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1. INTRODUCTION

Let 4 and B be matrices of sizes m by ¢ and ¢ by », respectively, with
elements in a field F. Let %, ,..., x, denote ¢ independent indeterminates over
F and define

X = diag[#y ,..., %] (rL.n
Then
AXB =Y (1.2)

is a matrix of size m by » such that every element of Y is a linear form in
%; ,..., %; over F. In the present paper we investigate the converse proposition.
Thus let

Y = V(% ey 7) (1.3)

be a matrix of size m by n such that every element of Y is a linear form in
%y ..., #; over F. Then under what conditions are we assured of the existence
of a factorization of Y of the form (1.2)? Our conditions turn out to be very
natural ones and they are easily described in terms of compound matrices.
We now state in entirely elementary terms a special case of one of our con-
clusions.

TueoreMm 1.1. Let Y be a matrix of order n 2= 3 such that every element
of Y is a linear form in %, ..., x, over F and let

X = diag[xy ,..., %,]- (1.4)
Suppose that
det(Y) = exy = %, , (1.5)
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where ¢ # 0 and ¢ € F, and suppose further that every element of Y1 is a linear
form in x7t 1 over F. Then there exist matrices A and B of order n with
elements in F such that

yoos Xy

AXB =Y. (1.6)

Qur work has been strongly motivated by the much earlier investigations
of Kantor [2], Frobenius [1}, and Schur [5]. These authors study a related
problem but with X a matrix of size m by # and such that the elements of X
are mn independent variables over the complex field. A more recent account
of this theory is available in {3].

Finally, we remark that the matrix equation (1.2) is of considerable com-
binatorial importance in its own right. For example, if 4 and B are (0, 1)-
matrices, then (1.2) admits of a simple set theoretic interpretation. The
special case

AXAT =Y, 17

where A7 is the transpose of 4, has been investigated briefly in [4]. But we
do not pursue the combinatorial aspects of this subject here.

2. THe MaiN THEOREMS

Throughout the discussion we let F' denote an arbitrary field and we let
*y .., %; denote ¢ independent indeterminates over F. We define

X = diagfx, ,..., ;] (2.1)

We then form all of the products of &y ,..., x; taken r at a time and we always
denote these products written for convenience in the ‘‘lexicographic”
ordering by

V1o Y (@ = () 2.2)
Now let
Y = Y(xy 00, &) (2.3)

denote a matrix of size m by » such that every element of Y is a linear form
in %, ,..., , over F. We further assume that

1 <7 < min(m, n) 2.4)

and we let C(Y) denote the rth compound of the matrix Y. Thus C(Y)
is of size (7) by (}) and the elements of C(Y) are the determinants of the
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various submatrices of order r of Y displayed within C(Y) in the “lexico-
graphic” ordering. We note that the preceding terminology implies

CAX) = diagly, -, 3] (2.3)

We are now prepared to state one of our main conclusions.

TuroreMm 2.1. Let YV denote a matrix of size m by n such that every element
of Y is a linear form in %y ,..., x, over F and let y, ,..., y, denote the products
of %y ..., X, taken r at a time. We assume that

2 < r < rank (V) — 2 (2.6)

and that every element of C(Y) is a linear form in yy ,...,y, over F. Then
there extst matrices A and B of sizes m by ¢ and t by n, respectively, with elements
in F such that

AXB =Y. 2.7)

We begin with a simple lemma concerning the matrix ¥ of (2.3).

Lemma 2.2, Let
Y, = Y(0,.., 0, x;, 0,..., 0) (2.8)
and suppose that
rank (Y;) <1 f=1..,1). (2.9)

Then there exist matrices A and B of sizes m by t and t by n, respectively,
with elements in F such that

AXB =Y. (2.10)
Proof. 'The assertion rank (¥;) < 1 implies that we may write
Y, = axifi, {2.11)
where
a},-
;=14 2], Bi= (bsrser bin) (2.12)
o,

are vectors with components in F. Here if rank (¥;) = 1 we have o; # 0
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and B; # 0. But if rank (¥;) = 0 we have o; = 0 and B; arbitrary or §, =0
and a; arbitrary. Thus

1
Y=Y+ 4+ Y, =axf; + -+ axfy = [og 000, 2] X [j} , (2.13)
B

and our conclusion follows.
Notice further that if
rank (Y;) =1 =1..,1 (2.14)
and if
A'XB =Y, (2.15)

then there exists a nonsingular diagonal matrix D with elements in F such that
A = AD™, B’ = DB. (2.16)

It is now clear that the following lemma is actually a reformulation of
Theorem 2.1.

