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1. INTRODUCTION

The purpose of the present paper is to analyze qualitative properties of
the solutions of the Dirichlet problem

�t u+�x f (u)= g(x, u) x # [0, L], t>0, (1)

u(x, 0)=u0(x) # BV(0, L) x # [0, L], (2)

u(0, t)=u& , u(L, t)=u+ t>0. (3)

Here u=u(x, t), u\ # R. Precise assumptions will be given later. We are, in
particular, interested in the asymptotic behavior of solutions to problem
(1)�(3).

Equation of the form (1) is called reaction-convection equation or balance
law. The correct setting to deal with for such equations is the one given by
entropy solutions, in the sense of Kruz$ kov in [15]. In such class it is well
known that the Cauchy problem has a unique solution, continuously
depending on initial data in L1-norm.

In this article we consider boundary conditions and we analyze the
influence of such conditions on the whole solution as time goes on. Such
conditions for equations of the form (1) were considered in [1]. It turns
out that, in order to have existence, uniqueness and continuous
dependence, conditions (3) have to be interpreted in a non classical
fashion. Following [1], we look for entropy solutions of (1), such that
their boundary values belong to appropriate sets (details will be given later
on).
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The main novelties of the paper are exactly boundary conditions and
their influence on the large-time behavior of solutions to problem (1)�(3).
Such kind of subject is (more or less) new with respect to previous
literature on reaction-convection equations (some interesting considera-
tions were made in [7]). Indeed, concerning equation (1), many papers
have been devoted to the Cauchy problem, [9], [19], [22] and references,
[24]. In these works results on asymptotic behavior were proved for dif-
ferent choices of initial data (periodic, with bounded support, of perturbed
Riemann type). It has been shown that the solutions for large time are
represented by opportune combination of travelling wave solutions of the
same equation (1). In the case of bounded domains we cannot expect that
the solution is given by travelling waves with nonzero speed, since such
solutions would interact with the boundary after finite time. In fact we are
able to prove that the asymptotic picture is completely described by
stationary solutions.

Equation (1) can be regarded as a simplified model for Euler equations
when dealing with source and�or reaction phenomena. The presence of
such terms is represented by the function g= g(x, u). The same kind of
equation appears naturally when considering the nozzle case, i.e. the case
of a fluid flowing in a duct with variable size (see [7, 18]).

Coming back to the mathematical interest of problem (1)�(3), we stress
the fact that equation (1) can be seen as the singular limit of the second
order parabolic equation

�t u+F(x, u) �xu== �2
xu+G(x, u), (=>0), (4)

(in fact the entropy solution of (1) can be obtained via the so-called vanish-
ing viscosity method, that is as limit of solutions to (4)). Equation (4) is
usually called reaction-diffusion-convection equation; and the Dirichlet
problem for such equations was investigated in [2, 3, 4], [12]�[14], [17]
under different assumptions on F, G, =. Some different problems for the
same equation have been considered in [8] and in [11]. We do not want
to go into details of all such papers; let us just stress some interesting con-
nections of our hyperbolic paper with some of the cited parabolic works.

In [2] it has been considered the Burgers�Sivashinsky equation as a
simplified model for flame propagation (see also [10])

�t u+�x( 1
2u2)== �2

xu+u,

with homogeneous boundary conditions, = # R small. Results announced in
the paper appear very natural if compared with properties of entropy solu-
tions of (1) (see e.g. [22]); actually they seem to be inheredited by the
underlying hyperbolic structure of the singular limit of the equation. This
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suggests that a complete analysis of problem (1)�(3) could be very useful
in order to understand the complete picture for the viscous equation (4),
at least for small =.

In [13] sufficient conditions guaranteeing asymptotic stability of the
steady solutions of (4) are given. In this direction we note that assumption
(A2) of [13] excludes the existence of internal shocks for the correspond-
ing unviscous problem (i.e. equation (4) with ==0). On the contrary, in
this paper, we deal with case showing the presence of discontinuous
stationary solutions to (1). Such discontinuities correspond to internal
layer in the viscous case (=>0).

Properties of the global attractor for (4) (with F(x, u)=F(u) and
G(x, u)=G(u)) as = � 0 are considered in [8, 11]. In [8] the Cauchy
problem with periodic data has been studied. In [11] the case of Neumann
boundary conditions on a bounded domain has been investigated (for con-
nections with the hyperbolic case, see the Discussion at the end of [11]).

Finally let us note that in [16] and in [23] it has been shown for equa-
tion (4) with G#0 that (for opportune initial data) the solution rapidly
generates a viscous shock, corresponding to the one of the unviscous equa-
tions. The unviscous shock is stationary for (1), on the contrary, due to dif-
fusion effects, the viscous wave moves to an equilibrium point. Nevertheless
such motion is, for small =, very slow. Therefore we can conjecture that the
qualitative behavior of solutions to equation (4) is approximately given by
the corresponding behavior of the solutions to the unviscous equation (1)
for intermediate time, and that the transport effect caused by the presence
of the diffusion becomes important for larger time. Hence our analysis
should give information on ``intermediate properties'' of solutions to (4).

In order to prove large-time behavior results, we assume the flux func-
tion f to be convex. This assumption has been made in the majority of the
articles concerning the Cauchy problem for (1). Under such assumption, in
[5], it was build up the theory of generalized characteristics. This tool is
very useful to analyze solutions of reaction-convection equations and it can
also be used in the case of bounded domains. The nonconvex case was con-
sidered in few papers, either extending the method of generalized charac-
teristics to the case of one-change of convexity [19], or constructing
explicit solutions to some specific problems [25], or by a broad use of
comparison principle [20, 21]. In any case, nowadays, the detailed
analysis, guaranteed by generalized characteristic for convex fluxes, is not
available for the nonconvex case. Nevertheless it seems natural to expect
that many of the result still hold in the general case.

Concerning the reaction function g, apart from hypothesis guaranteeing
that no blow-up occur, we assume

f $(s)=0 O g(x, s){0 \x # [0, L]. (5)
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Such assumption permits us to give a complete picture on existence and
multiplicity of the steady-states for problem (1)�(3) and on the asymptotic
behavior of solutions. Assumption (5) yields that there is no characteristic
curve for equation (1) completely contained in the half-strip [0, L]_
[0, +�) of the (x, t)-plane. Such assumption is suggested by the fact that
the presence of global characteristic in [0, L]_[0, +�) would possibly
imply the existence of oscillating steady solutions (see also [24]). This kind
of solutions have been well-studied for the Cauchy problem; moreover in
[22] it has been proved that, generically, such solutions do not appear in
the asymptotic behavior. Finally let us stress the fact that assumptions
(H3) of [11] corresponds to (5). Thus (5) essentially controls the dimen-
sion of the global attractor for problem (1)�(3).

