W & * \tag{2.25}\\
* & *
\end{array}\right]
$$

where W is of order p. We note that $\operatorname{det}(W)$ is a polynomial in x_{i} of degree $p>1$ over F_{i}. Let the submatrix of Z in the lower right corner of Z of size $m-p$ by $n-p$ be of rank ρ. Then we may apply elementary row and column operations with respect to F_{i} to the last $m-p$ rows and the last $n-p$ columns of Z and replace Z by

$$
Z^{\prime}=\left[\begin{array}{lll}
W & * & * \tag{2.26}\\
* & I & 0 \\
W^{\prime} & 0 & 0
\end{array}\right]
$$

In (2.26) the matrix I is the identity matrix of order ρ and the 0 's denote zero matrices. We assert that

$$
\begin{equation*}
p+\rho \leqslant r-1 \tag{2.27}
\end{equation*}
$$

because $p+\rho \geqslant r$ contradicts the fact that all of the elements of $C_{r}\left(Z^{\prime}\right)$ are scalars or polynomials in x_{i} of degree 1 over F_{i}. Let the submatrix W^{\prime} of Z^{\prime} be of $\operatorname{rank} \rho^{\prime}$. We have $\operatorname{rank}\left(Z^{\prime}\right)=\operatorname{rank}(Y)$ and hence we may conclude that

$$
\begin{equation*}
p+\rho+\rho^{\prime} \geqslant \operatorname{rank}(Y) \tag{2.28}
\end{equation*}
$$

It now follows from (2.6), (2.27), and (2.28) that

$$
\begin{equation*}
\rho^{\prime} \geqslant 3 . \tag{2.29}
\end{equation*}
$$

We permute the last $m-(p+\rho)$ rows and the first p columns of Z^{\prime} so that the submatrix of order 2 in the lower left corner of W^{\prime} has a nonzero determinant. We then further permute the first p rows of Z^{\prime} so that the p polynomials in x_{i} of degree 1 over F_{i} again occupy the main diagonal positions of W. By elementary row operations with respect to F_{i} we may replace the matrix of order 2 in the lower left corner of W^{\prime} by the identity matrix. We then apply further elementary row operations with respect to F_{i} and make all elements in columns 1 and 2 of Z^{\prime} equal to 0 , apart from the elements in the $(1,1),(2,2),(m-1,1),(m, 2)$ positions, and these elements are equal to $x_{i}, x_{i}, 1,1$, respectively.

We delete rows $1,2, m-1, m$ and columns 1,2 from Z^{\prime} and call the resulting submatrix \mathcal{Z}. Then we have

$$
Z^{\prime}=\left[\begin{array}{ll|l}
x_{i} & 0 & * \tag{2.30}\\
0 & x_{i} & * \\
\hline 0 & 0 & * \\
\vdots & \vdots & Z \\
0 & 0 & \\
\hline 1 & 0 & *
\end{array}\right]
$$

The matrix \tilde{Z} is of size $m-4$ by $n-2$. Let \tilde{Z} be of rank $\tilde{\rho}$. We have rank $\left(Z^{\prime}\right)=\operatorname{rank}(Y)$ and hence

$$
\begin{equation*}
\tilde{\rho}+4 \geqslant \operatorname{rank}(Y) . \tag{2.31}
\end{equation*}
$$

We assert that

$$
\begin{equation*}
C_{r-2}(\tilde{Z}) \neq 0 \tag{2.32}
\end{equation*}
$$

Suppose on the contrary that $C_{r-2}(\tilde{Z})=0$. Then

$$
\begin{equation*}
\tilde{\rho} \leqslant r-3 \tag{2.33}
\end{equation*}
$$

But then by (2.6), (2.31), and (2.33) we have

$$
\begin{equation*}
\operatorname{rank}(Y) \leqslant \tilde{\rho}+4 \leqslant r+1 \leqslant \operatorname{rank}(Y)-1 \tag{2.34}
\end{equation*}
$$

and this is a contradiction. Hence $C_{r-2}(\tilde{Z}) \neq 0$. This means that \tilde{Z} has a submatrix of order $r-2$ with a nonzero determinant. But this submatrix of Z in conjunction with the first two rows and columns of Z^{\prime} yields a submatrix of Z^{\prime} of order r whose determinant is a polynomial in x_{i} of degree 2
or higher over F_{i}. This contradicts the fact that the elements of $C_{r}\left(Z^{\prime}\right)$ are scalars or polynomials in x_{i} of degree 1 over F_{i}. Hence we have