Lemma 2.3, The matrix Y of Theorem 2.1 satisfies
rank (Y,) < 1 (t=1,.,1). (2.17)

Proof. We remark at the outset that the lemma is elementary for r = 2.
In this case rank (Y;) <{ 1 because otherwise we contradict the assumption
that every element of Cy(Y) is a linear form in y, ,..., ¥, over F.

Hence we take r > 3. Let us suppose that

rank (V) = p > 1 (2.18)

for some 7 = 1,..., . Then there exist nonsingular matrices P and Q of orders
m and n, respectively, with elements in F such that

PY,0 = xI®0. (2.19)

In (2.19) the matrix I is the identity matrix of order p, 0 is a zero matrix, and
the sum is direct. The elements of the matrix

PYQ = Z (2.20)

are linear forms in #, ,..., 8, over F. It follows from (2.13) and (2.19) that
the structure of Z is such that the indeterminate x; appears in positions
(1, 1),..., (», ?), and in no other positions in Z. The familiar multiplicative
property of the compound matrix implies

CAPYCAY)CAQ) = CZ), (2.21)
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and by our assumption on C,(Y) we may conclude that each of the elements
of C(Z) is also a linear form in y, ,..., y,, over F.
We designate by F; the quotient field of the polynomial ring

Flxg yeesy %59 5 Xifq youes X4 (2.22)

In this notation the elements of Z and C,(Z) are scalars or polynomials
in x; of degree 1 over F; . In what follows we apply certain elementary row
and column operations to Z with respect to the field ;. This means that
we determine certain nonsingular matrices P’ and Q' of orders m and n,
respectively, with elements in F; such that

PZQ =7 (2.23)
Then once again we have
CAPICAZ)CAQ) = CAZ). (2.24)

Thus we see that the elements of Z’ and C,(Z") are scalars or polynomials in
x; of degree 1 over F; .
We now write Z in the form
W =
il PEE

o (2.25)

where W is of order p. We note that det(W) is a polynomial in x; of degree
p > 1 over F; . Let the submatrix of Z in the lower right corner of Z of size
m — p by n — p be of rank p. Then we may apply elementary row and
column operations with respect to F; to the last m — p rows and the last
n — p columns of Z and replace Z by

W x x
A [* I 0] . (2.26)
w0 0

In (2.26) the matrix [ is the identity matrix of order p and the 0’s denote zero
matrices. We assert that

ptp<r—1 (2.27)

because p + p => r contradicts the fact that all of the elements of C(Z’) are
scalars or polynomials in x; of degree 1 over F; . Let the submatrix W’ of Z
be of rank p’. We have rank (Z’) = rank (Y} and hence we may conclude that

P+ p -+ p =rank (Y) (2.28)
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It now follows from (2.6), (2.27), and (2.28) that
p =3 (2.29)

We permute the last m — (p + p) rows and the first p columns of Z” so
that the submatrix of order 2 in the lower left corner of W’ has a nonzero
determinant, We then further permute the first p rows of Z’ so that the
p polynomials in x; of degree 1 over F; again occupy the main diagonal
positions of W. By elementary row operations with respect to F; we may
replace the matrix of order 2 in the lower left corner of W’ by the identity
matrix. We then apply further elementary row operations with respect to F;
and make all elements in columns 1 and 2 of Z’ equal to 0, apart from the
elements in the (1, 1), (2, 2), (m — 1, 1), (m, 2) positions, and these elements
are equal to x; , x;, 1, 1, respectively.

We delete rows 1, 2, m — 1, m and columns 1, 2 from Z’ and call the
resulting submatrix Z. Then we have

0 -
0 x *
0 0
7= : Z (2.30)
0
1 0
0 1 D

The matrix Z is of size m — 4 by n — 2. Let Z be of rank 5. We have rank
(Z') == rank (¥) and hence

p -+ 4 = rank (V). (2.31)
We assert that
C,_o(Z) #0. (2.32)

Suppose on the contrary that C,_,(Z) = 0. Then
p<r—3. (2.33)
But then by (2.6), (2.31), and (2.33) we have
rank (Y)<p+4<r+1<rank(¥)— 1, (2.34)

and this is a contradiction. Hence C,_o(Z) # 0. This means that Z has a
submatrix of order r — 2 with a nonzero determinant. But this submatrix
of Z in conjunction with the first two rows and columns of Z’ yields a sub-
matrix of Z’ of order r whose determinant is a polynomial in x; of degree 2
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or higher over F; . This contradicts the fact that the elements of C,(Z’) are
scalars or polynomials in x; of degree 1 over F; . Hence we have

rank (V) <1 (i = 1,..., £). (2.35)

This proves Lemma 2.3 and Theorem 2.1.
The range of 7 in the preceding theorem cannot in general be extended
tor = rank (Y) — 1. We define

0 l 0
Y = diag [%; ,..., ¥,] +

, (2.36)
0

Xnt1 0
0 Xn+1

where the 0’s denote zero matrices. Then we have t = n -+ 1 and if n > 4
we have

— 0 0 ]
1 3 o L
Y1 = diag [xl xn]+ - . (237)
T Ap+l
"
X1 %1 0
0 _xn+1
Koy

Hence for r = n — 1 we see that every element of C,(Y) is a linear form
in ¥y ..., ¥, over F. But clearly rank (Y, ;) = 2.