Now we sketch the content of our main theorem (precise statement
is given in the following of the paper, see Theorem 4.4). We prove that,
after a finite time (not depending on the initial datum) the evolution of the
solution to problem (1)�(3) becomes one-dimensional. More precisely
we show that there exists T* such that for t�T* the solution is of the
form

u(x, t)={, l (x) for x< y,
,r(x) for x� y,

where ,l and ,r are opportune stationary solutions of (1) and y solves the
o.d.e.

dy
dt

=F� ( y) :={
0 if y # [0, L],

f (,l ( y))& f (,r( y))
, l ( y)&,r( y)

elsewhere.

The function y describes the evolution of the (unique) layer. Moreover
there is a one-to-one correspondence between the critical points of such
o.d.e. and the stationary solutions of problem (1)�(3).

Once it has been proved such property, an opportune mapping from
initial data of (1)�(3) to the interval [0, L] is defined. By use of this map-
ping, results concerning the structure of the attractor are proved.

The paper is structured as follows. In Section 2 we recall the mathemati-
cal tools used for proving the results. Section 3 concernes with the analysis
of entropic steady states of the problem. In Section 4 we deal with the time-
dependent problem. There we state and prove the main theorem on large-
time behavior. Finally, in Section 5, we generalize some results and
analyze, as an example, the case of a space-dependent source.
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2. MATHEMATICAL TOOLS

In this Section we introduce the mathematical background and recall
main properties of the techniques used in this paper.

Let f, g be continuous functions of their arguments.

Definition 2.1. Let u0 # BV(0, L), a0 , b0 # BV(0, T ). A function
u # BV((0, L)_(0, T )) & L�((0, L)_(0, T )) is an entropy solution to the
problem

�tu+�x f (u)= g(x, u) in (0, L)_(0, T )

{u(x, 0)=u0(x) in (0, L) (6)

u(0, t)=a0(t) u(L, t)=b0(t) in (0, T ),

if the following holds

(i) for any , # C1((0, L)_[0, T )), ,�0 and for any k # R

|
T

0
|

L

0
|u&k| �t,+sgn(u&k)( f (u)& f (k)) �x,

+sgn(u&k) g(x, u) , dx dt++|
L

0
|u0&k| , dx�0;

(ii) for almost any t # (0, T )

max[sgn(u(0, t)&a0(t))( f (u(0, t))& f (k)) : k # I(a0(t), u(0, t))]=0,

min[sgn(u(L, t)&b0(t))( f (u(L, t))& f (k)) : k # I(b0(t), u(L, t))]=0.

where I(a, b) :=(min[a, b], max[a, b]).
(Here u(0, t) and u(L, t) represent the traces of the function u=u(x, t)

on the boundary. Such traces are well-defined since u is of bounded
variation).

In order to guarantee uniqueness and global existence, let us assume:

Hypothesis G:

(i) for any M>0 there exists KM>0 such that for any x # [0, L]
and for any u, v # R with |u|, |v|�M there holds

| g(x, u)& g(x, v)|�KM |u&v|;
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(ii) there exist A, B>0 such that for any x # [0, L] for any u # R
there holds

| g(x, u)|�A+B |u|;

The following result is due to Bardos, Le Roux and Nedelec [1].

Theorem 2.2. Assume hypothesis (G) and let f # C2(R). Given u0 , a0 and
b0 as in Definition 2.1, then for any T>0 there exists a unique entropy solu-
tion u # BV((0, L)_(0, T )) & L�([0, T ), BV(0, L)) & C([0, T ), L1(0, L)) to
problem (6).

Definition 2.3. Let u0 , a0 , b0 as in Definition 2.1.
A function u

�
# L�((0, L)_(0, T )) & BV((0, L)_(0, T )) is an entropy

subsolution (respectively u� # L�((0, L)_(0, T )) & BV((0, L)_(0, T )) is an
entropy supersolution of problem (6)), if u

�
(resp. u� ) enjoies properties (i),

(ii), (iii), of Definition 2.1 with [ } ]+ (resp. [ } ]&) replacing | } | and H+( } )
(resp. H &( } )) replacing sgn( } ).

(Here [s]+=max(s, 0), [s]&=&min(s, 0), H\(s)=(sgn(s)\1)�2).

For entropy sub- and supersolution comparison property holds.

Theorem 2.4. Let u
�
, u� # BV((0, L)_(0, T )) & L�([0, T ), BV(0, L)) &

C([0, T ), L1(0, L)) be, respectively, a subsolution and a supersolution of
problem (6) with data u

� 0 , a
� 0 , b

� 0 , and u� 0 , a� 0 , b� 0 .
Then, for any t # (0, T ), it holds

|
L

0
[u

�
(x, t)&u� (x, t)]+ dx

�ect _|
L

0
[u

� 0(x)&u� 0(x)]+ dx+M \|
t

0
[a

� 0({)&a� 0({)]+ d{

+|
t

0
[b

� 0({)&b� 0({)]+ d{+& , (7)

where M :=sup[ | f $(u)| : |u|�max( |u
�
|� , |u� |�)] and c is the lipschitz con-

stant of the function g.

Proof. For any , # C 1
0((0, L)_(0, T )), ,�0 we get

|
L

0
|

T

0
[u

�
&u� ]+ �t ,+H+(u

�
&u� )( f (u

�
)& f (u� )) �x,x dx dt

�|
L

0
|

T

0
H+(u

�
&u� )(g(u

�
, x)& g(u� , x)) , dx dt.
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Taking a sequence of smooth function approximating the characteristic
function of the set (0, L)_(0, t), we obtain that, for any t # (0, T ),

|
L

0
[u

�
(x, t)&u� (x, t)]+ dx

�|
L

0
[u

� 0(x)&u� 0(x)]+ dx

+|
t

0
H +(u

�
(0, {)&u� (0, {))( f (u

�
(0, {))& f (u� (0, {))) d{

+|
t

0
H +(u

�
(L, {)&u� (L, {))( f (u� (L, {))& f (u

�
(L, {))) d{

&|
t

0
|

L

0
H+(u

�
&u� )(g(u

�
, x)& g(u� , x)) dx dt.

Then (see [26])

|
L

0
[u

�
&u� ]+ dx�|

L

0
[u

� 0(x)&u� 0(x)]+ dx+M |
t

0
[a

� 0({)&a� 0({)]+ d{

+M |
t

0
[b

� 0({)&b� 0({)]+ d{+c |
t

0
|

L

0
[u

�
&u� ]+ dx d{.

and the conclusion follows from Gronwall inequality.

