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Analogs of a Theorem of Schur on Matrix Transformations* 

H. J. RYSER 

1. INTRODUCTION 

Let A and B be matrices of sizes m by t and t by n, respectively, with 
elements in a field F. Let x r ,..., xt denote t independent indeterminates over 
F and define 

Then 

X = diag[x, ,..., x& (1-l) 

AXB = Y (14 

is a matrix of size m by n such that every element of Y is a linear form in 
x1 ,..., xt over F. In the present paper we investigate the converse proposition. 
Thus let 

Y = Y(Xl ,..., xt) (X.3) 

be a matrix of size m by it such that every element of Y is a linear form in 
x1 ,..., xt over F. Then under what conditions are we assured of the existence 
of a factorization of Y of the form (1.2) ? Our conditions turn out to be very 
natural ones and they are easily described in terms of compound matrices. 
We now state in entirely elementary terms a special case of one of our con- 
clusions. 

THEOREM 1.1. Let Y be a matrix of order n 3 3 such that ewry eternal 

of Y is a linear form in x1 ,..., x, over F and let 

X = diag[x, ,..., x~]. (l-4) 

Suppose that 

det(Y) = cxl ... x, , (1.5) 
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where c # 0 and c E F, and suppose ftlrther that every element of Y-l is a linear 
form in xyl,..., xi1 over F. Then there exist matrices A and B of order n with 
elements in F such that 

AXB = Y. (1.6) 

Our work has been strongly motivated by the much earlier ~nvestigatio~ 
of Kantor [2], Frobenius [1], and Schur [5]. These authors study a related 
problem but with X a matrix of size m by n and such that the elements of X 
are mn independent variables over the complex field. A more recent account 
of this theory is available in [3]. 

Finally, we remark that the matrix equation (1.2) is of considerable com- 
binatorial importance in its own right. For example, if A and B are (0, l)- 
matrices, then (1.2) admits of a simple set theoretic interpretation. The 
special case 

AXAT = Y, (l-7) 

where AT is the transpose of A, has been investigated briefly in [4]. But we 
do not pursue the combinatorial aspects of this subject here. 

2. THE MAIN THEOREMS 

Throughout the discussion we let F denote an arbitrary field and we let 
x1 ,..., xt denote t independent indeterminates over F. We define 

X = diag[x, ,..., x8]. @1) 

We then form all of the products of x1 ,..., xt taken r at a time and we always 
denote these products written for convenience in the “lexicographic” 
ordering by 

35 YVYlr @ = (F>>. c-4 

Now let 

Y = Y(x, )..., XJ (2.3) 

denote a matrix of size m by n such that every element of Y is a linear form 
in x1 ,..., xt over F. We further assume that 

1 < r < min(Pn, n) (2.4) 

and we let C,(Y) denote the rth compound of the matrix Y. Thus C,(Y) 
is of size (‘;“) by (T) and the elements of C,(Y) are the determinants of the 
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various submatrices of order r of Y displayed within C,(Y) in the “lexico- 
graphic” ordering. We note that the preceding terminology implies 

G(X) = diag[y, ,..., r,l. (2.5) 

We are now prepared to state one of our main conclusions. 

THEOREM 2.1. Let Y denote a matrix of size m by s such that every element 
of Y is a linear form in x1 ,..., xt over F and let y1 ,..., yu denote the products 

of x1 ,***, xt taken r at a time. We assume that 

2<r<rank(Y)-2 (2.6) 

and that every element of C,(Y) is a linear form in y1 ,...,y% over F. Then 
there exist ~t~~~es A and B of sizes m by t and t by n, ~espective~y~ with elements 
in F such that 

AXB = Y. (2.7) 

We begin with a simple lemma concerning the matrix Y of (2.3). 

LEMMA 2.2. Let 

Y, = Y(O,..., 0, xi , 0 ,...I 0) (2.8) 

and suppose that 

rank (YJ < 1 (i = l,..., t). (2.9) 

Then there exist matrices A and B of sizes m by t and t by n, respectively, 
with elements in F such that 

AXB = Y. (2.10) 

Proof. The assertion rank (Yi) < 1 implies that we may write 

Yi = o”ixip~ ) (2.11) 

where 

, Pi = Pi, >...> bin) (2.12) 

are vectors with components in F. Here if rank (Yi) = 1 we have 01~ # 0 
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and /3i # 0. But if rank (YJ = 0 we have 01~ = 0 and pi arbitrary or /Ii = 0 
and oli arbitrary. Thus A 
Y=Y,+ e-0 + Y, = cilxlpl + -.* + qx,/J = [a1 ,..., at] X II i , (2.13) 

Pt 
and our conclusion follows. 

Notice further that if 

rank (YJ = 1 (i = I,..., t) (2.14) 

and if 

A’XB’ = Y, (2.15) 

then there exists a nonsingular diagonal matrix D with elements in F such that 

A’ = AD-l, B’ = DB. (2.16) 

It is now clear that the following lemma is actually a reformulation of 
Theorem 2.1. 