The preceding theorem, however, is valid for = rank (Y) -— 1 under
the added assumption ¢ = rank (¥). This theorem is actually a general-
ization of Theorem 1.1 described in Section 1.

THEOREM 2.4. Let Y denote a matrix of size m by n such that every element
of Y is a linear form in x, ,..., x;, over F and let y, ,..., v, denote the products
of %y ,..., x; taken v at a time. We assume that

2 <r=rank(Y)—1, (2.38)
t == rank (Y), (2.39)
and that every element of C(Y) is a linear form in y, ,..., v, over F. Then there

exist matrices A and B of sizes m by t and t by n, respectively, with elements in
F such that

AXB =Y. (2.40)

Lemma 2.5. Let Y be a nonsingular matrix of order t 2= 3 such that every
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element of Y is a linear form in xy ,..., x; over F. Let v =t — 1 and suppose
that every element of C(Y)is a linear form in y, ,..., v, over F. Then

det(Y) = cxy == %, (2.41)
where ¢ # 0 and ceF.

Proof. Let
rank (Y,) = p. (242)

We apply the same elementary row and column operations as in Lemma 2.3.
Thus we know that there exist nonsingular matrices P and Q of order ¢
with elements in F such that

PYQ = Z. (2.43)

The elements of Z are linear forms in #, ,..., #, over F. But the structure of Z
is such that x; appears in positions (1, 1),..., (p, ), and in no other positions
in Z. We know that every element of C,(Z) is a linear form in y, ,..., y, over F.
Hence ¢ > 3 implies that we cannot have ¥; in the (¢, ) position of Z. Thus x;
does not occur in the last column of Z. An evaluation of det(Z) by this column
implies that no term of det(Z) contains x; to a power higher than the first.
Thus no term of det(Y) contains x; to a power higher than the first, and this
is valid for each 7 = 1,..., #. Hence by the structure of ¥ we conclude that
det(Y) is a nonzero scalar multiple of x; -+~ x, .
The following lemma completes the proof of Theorem 2.4.

Levmma 2.6.  The matrix Y of Theorem 2.4 satisfies
rank (V) < 1 (¢ =1,.,1). (2.44)
Proof. We assume that
rank (Y;) = p > 1 (2.45)

for some { = 1,..., . Once again there exist nonsingular matrices P and Q
of orders m and n, respectively, with elements in F such that

PYQ = Z. (2.46)

The elements of Z are linear forms in x, ,..., x, over F. But the structure
of Z is such that the indeterminate x; appears in positions (1, 1),..., (p, p),
and in no other positions in Z. Furthermore, every element of C(Z) is a
linear form in y, ,..., ¥, over F.
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The submatrix W of order p in the upper left corner of Z is nonsingular
because its determinant is a polynomial in x; of degree p over F;. We have

t = rank (Y) = rank (Z) > 3 (2.47)

and hence Z contains a nonsingular submatrix Z’ of order ¢t with W in its
upper left corner. We now write

77z =1 (2.48)

The elements of Z’ are of the form ax; + b, where a, b € F, . Moreover, the
polynomials in x; of degree 1 over F; appear in positions (1, 1),..., (9, p),
and in no other positions in Z’. Every element of C(Z’) is a linear form in
Y1 y-y ¥y Over F. Hence by Lemma 2.5 every element of Z'-1 is of the form
cx;t + d, where ¢, d € F; . We now multiply row 1 of Z’ by column j of Z'-1,
This product is 0 or 1. Hence the element in the (1, §) position of Z'~1is of the
form cx;!, where c € F; . Similarly, each of the elements in the first p rows of
Z'~1 is of this form. Hence

det (Z')) = a7 f(x7Y), (2.49)

where f(x7) is a nonzero polynomial in x;? over F,. But by Lemma 2.5
we have

det (Z'-1) = exj?, (2.50)

where ¢ % 0 and eeF,. This contradicts p > 1. Hence p = 1 and the
lemma is established.
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