Corollary 2.5. Let u and v be entropy solutions of the problem (6) with
data u0 , a0 , b0 and v0 , a$0 , b$0 , respectively. Assume

u0�v0 a.e. in (0, L), a0�a$0 and b0�b$0 a.e. in (0, T ).

Then

u�v a.e. in (0, L)_(0, T ).

Since the solution u to problem (6) is in the class L�([0, T ), BV(0, L)) it
is possible to consider left and right limits of function u( } , t). Given (x� , t� ), set

u(x� \, t� ) := lim
= � 0+

u(x� \=, t� ).

In proving results on large-time behavior, we assume also

Hypothesis F: the function f # C2(R), is strictly convex and f (\�)
=+�.
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In this case the admissibility condition at a discontinuity point is the
following

u(x&, t)�u(x+, t).

Moreover, in the convex case, we make wide use of the technique of the
generalized characteristic. Such theory was introduced in [5], and it has
been applied in order to obtain results on asymptotic behavior for scalar
balance law (see [22] and references therein).

Here we recall the main properties of such theory.

Definition 2.6. A generalized characteristic associated to equation (1)
is a Lipschitz curve !: [a, b]/(0, �) � R such that

!$(s) # [ f $(u(!(s)+, s)), f $(u(!(s)&, s))].

A characteristic ! is genuine in the interval (a, b), if u(!(s)&, s)=
u(!(s)+, s) for any s # (a, b).

Fixed (x� , t� ), a characteristic curve !, is a backward (resp. forward)
characteristic for (x� , t� ) if !(t� )=x� and ! is defined in [t� &=, t� ] (resp.
[t� , t� +=]), for some =>0.

It can be proved that, fixed an entropy solution of (1) globally bounded,
given (x� , t� ), there exist at least one forward characteristic and one back-
ward characteristic. Moreover any characteristic is confined in between a
minimal and a maximal characteristic.

Dafermos results' can be applied even in bounded domain(0, L)_(0, T ).
The following statement summarizes the content of Theorem 3.1�3.4 and
Corollaries of [5].

Theorem 2.7. Assume hypothesis F and G. Let u be an entropy solution
of problem (1)�(3), and let (x� , t� ) # (0, L)_(0, +�).

(i) Let !: (a, b) � (0, L) (0<a<b<�) be a generalized charac-
teristic. Then, at any point s # (a, b) of differentiability !, it holds

!$(s)={
f $(u(!(s)&, s)) if u(!(s)&, s)=u(!(s)+, s),

f (u(!(s)&, s))& f (u(!(s)+, s))
u(!(s)&, s)&u(!(s)+, s)

if u(!(s)&, s)>u(!(s)+, s).

(ii) From any point (x� , t� ) a backward minimal characteristic
!&=!&(t; x� , t� ) and a backward maximal one !+=!+(t; x� , t� ) start and both
are genuine.
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In their domain of definition, such characteristics are solution of

{!$\(s)= f $(v\(s))
v$\(s)= g(v\(s), !\(s))

!(t� )=x� ,
v(t� )=v� \ .

where v� \=u(x� \, t� ). Moreover, setting

t\(x� , t� ) :=inf[t # [0, t� ) : !\(s; x� , t� ) # (0, L), \s # [t, t� ]]. (8)

the following holds

u(!\(s), s)=v\(s) \s # (t\(x� , t� ), t� ).

(iii) Let !1 , !2 be two generalized characteristic defined in [a, b], such
that !1(b)<!2(b). Then !1(s)<!2(s) for any s # (a, b].

(iv) There exists a unique forward characteristic '='(t; x� , t� ) through
(x� , t� ).

Before ending this Section we give a final useful Lemma. This result
essentially guarantees backward uniqueness for ordered entropy solution.

Lemma 2.8. Let !, ': [t1 , t2]/[0, T] � (0, L) be Lipschitz functions
such that !({)�'({) for any { # [t1 , t2]. Let u, v, be entropy solutions of (1)
in (0, L)_(0, T ) satisfying

u�v in D!, '
t1 , t2

:=[(x, t) # (0, L)_[0, T ) : t1�t�t2 , !(t)�x�'(t)]

u( } , t2)#v( } , t2) in [!(t2), '(t2)]

u(!(t)+, t)=v(!(t)+, t) and u('(t)&, t)=v('(t)&, t) \t # [t1 , t2].

Then
u#v a.e. in D!, '

t1 , t2
.

Proof. Applying Lemma 3.2 of [5], we get

|
'(t)

!(t)
u(x, t) dx&|

'(s)

!(s)
u(x, s) dx

=|
s

t
|

'({)

!({)
g(x, u(x, {)) dx d{

+|
s

t
[ f (u(!({)&, {))&!$({) u(!&, {)] d{

&|
s

t
[ f (u('({)+, {))&'$({) u('+, {)] d{.

The same holds substituting u with v.
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For any t # [t1 , t2] define

F(t) :=|
'(t)

!(t)
[v(x, t)&u(x, t)] dx.

From the previous relation we obtain that, for any t # [t1 , t2],

0�F(t)=|
D!, '

t, t2

[ g(x, v)& g(x, u)] dx d{�c |
t2

t
F({) d{,

where c is a Lipschitz constant for g.
Then

\ect |
t2

t
F({) d{+$

�0.

Therefore, by standard calculations, we get F({)=0 for any { # (t, t2) and
the conclusion follows.

3. ENTROPIC STEADY STATES

Throughout this Section we make the following assumptions on func-
tions f and g:

Hypothesis F $: f # C1(R), there exists s0 # R such that f is strictly
decreasing (strictly increasing) in (&�, s0) (in (s0 , +�)) and
f (\�)=+�;

Hypothesis G: (i) for any M>0 there exists KM>0 such that for any
x # [0, L] and for any u, v # R with |u|, |v|�M there holds | g(x, u)&
g(x, v)|�KM |u&v|;

(ii) there exists A, B>0 such that for any x # [0, L] for any u # R
there holds | g(x, u)|�A+B |u|;

Hypothesis H: for any x # [0, L] there holds g(x, s0){0.

Notations. Let us define three useful functions of a real variable: the
first one is real valued, the others are set-valued. Let f be a function satis-
fying hypothesis F.

We set vf : R � R, where vf=vf (u) is given by

vf (u) :={w
s0

if _w{u s.t. f (w)= f (u),
if u=s0 ,

(9)

Note that vf is decreasing and vf (vf (u))=u.
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Given u # R, set I\: R � P(R) (here P(R) denotes the sets of all subsets
of R) as follows

I&(u) :={(&�, vf (u)] _ [u]
(&�, s0]

u�s0 ,
u<s0 ;

(10)

I+(u) :={[u] _ [vf (u), +�)
[s0 , +�)

u�s0 ,
u>s0 .