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right) \leqslant 1 \quad(i=1, \ldots, t) \tag{2.35}
\end{equation*}
$$

This proves Lemma 2.3 and Theorem 2.1.
The range of r in the preceding theorem cannot in general be extended to $r=\operatorname{rank}(Y)-1$. We define

$$
Y=\operatorname{diag}\left[x_{1}, \ldots, x_{n}\right]+\left[\begin{array}{ll|l}
0 & 0 \tag{2.36}\\
\hline \begin{array}{ll}
x_{n+1} & 0 \\
0 & x_{n+1}
\end{array} & 0
\end{array}\right]
$$

where the 0 's denote zero matrices. Then we have $t=n+1$ and if $n \geqslant 4$ we have

$$
Y^{-1}=\operatorname{diag}\left[\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right]+\left[\begin{array}{cc|c}
0 & 0 \tag{2.37}\\
\hline \frac{-x_{n+1}}{x_{1} x_{n-1}} & 0 & \\
0 & \frac{-x_{n+1}}{x_{2} x_{n}} & 0
\end{array}\right]
$$

Hence for $r=n-1$ we see that every element of $C_{r}(Y)$ is a linear form in y_{1}, \ldots, y_{u} over F. But clearly rank $\left(Y_{n+1}\right)=2$.

The preceding theorem, however, is valid for $r=\operatorname{rank}(Y)-1$ under the added assumption $t=\operatorname{rank}(Y)$. This theorem is actually a generalization of Theorem 1.1 described in Section 1.

Theorem 2.4. Let Y denote a matrix of size m by n such that every element of Y is a linear form in x_{1}, \ldots, x_{t} over F and let y_{1}, \ldots, y_{u} denote the products of x_{1}, \ldots, x_{t} taken r at a time. We assume that

$$
\begin{align*}
2 \leqslant r & =\operatorname{rank}(Y)-1, \tag{2.38}\\
t & =\operatorname{rank}(Y) \tag{2.39}
\end{align*}
$$

and that every element of $C_{r}(Y)$ is a linear form in y_{1}, \ldots, y_{u} over F. Then there exist matrices A and B of sizes m by t and t by n, respectively, with elements in F such that

$$
\begin{equation*}
A X B=Y \tag{2.40}
\end{equation*}
$$

Lemma 2.5. Let Y be a nonsingular matrix of order $t \geqslant 3$ such that every
element of Y is a linear form in x_{1}, \ldots, x_{t} over F. Let $r=t-1$ and suppose that every element of $C_{r}(Y)$ is a linear form in y_{1}, \ldots, y_{u} over F. Then

$$
\begin{equation*}
\operatorname{det}(Y)=c x_{1} \cdots x_{t} \tag{2.41}
\end{equation*}
$$

where $c \neq 0$ and $c \in F$.
Proof. Let

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right)=p \tag{2.42}
\end{equation*}
$$

We apply the same elementary row and column operations as in Lemma 2.3. Thus we know that there exist nonsingular matrices P and Q of order t with elements in F such that

$$
\begin{equation*}
P Y Q=Z \tag{2.43}
\end{equation*}
$$

The elements of Z are linear forms in x_{1}, \ldots, x_{t} over F. But the structure of Z is such that x_{i} appears in positions $(1,1), \ldots,(p, p)$, and in no other positions in Z. We know that every element of $C_{r}(Z)$ is a linear form in y_{1}, \ldots, y_{u} over F. Hence $t \geqslant 3$ implies that we cannot have x_{i} in the (t, t) position of Z. Thus x_{i} does not occur in the last column of Z. An evaluation of $\operatorname{det}(Z)$ by this column implies that no term of $\operatorname{det}(Z)$ contains x_{i} to a power higher than the first. Thus no term of $\operatorname{det}(Y)$ contains x_{i} to a power higher than the first, and this is valid for each $i=1, \ldots, t$. Hence by the structure of Y we conclude that $\operatorname{det}(Y)$ is a nonzero scalar multiple of $x_{1} \cdots x_{t}$.