LEMMA 2.3. The matrix Y of Theorem 2.1 satisfies 

rank (Yi) < 1 (i = l,..., t). (2.17) 

Proof. We remark at the outset that the lemma is elementary for Y = 2. 
In this case rank (YJ < 1 because otherwise we contradict the assumption 
that every element of C,(Y) is a linear form in yi ,..., yU over F. 

Hence we take Y > 3. Let us suppose that 

rank(Y,) =p > 1 (2.18) 

for some i = l,..., t. Then there exist nonsingular matrices P and Q of orders 
m and n, respectively, with elements in F such that 

PY,Q = xii @ 0. (2.19) 

In (2.19) the matrix 1 is the identity matrix of order p, 0 is a zero matrix, and 
the sum is direct. The elements of the matrix 

PYQ=Z (2.20) 

are linear forms in x i ,..., xt over F. It follows from (2.13) and (2.19) that 
the structure of Z is such that the indeterminate xi appears in positions 
(1, l),..., (p,p), and in no other positions in Z. The familiar multiplicative 
property of the compound matrix implies 

(2.21) 
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and by our assumption on C,(Y) we may conclude that each of the elements 
of C,(Z) is also a linear form in yi ,..., yU over F. 

We designate by Fi the quotient field of the polynomial ring 

F[x, ,...> xi-1 , xi+1 ,*.-, %I. (2.22) 

In this notation the elements of 2 and C,.(Z) are scalars or polynomials 
in xi of degree 1 over Fi . In what follows we apply certain elementary row 
and column operations to 2 with respect to the field Fi . This means that 
we determine certain nonsingular matrices P’ and Q’ of orders m and n, 
respectively, with elements in Fi such that 

P’ZQ’ = Z’. (2.23) 

Then once again we have 

C#“)C,WG(Q’> = W-‘). (2.24) 

Thus we see that the elements of Z’ and C,(Z) are scalars or polynomials in 
xi of degree 1 over Fi . 

We now write Z in the form 

z= w * [ 1 * c’ (2.25) 

where W is of order p. We note that det( W) is a polynomial in xi of degree 
p > 1 over Fi . Let the submatrix of Z in the lower right corner of Z of size 
m - p by n - p be of rank p. Then we may apply elementary row and 
column operations with respect to Fi to the last m - p rows and the last 
n - p columns of Z and replace Z by w ;I:* Z’= * IO. [ 1 (2.26) 

w’ 0 0 

In (2.26) the matrix I is the identity matrix of order p and the O’s denote zero 
matrices. We assert that 

p+p<r-1 (2.27) 

because p + p 3 r contradicts the fact that all of the elements of C,(Z) are 
scalars or polynomials in xi of degree 1 over Fi . Let the submatrix W’ of Z 
be of rank p’. We have rank (Z’) = rank (Y) and hence we may conclude that 

p + p + p’ 3 rank (Y). (2.28) 
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It now follows from (2.6), (2.27) and (2.28) that 

p’ > 3. (2.29) 

We permute the last m - (p + p) rows and the first p columns of 2’ so 
that the submatrix of order 2 in the lower left corner of IV’ has a nonzero 
determinant. We then further permute the first p rows of Z’ so that the 
p polynomials in xi of degree 1 over Fi again occupy the main diagonal 
positions of W, By elementary row operations with respect to Fi we may 
replace the matrix of order 2 in the lower left corner of W’ by the identity 
matrix. We then apply further elementary row operations with respect to Fi 
and make all elements in columns 1 and 2 of 2’ equal to 0, apart from the 
elements in the (1, l), (2, 2), (m - 1, l), (m, 2) positions, and these elements 
are equal to xi , xi , 1, 1, respectively. 

We delete rows 1, 2, m - 1, m and columns 1, 2 from Z’ and call the 
resulting submatrix Z. Then we have 

i-xi 0 
0 

* 
&c 

Z'= ; ; 

I 1 

z 
0 0 
1 0 
0 1 

* 
J 

(2.30) 

The matrix Z is of size m - 4 by 1z - 2. Let Z be of rank p”. We have rank 
(Z’) = rank (Y) and hence 

p” + 4 > rank (Y). 

We assert that 

C,-,(Z) # 0. 

Suppose on the contrary that C,-,(Z) = 0. Then 

(2.31) 

(2.32) 

p<r-3. 