(11)

Finally given u\ # R, for shortness, we denote I&(u&) (resp. I+(u+)) with
I& (resp. I+).

Definition 3.1. Assume f satisfies F $ and let g be a continuous func-
tion. Given u\ # R, a function , : [0, L] � R is an entropy solution of the
problem

{( f (v))$= g(x, v)
v(0)=u& ,

x # [0, L],
v(L)=u+ ,

(12)

if the following hold

(i) there exist !1 , ..., !N # (0, L) such that , # C1((0, L)"[!1 , ..., !N]);

(ii) f $(,(x)) ,$(x)= g(x, ,) for any x # (0, L)"[!1 , ..., !N];

(iii) for any i=1, ..., N there exist ,(!i \), and there hold
f (,(!i&))= f (,(!i +)), ,(!i&)�,(!i+);

(iv) there exist ,(0+), ,(L&) and ,(0+) # I& , ,(L&) # I+ .

Entropy solutions of problem (12) given in Definition 3.1 correspond to
entropy stationary solution of problem (1)�(3) that are piecewise smooth
and satisfy boundary conditions in the sense of [1]. This motivates the
definitions of the functions I\ .

Proposition 3.2. Assume F $, G, H and let , be an entropy solution of
problem (12).

Then the following hold.

(i) , has at most one point of discontinuity, say !0 # (0, L) and

,(!0+)<s0<,(!0&).

(ii) If ,(0+)<s0 then ,(x)<s0 for any x # (0, L) and , # C 1(0, L).

(iii) If ,(L&)>s0 then ,(x)>s0 for any x # (0, L) and , # C1(0, L).

Proof. (i) Assume by contradiction that there exists a solution , to
problem (12) with two internal discontinuities at points !1 and !2 with
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!1<!2 . Then there is !* # (!1 , !2) with ,(!*)=s0 . Hence the function , is
such that

f $(,(!)) ,(!)= g(!, ,(!)) \! # I$(!*)"[!*],

and ,(!*)=s0 . This contradicts assumption H.
Assertions (ii) and (iii) are immediate consequences of part (i).

Theorem 3.3. Assume hypothesis F $, G, H.
Then problem (12) has at least one entropy solution.
Moreover there exist x l , xr # [0, 1] with xr�x l and two functions

,l : [0, x l] � R and ,r : [xr , 1] � R such that

f $(,i (x)) ,$i (x)= g(x, ,(x)) \x # Ji i # [l, r],

{,l (0)=max I& , ,l (x)>s0 \x # J l ,

,r(L)=min I+ , ,r(x)<s0 \x # Jr ,

where Jl :=(0, x l) and Jr :=(xr , 1), and any entropy solution , of problem
(12) is of the form

,(x) :={,l (x)
,r(x)

x<x0 ,
x>x0 ,

(13)

for some x0 # [0, L]. Such x0 is either 0, or L, or zero of the function
h(x) :=f (,l (x))& f (,r(x)).

Finally there is a one-to-one correspondence between the discontinuous
solutions to problem (12) and zeros of function h in (xr , x l).

At the boundary of [0, L] we expect that the behavior of solutions to
(1)�(3) depends on the directions of characteristic curves; therefore it is
useful to distinguish different cases depending on the sign of f $(u\) (i.e.
depending on whether the classical characteristics enter the domain or not).
We use the following notation:

Compressive case (C): u+<s0<u& ;

Expansive case (E): u&�s0�u+ ;

Left-wind case (L): u&�s0 and u+<s0 ;

Right-wind case (R): u&>s0 and u+�s0 .

Corollary 3.4. If one of the following assumption holds

(i) either u&�s0�u+ ,

(ii) or u\�s0 and g(x, s0)>0 for any x # (0, L),

(iii) or u\�s0 and g(x, s0)<0 for any x # (0, L),
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then there exists a unique entropy solution , to problem (12) and
, # C 1(0, L).

Proof of Theorem 3.3. We give the proof for the compressive case, thus
we assume u+<s0<u& (the other cases can be managed in a similar way).

In this situation we have

I&=(&�, vf (u&)] _ [u&] I+=[u+] _ [vf (u+), +�).

Let ,l (respectively ,r) be classical solution of

f $(,) ,$= g(x, ,) (14)

satisfying ,(0)=u& (resp. ,r(L)=u+) and let ,l (resp. ,r) be defined in
[0, xl) (resp. (xr , L]). Then ,l>s0 and ,r<s0 .

If xl # (0, L), then ,l (xl &)=s0 . Since , l is a classical solution of equa-
tion (14), then we deduce g(x, s0)<0 for any x # [0, L]. Analogously, if
xr # (0, L), then g(x, s0)>0 for any x # [0, L].

Therefore, either Jl=(0, L) or Jr=(0, L). Without restriction, let us
assume xl=L and xr # [0, L). Then ,r(xr)�s0 .

If ,l (L)�vf (u+), then ,l is an entropy solution of problem (12).
Similarly, if xr=0 and ,r(0)�vf (u&) then ,r is an entropy solution of
problem (12). Therefore let us assume that this is not the case. Then
,l (L)<vf (L) and either xr=0 and ,r(0)>vf (u&), or xr>0 and
,r(xr)=s0 . Properties of vf guarantee

h(xr)= f (, l (xr))& f (,r(xr))= f (, l (xr))& f (vf (,r(xr)))>0,

indeed if xr=0, since vf (,r(0))<vf (vf (u&))=u& , then h(xr)> f (, l (0))&
f (u&)=0; if xr>0, then h(xr)= f (,l (xr))&s0>0.

Moreover, since ,l (L)<vf (u+), vf (, l (L))>vf (vf (u+)), therefore

h(L)= f (vf (,l (L)))& f (u+)<0.

Hence there exists x0 # (xr , L) such that h(x0)=0. Then the function

,(x) :={,l (x)
,r(x)

x<x0 ,
x>x0 ,

is an entropy solution of (12). Any other zero of h defines another station-
ary solution.

In order to complete the proof it is enough to show that such construc-
tion gives any stationary solution. Let , be a stationary solution. By defini-
tion ,(0) # (&�, vf (u&)] _ [u&]. If ,(0) # (&�, vf (u&)] we can apply
Proposition 3.2(ii) to conclude that ,(L)=u+ and , is given by (13) with
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x0=0. If ,(0)=u& , then the solution is either regular (and it coincides
with ,l), or discontinuous (and it is of the form (13)).