The following lemma completes the proof of Theorem 2.4.

Lemma 2.6. The matrix Y of Theorem 2.4 satisfies

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right) \leqslant 1 \quad(i=1, \ldots, t) \tag{2.44}
\end{equation*}
$$

Proof. We assume that

$$
\begin{equation*}
\operatorname{rank}\left(Y_{i}\right)=p>1 \tag{2.45}
\end{equation*}
$$

for some $i=1, \ldots, t$. Once again there exist nonsingular matrices P and Q of orders m and n, respectively, with elements in F such that

$$
\begin{equation*}
P Y Q=Z \tag{2.46}
\end{equation*}
$$

The elements of Z are linear forms in x_{1}, \ldots, x_{t} over F. But the structure of Z is such that the indeterminate x_{i} appears in positions $(1,1), \ldots,(p, p)$, and in no other positions in Z. Furthermore, every element of $C_{r}(Z)$ is a linear form in y_{1}, \ldots, y_{u} over F.

The submatrix W of order p in the upper left corner of Z is nonsingular because its determinant is a polynomial in x_{i} of degree p over F_{i}. We have

$$
\begin{equation*}
t=\operatorname{rank}(Y)=\operatorname{rank}(Z) \geqslant 3 \tag{2.47}
\end{equation*}
$$

and hence Z contains a nonsingular submatrix Z^{\prime} of order t with W in its upper left corner. We now write

$$
\begin{equation*}
Z^{\prime} Z^{\prime-1}=I \tag{2.48}
\end{equation*}
$$

The elements of Z^{\prime} are of the form $a x_{i}+b$, where $a, b \in F_{i}$. Moreover, the polynomials in x_{i} of degree 1 over F_{i} appear in positions $(1,1), \ldots,(p, p)$, and in no other positions in Z^{\prime}. Every element of $C_{r}\left(Z^{\prime}\right)$ is a linear form in y_{1}, \ldots, y_{u} over F. Hence by Lemma 2.5 every element of $Z^{\prime-1}$ is of the form $c x_{i}^{-1}+d$, where $c, d \in F_{i}$. We now multiply row 1 of Z^{\prime} by column j of $Z^{\prime-1}$. This product is 0 or 1 . Hence the element in the $(1, j)$ position of $Z^{\prime-1}$ is of the form $c x_{i}^{-1}$, where $c \in F_{i}$. Similarly, each of the elements in the first p rows of $Z^{\prime-1}$ is of this form. Hence

$$
\begin{equation*}
\operatorname{det}\left(Z^{\prime-1}\right)=x_{i}^{-p} f\left(x_{i}^{-1}\right) \tag{2.49}
\end{equation*}
$$

where $f\left(x_{i}^{-1}\right)$ is a nonzero polynomial in x_{i}^{-1} over F_{i}. But by Lemma 2.5 we have

$$
\begin{equation*}
\operatorname{det}\left(Z^{\prime-1}\right)=e x_{i}^{-1} \tag{2.50}
\end{equation*}
$$

where $e \neq 0$ and $e \in F_{i}$. This contradicts $p>1$. Hence $p=1$ and the lemma is established.

References

1. G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Berliner Akad. (1897), 994-1015.
2. S. Kantor, Theorie der Åquivalenz von linearen $\infty^{\boldsymbol{\lambda}}$-Scharen bilinearer Formen, Sitzungsber. Münchener Akad. (1897), 367-381.
3. M. Marcus and F. May, On a theorem of I. Schur concerning matrix transformations, Archiv. Math. 11 (1960), 401-404.
4. H. J. Ryser, A fundamental matrix equation for finite sets, Proc. Amer. Math. Soc. 34 (1972), 332-336.
5. I. Schur, Einige Bemerkungen zur Determinantentheorie, Sitzungsber. Berliner Akad. (1925), 454-463.

[^0]: * This research was supported in part by the Office of Naval Research under Contract N00014-67-A-0094-0010.