But then by (2.6) (2.31) and (2.33) we have 

(2.33) 

rank(Y)<p”+4<r+l<rank(Y)-1, (2.34) 

and this is a contradiction. Hence C,-,(Z) # 0. This means that Z has a 
submatrix of order Y - 2 with a nonzero determinant. But this submatrix 
of Z in conjunction with the first two rows and columns of Z’ yields a sub- 
matrix of Z’ of order r whose determinant is a polynomial in Xi of degree 2 
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or higher over Fi . This contradicts the fact that the elements of C,(Z) are 
scalars or polynomials in xi of degree 1 over Fi . Hence we have 

rank (YJ < 1 (i = l,..., t). (2.35) 

This proves Lemma 2.3 and Theorem 2.1. 
The range of r in the preceding theorem cannot in general be extended 

to Y = rank (Y) - 1. We define 

0 0 
Y = diag [x1 ,..., x,] + 

i I 

- , (2.36) 
X,+1 0 0 
0 x,+1 

where the O’s denote zero matrices. Then we have t = n + 1 and if n > 4 
we have 

Y-l = diag [k,..., k] + 
0 

-x,+1 0 
X1%-1 

-x,+1 0 __ 
xzxn 

.- 
0 

0 

(2.37) 

Hence for Y = n - 1 we see that every element of C,(Y) is a linear form 
in yr ,..., yU over F. But clearly rank (Y,+r) = 2. 

The preceding theorem, however, is valid for Y = rank (Y) - 1 under 
the added assumption t = rank (Y). This theorem is actually a general- 
ization of Theorem 1.1 described in Section 1. 

THEOREM 2.4. Let Y denote a matrix of size m by n such that every element 
of Y is a linear form in x1 ,..., xt over F and let y1 ,..., yU denote the products 
of Xl >-**, xt taken r at a time. We assume that 

2<r =rank(Y)- 1, (2.38) 

t = rank (Y), (2.39) 

and that every element of C,(Y) is a linear form in y1 ,..., yU over F. Then there 
exist matrices A and B of sizes m by t and t by n, respectively, with elements in 
F such that 

AXB = Y. (2.40) 

LEMMA 2.5. Let Y be a nonsingular matrix of order t > 3 such that every 
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element of Y is a linear form in x1 ,..., xt over F. Let r = t - 1 and suppose 
that every element of C,(Y) is a linear form in y1 ,..., yU over F. Then 

det(Y) = cxr ... xt , (2.41) 

wherec#OandcEF. 

Proof. Let 

rank (YJ = p. (2.42) 

We apply the same elementary row and column operations as in Lemma 2.3. 
Thus we know that there exist nonsingular matrices P and Q of order t 
with elements in F such that 

PYQ = Z. (2.43) 

The elements of Z are linear forms in x1 ,..., xt over F. But the structure of Z 
is such that xi appears in positions (1, I),..., (p, p), and in no other positions 
in Z. We know that every element of C,(Z) is a linear form in yr ,..., yU over F. 
Hence t 3 3 implies that we cannot have xi in the (t, t) position of Z. Thus xi 
does not occur in the last column of Z. An evaluation of det(Z) by this column 
implies that no term of det(Z) contains xi to a power higher than the first. 
Thus no term of det(Y) contains xi to a power higher than the first, and this 
is valid for each i = l,..., t. Hence by the structure of Y we conclude that 
det(Y) is a nonzero scalar multiple of x1 ... xt . 

The following lemma completes the proof of Theorem 2.4. 

LEMMA 2.6. The matrix Y of Theorem 2.4 satisfies 

rank (Yi) < 1 (i = l,..., t). (2.44) 

Proof. We assume that 

rank(YJ =p > 1 (2.45) 

for some i = I,..., t. Once again there exist nonsingular matrices P and Q 
of orders m and n, respectively, with elements in F such that 

PYQ = Z. (2.46) 

The elements of Z are linear forms in x1 ,..., xt over F. But the structure 
of Z is such that the indeterminate xi appears in positions (1, l),..., (p,p), 
and in no other positions in Z. Furthermore, every element of C,(Z) is a 
linear form in yr ,..., yU over F. 
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The submatrix W of order p in the upper left corner of 2 is nonsingular 
because its determinant is a polynomial in xi of degree p over Fi . We have 

t = rank (Y) = rank (2) > 3 (2.47) 

and hence Z contains a nonsingular submatrix Z’ of order t with W in its 
upper left corner. We now write 

z’z’-1 = I (2.48) 

The elements of Z’ are of the form axi + b, where a, b EF~ . Moreover, the 
polynomials in xi of degree 1 over Fi appear in positions (1, l),..., (p,p), 
and in no other positions in Z’. Every element of C,(Z) is a linear form in 
y1 >..., yU over F. Hence by Lemma 2.5 every element of Z’-l is of the form 
CX;’ + d, where c, d EF~ . We now multiply row 1 of Z’ by column j of Z’-l. 
This product is 0 or 1. Hence the element in the (1, j) position of Z’-l is of the 
form cx;‘, where c E Fi . Similarly, each of the elements in the first p rows of 
Z’-l is of this form. Hence 

det (Z-l) = x;“f($), 

where f(x~‘) is a nonzero polynomial in x2-l over Fi . But by Lemma 2.5 
we have 

det (Z-l) = ex;‘, (2.50) 

where e # 0 and e E Fi . This contradicts p > 1. Hence p = 1 and the 
lemma is established. 
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