Proof of Corollary 3.4. (i) If u&�s0�u+ , then I&=(&�, s0], I+

=[s0 , +�), then xl>0 if and only if g(x, s0)>0, and xr<L if and only
if g(x, s0)<0. Therefore there is a unique solution given by formula (13)
with x0=L if g(x, s0)>0 or x0=0 if g(x, s0)<0.

(ii) If u\�s0 , then I+=[s0 , +�). Since g(x, s0)>0, then xr=L
and the conclusion follows.

(iii) Similar to (ii).

4. LARGE-TIME DYNAMIC

In this Section we assume the flux function f to be convex. Summarizing,
we make the following assumptions:

Hypothesis F: the function f # C 2(R), strictly convex, f $(s0)=0 and
f (\�)=+�.

Hypothesis G: (i) for any M>0 there exists KM>0 such that for any
x # [0, L] and for any u, v # R with |u|, |v|�M there holds | g(x, u)&
g(x, v)|�KM |u&v|;

(ii) there exists A, B>0 such that for any x # [0, L] for any u # R
there holds | g(x, u)|�A+B |u|;

Hypothesis H: for any x # [0, L] there holds g(x, s0){0.

Under assumption F, the boundary conditions (3) are satisfied in the
sense of Definition 2.1(ii) if and only if

u(0&, t) # I& and u(0+, t) # I+ ,

where I\ are defined in (9), (10) and (11).
Given {�0, let us denote with !( } ; y, {, _): [{, �) � R, the solution of

{!$(t)= f $(v(t))
!({)= y # [0, L]

v$(t)= g(v(t))
v({)=_ # R

Moreover let us set

7t :=[0, L]_[0, t) (t # [0, +�]).
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Definition 4.1. Given A/7� , set

K(A) :=[(x, t) # 7� : _( y, {) # A, _ # R, { # [0, t] s.t. !(t; y, {, _)=x

and !(s; y, {, _) # [0, L] \s # [{, t]],

and

T� (A) :=sup[t>0 : _x # [0, L] s.t. (x, t) # K(A)].

From Definition 4.1, it immediately follows that

A/B O K(A)/K(B) and T� (A)�T� (B).

Proposition 4.2. Assume hypotheses F, G, H.
If A/7t for some t�0, then there exists T*=T*( f, g, L) such that

T� (A)�T*+t<+�.

Moreover

T� ([0, L]_[0])#T*<+�.

First of all, let us state and prove a lemma.

Lemma 4.3. Let H=(H1 , ..., HN): R � RN, and G: RN+1 � R be locally
Lipschitz functions, let C/RN be a compact set (N�1). Assume the follow-
ing

(i) lim infY � \� |H i (Y)|>0 for any i,
(ii) if Hi (Y

*
)=0 for some i and for some Y

*
# R, then K(X, Y

*
){0

for any X # C.

Given (X0 , Y0) # C_R, let (X(t), Y(t)) be the solution of

{X$=H(Y ),
X(0)=X0 ,

Y$=K(X, Y ),
Y(0)=Y0 .

Then

T0 :=sup[T�0 : _(X0 , Y0) # C_R s.t. X(t) # C \t # [0, T]]<+�.

Proof of Lemma 4.3. Assume that there exist i # [1, ..., N] and Y
*

# R
such that Hi (Y*

)=0 (if this is not the case the proof is easy). Define

: :=inf[Y # R : _i # [1, ..., N] s.t. Hi (Y)=0],

; :=sup[Y # R : _i # [1, ..., N] s.t. H i (Y )=0].
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From assumptions (i), it follows

&�<:�;<+�.

Step 1. There exists =0 , $0 such that for any Y � J :=[:&$0 , ;+$0] it
holds

|Hi (Y)|�=0 \i.

Moreover K(X, :&$0), K(X, ;+$0){0 for any X # C.

Step 2. Assume X0 # C and Y0 � J. If Y(t) � J for any t�0 such that
X(t) # C, then |Hi (Y(t))|�=0 . Assume Hi>0 for some i, then

Xi (t)�=0 t+Xi, 0

for any t such that X(t) # C. Then it follows that X(t) exits C at a time t
less than T1 , where

T1 :=
diam C

=0

.

Step 3. Let X0 # C and Y0 # J, then there exists T=T(X0 , Y0) such that
(X(t), Y(t)) exits C_J at time T.

In fact, assume by contradiction that (X(t), Y(t)) # C_J for any t�0. If
inf Y(t)=sup Y(t), then Y(t)=Y0 for any t. Hence K(X(t), Y0)=0, and
therefore Hi (Y0){0 for any i, by assumption (i).

Assume inf Y(t)<sup Y(t), and let % # (inf Y(t), sup Y(t)). Then there
exist t1 , t2>0 such that Y(t1)=Y(t2)=0 and K(X(t1), %)�0�K(X(t2), %).
By assumption (ii), it follows Hi (%){0 for any i. Therefore we get

Hi (%){0 \i \% # [inf Y(t), sup Y(t)].

Hence the trajectory X(t) exits C in finite time.
We set

T2 :=max[T(X0 , Y0) : (X0 , Y0) # C_J].

Final step. By Step 1, any trajectory Y(t) cannot cross twice the values
:&$0 and ;+$0 . Since any trajectory stays a finite time, depending only
on H, K and C, in any of the regions [Y<:&$0], J, [Y>;+$0], then
any trajectory exits at a time T such that

T�2T1+T2 .

Taking the supremum, we get T0�2T1+T2<+�.
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Proof of Proposition 4.2. Since A/7t , it follows

T� (A)�T� (7t).

By Lemma 4.3,

T� (7t)�T*+t,

and the conclusion follows.

Now we can state the following Theorem, showing that the dynamic of
the problem (1)�(3) becomes one-dimensional after a finite time.

Theorem 4.4. Assume hypotheses F, G, H. Let u be the entropy solution
of problem (1)�(3).

Then there exists T*=T*( f, g, L) such that for any t�T* there exists
x� =x� (t) # [0, L], x� (T*) # [xr , xl] such that

u(x, t)={, l (x)
,r(x)

in 0�x�x� (t)
in x� (t)<x�1,

(15)

where ,l , ,r , x l , xr are defined in Theorem 3.3.
Moreover

dx�
dt

(t)=F� (x� (t)) \t�T*, (16)

where

F� ( y) :={
0 if y # [0, L],

f (,l ( y))& f (,r( y))
,l ( y)&,r( y)

elsewhere.

Remark. If xr=L then x� (t)#L; hence the solution becomes stationary
in finite time. Analogously, if xl=0, then x� (t)#0 and the same conclusion
holds. Therefore, from now on, we assume xr<L and x l>0, the other case
being trivial.

Proof of Theorem 4.4. Let x0 # (0, L) and t0�T* be fixed with T* as
in Proposition 4.2. We denote by !&=!&(t; x0 , t0) and !+=!+(t; x0 , t0),
the minimal and the maximal backward generalized characteristic through
(x0 , t0). Such curves are genuine characteristics. Let t\=t\(x0 , t0) be
defined as in (8); then the characteristics !\ exit the domain [0, L]_
(0, t0].
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By definition of T* it follows that t\(x0 , t0)>0. Hence !\(t\) # [0, L].
If !\(t\)=0, we deduce from boundary condition that

u(0, t\) # I& .

Since a classical characteristic starting from (0, t\) enters the strip
[0, L]_(0, t0], then

u(0, t\)=max I& .

Analogously, if !\(t\)=L, then

u(L, t\)=min I+ .

Set

x& :=sup[x0 # (0, L) : !+(t+ ; x0 , t0)=0];

x+ :=inf[x0 # (0, L) : !&(t& ; x0 , t0)=L],

putting x&=0 if [x # (0, L) : !+(x, t+)=0]=< and x+=L if
[x # (0, L) : !&(x, t&)=L]=<.

Since classical characteristics cannot intersect, x&�x+ . Now we show
that x&=x+ . Assume by contradiction x&<x+ , then take z and y such
that x&<z< y<x+ . Therefore, by definition of x+ ,

!&(t&( y, t0))=0,

hence, since classical characteristic cannot cross each other,

!+(t+(z, t0))=0,

contradicting the minimality of x& . Hence x&=x+=: x� .
From definition of x� , it follows that, at time t0 , the solution is given by

formula (15). This completes the proof.

By Theorem 4.4, after finite time t0 , the dynamic of the problem (1)�(3)
becomes one-dimensional, and it is given by (15)�(16). In general the time
t0 depends on the initial data u0 . Nevertheless t0�T� ([0, L]_[0])=T*
for any u0 # BV(0, L).

Therefore, fixed the boundary value u\ , we can define a mapping from
the set of the initial data BV(0, L) to the interval [0, L] as follows

u0 � F(u0) :=x� (T*),
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with x� as in Theorem 4.4. Then the dynamic of problem (1)�(3), for t�T*,
is equivalent to the dynamic of the following problem

dy
dt

(t)=F� ( y), y(T*)=x� (T*).

The following result concernes with properties of the mapping F.

Theorem 4.5. Assume hypotheses F, G, H.

(i) (Continuity of F) For any u0, n , u0 # BV(0, L) such that

lim
n � +�

&u0, n&u0 &1=0,

it holds

lim
n � +�

F(u0, n)=F(u0).

(ii) (Monotonicity of F) For any u0 , v0 # BV(0, L) are such that
u0�v0 (i.e. u0(x)�v0(x) a.e. in [0, L]), it holds

F(u0)�F(v0).

Proof. (i) Let un and u be the entropy solution associated to the
initial data u0, n and u0 . Then, applying inequality (7), we get

|
L

0
|un(x, T*)&u(x, T*)| dx�ecT* |

L

0
|u0, n(x)&u0(x)| dx.

Since, for any t=T*, the solutions un , u have the structure given in (15),
with x� (T*) given, respectively, by F(u0, n) and F(u0), we have

lim
n � � } |

F(u0, n)

F(u0)
(,l (x)&,r(x)) dx }=0.

Suppose, by contradiction, that there exists a subsequence of [u0, n] (for
simplicity, we again denote it by [u0, n]) such that |F(u0, n)&F(u0)|�=0 ,
for some =0>0. Without restriction, we can assume F(u0, n)�F(u0)+=0 .
Since ,l (x)&,r(x)>0 in (xr , x l), then

|
F(u0, n)

F(u0)
(,l (x)&,r(x)) dx�|

F(u0)+=0

F(u0)
(,l (x)&,r(x)) dx>0.

Passing to the limit, as n � +�, we get a contradiction.
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(ii) Let u and v be the entropy solution associated to the initial data
u0 and v0 . From Corollary 2.5, it follows that u(x, t)�v(x, t) a.e. in
(0, L)_(0, �). Then

u(x, T*)�v(x, T*).

Since, by Theorem 4.4,

u(x, T*)={,l (x)
,r(x)

in 0�x�F(u0)
in F(u0)<x�1,

v(x, T*)={, l (x)
,r(x)

in 0�x�F(v0)
in F(v0)<x�1,

the conclusion follows from the property ,r�s0�,l .

Remark. If : :=min[,l (x)&,r(x)]>0, it can be proved that the map
F is Lipschitz continuous with constant : } [xl&xr].

Moreover, from definitions of ,l and ,r , if :=0, either g(x, s0)>0 and
u&�s0 or g(x, s0)<0 and u+�s0 . In particular, in the compressive case
F is always a Lipschitz function.

From Theorem 4.5 some interesting properties concerning L1-stability of
steady states and asymptotic behavior for problem (1)�(3) follow.

Corollary 4.6. Assume hypotheses F, G, H.

(i) If ,l (respectively ,r) is a stationary solution of problem (12) in
the sense of Definition 3.1, then ,l (resp. ,r) is unstable if and only if xr=0
(resp. xl=L) and f (,l (x))& f (,r(x))>0 (resp. <0) for x # (0, =) (resp.
x # (L&=, L)) for some =>0.

(ii) Let , be a discontinuous steady state with jump point x0 # (xr , x l)
such that

g(x0 , , l (x0))& g(x0 , ,r(x0))<0 (>0).

Then , is asymptotically stable (unstable).

Moreover the domain of attraction of , is open (closed ) in L1.

(iii) If there exists a unique stationary solution , then it is globally
attractive.

Moreover if , # C(0, L) then there exists T1<+� such that for any u0

it holds

u(x, T1)=,(x).
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Remark. Note that the stability condition given in Corollary 4.6(ii) is
the same found in [18] and in [7]. In fact, if g is smooth,

g(x0 , , l (x0))& g(x0 , ,r(x0))= gu(x0 , !)(, l (x0)&,r(x0)).

In the nozzles case, the function g is of the form g(x, u)=a(x) k(u), there-
fore the condition reads

a(x) k$(u)<0 (>0) O , is asymptotically stable (is unstable).

Proof of Corollary 4.6. (i) The proof is similar to the one of (ii).

(ii) Set

h(x) :=f (,l (x))& f (,r(x)) \x # [xr , x l].

By Theorem 4.4 the dynamic for t�T* is given by the o.d.e. (16). It is easy
to see that the stability character of the stationary solution of (16) is given
by the sign of h near the jump point x0 . More precisely

h$(x0)<0 (>0) O , is asymptotically stable (is unstable)

Since

h$(x0)= f $(, l (x0)) ,$l (x0)& f $(,r(x0)) ,$r(x0)

= g(x0 , ,l (x0))& g(x0 , ,r(x0)),

claim on stability properties follows.
The second part of the statement is an immediate consequence of con-

tinuity of the mapping F.

(iii) Assume , is discontinuous at x0 . Then there are two cases:
either xl=L or xl<L.

In the first case, s0�,l (L)<vf (u+), u+<s0 and

h(L)= f (,l (L))& f (,r(L))= f (, l (L))& f (u+)<0.

Moreover h(xr)>0. In fact, if xr>0 then ,r(xr)=s0 and the assertion
follows; if xr=0, then h(0)= f (max I&)& f (,r(0))>0, since we are
assuming that ,r is not a steady state (hence it does not satisfy boundary
condition).

Since , is the unique solution h(x)=0 if and only if x=x0 . Hence

h(x)>0 � x<x0 .
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On the other hand, if xl<L, then ,l (xl)=s0 , xr=0 and vf (u&)<,r(0)�
s0 . Therefore

h(xl)= f (s0)& f (,r(x l))<0, h(0)= f (u&)& f (,r(0))>0,

and the conclusion follows similarly.
The case of , # C(0, L) can be treated in the same way.

Concerning unstable solution with internal layer we can also prove a
result showing the so-called hair trigger effect.

Proposition 4.7 (Hair-Trigger Effect). Let , be a discontinuous
steady-state of (1)�(3), with jump point x0 # [xr , xl] such that, for some
=>0,

{h(x0)<0 \x # (x0&=, x0),
h(x0)>0 \x # (x0 , x0+=).

Given u0 # BV(0, L), let u be the entropy solution of problem (1)�(3).
Then, if u0�, (u0�,), either u0#, either u converges to a steady state

��, (��,), different from ,.

Proof. Suppose that u converges to ,, as t � �. From assumptions on
, and from Theorem 4.4, it follows that u coincides with , for any T�T*.
Let t0 be defined by

t0 :=inf[t>0 : u(x, t)=,(x) in [0, L]]�T*.

Assume, by contradiction, t0>0. Then, by continuity, u(x, t0)=,(x). Let
`&=`&(t) be the minimal backward characteristic of solution u starting
from (x0 , t0), and let `+=`+(t) be the maximal one. Since u and , coin-
cide at t=t0 such characteristics are the minimal and the maximal from
(x0 , t0) even for �. Therefore, for small =>0, u coincides with � in 0,
where

0 :=[(x, t) # 7� : t0&=<t<t0 , 0<x<`&(t) or `+(t)<x<L].

Applying Lemma 2.8 to u and , in the region

D :=[(x, t) # 7� : t0&=<t<t0 , `&(t)<x<`+(t)],

we deduce that u coincides with , in D. Hence u coincides with , for
t # (t0&=, t0), contradicting the minimality assumption on t0 .

Before ending this section, we state and prove one more result. This gives
a sharp characterization of ordered solutions of problem (1)�(3) coinciding
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one each other after finite time. Apart from the case of solutions becoming
,l or ,r , rarefactions of (1) turn out to be the main point in such analysis.

Proposition 4.8. Let u0 , v0 # BV(0, L) such that u0�v0 and
meas[x # (0, L) : u0(x)=v0(x)]=0. Let u, respectively v solution of problem
(1)�(3) with initial data u0 , respectively v0 . Suppose that, for some t� ,
u( } , t� )#v( } , t� ), then one of the following holds.

(i) u( } , t� )#v( } , t� )#,l ;

(ii) u( } , t� )#v( } , t� )#,r ;

(iii) there exist x0 # (0, L), p, q # R, p<q, l0 , l1 # [0, L] such that

,l (x) if x # [0, l0)

u( } , t~ )#v( } , t~ )#u(x, t~ )=v(x, t~ )={R(x0 , p, q; x, t~ ) if x # [l0 , l1)

,r(x) if x # [l1 , L],

where

t~ :=inf[t # [0, t� ) : u( } , t)=v( } , t)]

and R(x0 , p, q; } , } ) is the solution of the Riemann problem

�t u+�x f (u)= g(x, u) x # R, t>0,

u(x, 0)={p
q

if x�x0

if x>x0 .

Proof. Let

y& :=sup[x # (0, L) : `+(t& ; x, t~ )=0]

y+ :=inf[x # (0, L) : `&(t+ ; x, t~ )=L]

putting y&=0 if [x # (0, L) : `+(t& ; x, t~ )=0]=< and y+=L if
[x # (0, L) : `&(t+ ; x, t~ )=L]=<.

If y&=L or y+=0 we are respectively in the case (i) or (ii).
Suppose that y+( y&&L){0. By definition, y&� y+ . Moreover, by

Lemma 2.8, y&{ y+ and y&( y+&L)=0.
Let y&=0 and y+ # (0, L], then for every x # (0, y+) we obtain

t\(x, t~ )=0. Suppose that there exist x, y # (0, y+), x� y such that
`&(0; x, t~ )<`+(0; y, t~ ). Then, by Lemma 2.8, we obtain

u0#v0 in (`&(0; x, t~ ), `+(0; y, t~ )
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which contradicts the hypothesis. Therefore there exists x0 # (0, L) such
that

`\(0; x, t~ )=x0 for every x # (0, y+).

Then the conclusion follows. Indeed

u(x, t~ )=v(x, t~ )={R(x0 , v1(0), v2(0); x, t~ )
,r(x)

if x # (0, y+)
if x # [ y+ , L),

where the functions vi satisfy

v$i (t)= g(vi (t), `i (t)), `$i (t)= f $(vi (t))

v1(t~ )=u(0+, t~ ), v2(t~ )=u( y+&, t~ )
`1(t~ )=0, `2(t~ )= y+ .

The case y& # (0, L), y+=L is similar to the previous one.

5. EXAMPLES AND GENERALIZATIONS

5.1. Nonconstant Boundary Data

All of our results concern with constant boundary data. Nevertheless all
the theorems can be extended to a class of nonconstant data. In fact
boundary conditions are satisfied in the sense of [1], i.e. u(0, t) and u(L, t)
belong to an appropriate set depending on the boundary data. Such set of
admissibility are defined in (10), (11). From these definitions it follows that
the results still hold for problem (1)�(2) with boundary conditions given by

u(0, t)=a0(t), u(L, t)=b0(t) \t>0,

if a0(t)�s0 and b0(t)�s0 for any t; indeed in such case

I&(a0(t))=(&�, s0], I+(b0(t))=[s0 , +�) \t>0.

5.2. A Result on Asymptotic Behavior for Nonconvex Flux

In Section 3, we have proved results on existence of steady states without
assuming convexity on the flux function f. On the contrary, in Section 4,
we have used the hypothesis that f is strictly convex. This assumption
allows us to use the technique of generalized characteristics, therefore it is
just a technical hypothesis. Here we want to show, by proving another
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result, that we can expect that the same behavior holds even in the absence
of convexity. Anyway, note that this result is not as general as Theorem
4.4. For simplicity we consider space-independent source term, hence we
consider the equation

�tu+�x f (u)= g(u). (17)

Let us assume the following

Hypothesis G$: g # C1(R), g(s)�#0>0 for any s # [&=, =] for some
=>0, and there exists N>0 such that g(s) s<0 for any s with |s|�N;

Hypothesis F": f # C2(R), f (0)=0, f $(s) s>0 for any s # R and
f "(0)>0.

Moreover we consider the expansive case, therefore we assume

u&�0�u+ . (18)

From Corollary 3.4, we deduce that there exists a unique stationary solu-
tion ,. Moreover, since g is positive in a neighborhood of 0, we also deduce
that , is such that

, # C1(0, L), ,(0)=0 and , increasing.

Then the following result holds, the proof being based on the construction
of appropriate sub- and supersolutions.

Theorem 5.1. Assume hypothesis F" and G$. Let u be the entropy solu-
tion of problem (17), (2), (3), with u\ satisfying (18). Let , be the unique
steady state of the same problem.

Then

lim
t � +�

&u( } , t)&,( } )&�=0.

Proof. Let us set M :=max[&u0&� , N].

Step 1. Supersolution. Let us introduce the following function

f� (s, _) :={
f (s)& f (_)

s&_
s{_,

f $(s) s=_.

Then f� is continuous.
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For any '>0, small enough, let us set

R' :=[,('), M] and c' :=min[ f� (s, _) : s, _ # R'].

From assumption F", it follows that c'>0.
Then consider the following one-parameter family of functions

V' :={M
,(x+')

x�c' t and x�L,
x<c' t and x # [0, L].

We claim that, for any '>0, V' is a supersolution. From Definition 2.3, it
follows that V' is a supersolution if and only if

c'�
f (M)& f (,(ct+'))

M&,(ct+')
,

for any t such that ,(c't+')�,(L+'). Such properties follows from the
definition of c' .

Therefore, since u0�V'(x, 0), we deduce by comparison principle

u(x, t)�,(x+') \t�M�c' .

Hence

lim sup
t � +�

u(x, t)�,(x) \x # (0, L).

Step 2. First Subsolution. Let $>0 be such that f "(&$)>0 and
g(s)>0 for any s # (&$, 0). Let

c1 :=sup[ f� (s, _) : s, _ # [&M, &$]].

Since c1<0, it follows that the function

W1(x, t) :={&M
&$

0<x<c1 t+L,
c1 t+L<x<L,

is a subsolution and that W1(x, t)=&$ for any t>t1 :=L�|c1 |. Therefore

u(x, t)�&$ \t>t1 :=L�|c1 |.

Step 3. Second Subsolution. By Step 2, we can assume u0�&$, with $
as above. Let U(_; t) be the solution of

�t U= g(U) U(_; 0)=_.
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Let t2 be the unique value such that U(&$; t2)=0. Then, defining
!(t) :=,&1(U(&$; t)) for t�t2 , the function

W2(x, t) :={,(x)
U(&$; t)

x�!(t), t�t2 ,
elsewhere,

is a subsolution of the problem. Hence

u(x, t)�,(x) \t�t3 ,

where t3 is such that U(&$; t3)=,(L).
Joining together this estimate with the one at the end of Step 1, we get

the conclusion.

5.3. An Example with Source Depending Only on the Space Variable

Consider the problem

{�tu+�x f (u)= g(x)
u(0, t)=u& , u(L, t)=u+

x # [0, L],
t>0,

(19)

under the assumption g(x)>0 for any x # [0, L], hypothesis F $ and
f (0)=0. Let f &1

+ (respectively f &1
& ) be the inverse function of f over

[0, +�) (resp. over (&�, 0]), and let w&=max I& , w+=min I+ . Set

,l (x) := f &1
+ \ f (w&)+|

x

0
g(!) d!+ ,

,r(x) := f &1
& \ f (w+)&|

L

x
g(!) d!+ ,

F(u+ , u&) := f (w&)& f (w+)+|
L

0
g(!) d!.

The function , l is always defined over all [0, L], while the function ,r is
defined in [xr , L], where

xr :=inf {x # [0, L] : f (w+)�|
L

x
g(!) d!= .

After easy calculations, we get

F(u+ , u&)=0 � u+= f &1
& \ f (w&)+|

L

0
g(!) d!+ .

The following result holds
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Proposition 5.2. Problem (19) has a unique stationary solution if and
only if F(u+ , u&){0. Moreover if F(u+ , u&)>0 the unique solution is
given by ,l , if F(u+ , u&)<0 the solution is ,r .

Finally if F(u+ , u&)=0 the function

,(x) :={,l (x)
,r(x)

x<x0 ,
x>x0 ,

is a stationary solution of problem (19) for any x0 # [0, L].

Proof. First of all let us prove that ,l is a solution if and only if
F(u+ , u&)�0.

If u+�0, then w+=0. Therefore ,l (L) # I+ and ,l is a solution.
Moreover

F(u+ , u&)= f (w&)+|
L

0
g(!) d!>0.

Assume u+<0. Then w+=u+ and

F(u+ , u&)= f (w&)& f (u+)+|
L

0
g(!) d!.

The function ,l satisfies the boundary condition at x=L if and only if
f (,l (L))& f (u+)�0. By definition of ,l

f (,l (L))& f (u+)=F(u+ , u&),

and the conclusion follows.
Analogously ,r is a solution if and only if F(u+ , u&)�0. Indeed assume

that ,r is a solution. Since ,r is defined in [0, L] if and only if
f (w+)��L

0 g(!) d!>0, it holds w+=u+<0. Then

0� f (u&)& f (,r(0))= f (u&)& f (u+)+|
L

0
g(!) d!

=F(u+ , u&)+ f (u&)& f (w&),

implying F(u+ , u&)�0. Similarly it can be proved that if F(u+ , u&)�0,
then ,r is a solution.

In order to complete the proof we have only to show that discontinuous
solutions exist if and only if F(u+ , u&)=0, and that every point x0 of the
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interval [0, L] can be a jump point. From Theorem 3.3 it follows that
jump point x0 must satisfy f (,l (x0))& f (,r(x0))=0. Then we get

0= f (,l (x0))& f (,r(x0))= f (w&)& f (w+)+|
L

0
g(!) d!=F(u+ , u&),

hence the conclusion.
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