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SUMMARY

Pathways that govern stem cell (SC) function are
often subverted in cancer. Here, we report the isola-
tion to near purity of human normal mammary SCs
(hNMSCs), from cultured mammospheres, on the
basis of their ability to retain the lipophilic dye PKH26
as a consequence of their quiescent nature. PKH26-
positive cells possess all the characteristics of
hNMSCs. The transcriptional profile of PKH26-posi-
tive cells (hNMSC signature) was able to predict bio-
logical and molecular features of breast cancers. By
using markers of the hNMSC signature, we prospec-
tively isolated SCs from the normal gland and from
breast tumors. Poorly differentiated (G3) cancers
displayed higher content of prospectively isolated
cancer SCs (CSCs) than did well-differentiated (G1)
cancers. By comparing G3 and G1 tumors in xeno-
transplantation experiments, we directly demon-
strated that G3s are enriched in CSCs. Our data
support the notion that the heterogeneous pheno-
typical and molecular traits of human breast cancers
are a function of their CSC content.

INTRODUCTION

Cancer is frequently characterized by the alteration of pathways

that control the homeostasis of normal stem cells (SCs) (Visvader

and Lindeman, 2008). The elucidation of the molecular mecha-

nisms that govern normal SC function might, therefore, advance

our understanding of tumorigenesis.

In the mammary gland, resident multipotent mammary

SCs (MSCs) orchestrate the development of the gland during

embryogenesis, and its modifications in postnatal life (Williams

and Daniel, 1983). Since MSCs are rare, their purification con-

stitutes a major hurdle to their characterization. A number of
62 Cell 140, 62–73, January 8, 2010 ª2010 Elsevier Inc.
approaches, based on the exploitation of MSC surface markers,

have allowed the prospective isolation of mouse and human

MSCs (Eirew et al., 2008; Liao et al., 2007; Lim et al., 2009; Raouf

et al., 2008; Shackleton et al., 2006; Stingl et al., 2006). However,

the relative promiscuity of these markers (Carter et al., 1990;

Jones et al., 2004; Stingl et al., 1998; Stingl et al., 2006) limits

their usefulness when highly purified MSCs are needed.

At the onset of the present study, we devised a strategy to

obtain highly pure populations of MSCs, based on their func-

tional, rather than immunophenotypical, characteristics, and

relying on the ‘‘mammosphere’’ technology (Dontu et al.,

2003). Since MSCs can withstand anoikis, they proliferate/differ-

entiate in anchorage-independent conditions, giving rise to

clonal spheroids, which can in part recapitulate the mammary

morphogenetic program. MSCs, however, constitute less than

1% of all cells in a mammosphere (Dontu et al., 2003). To identify

this fraction of cells, we used a lipophilic fluorescent dye, PKH26,

which labels relatively quiescent cells within a proliferating pop-

ulation (Huang et al., 1999; Lanzkron et al., 1999). During the

growth of a mammosphere, the rare quiescent/slowly dividing

MSCs retain PKH26 epifluorescence, while the bulk population,

derived from the proliferation of progenitors of the transit-ampli-

fying compartment, progressively lose it by dilution. We were

able to purify, by fluorescence-activated cell sorting (FACS),

a minority of PKH-positive (PKHPOS) cells from human mammo-

spheres to near homogeneity and to show that they represent

human normal MSCs (hNMSCs). We then obtained the transcrip-

tional profile of PKHPOS/hNMSCs and compared it to that of their

immediate progeny, thus identifying a hNMSC signature.

The apparently simple cytoarchitecture of the mammary gland,

composed of an internal layer of luminal epithelial cells and an

external layer of myoepithelial cells, is difficult to reconcile with

the diversity of breast cancer phenotypes (Stingl and Caldas,

2007). This has led to the hypothesis that, despite its morpholog-

ical simplicity, the mammary gland is functionally complex and

molecularly heterogeneous (Stingl and Caldas, 2007). This

hypothesis has stimulated much study and debate regarding

the cellular origin of breast cancer subtypes, as it affects our

ability to predict tumor behavior and responsiveness to therapy

https://core.ac.uk/display/82361821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:salvatore.pece@ifom-ieo-campus.it
mailto:piergiuseppe.pelicci@ifom-ieo-campus.it
mailto:pierpaolo.difiore@ifom-ieo-campus.it


A B

M
er

ge
B

rig
ht

 fi
el

d
P

K
H

26

E

F

30 h

72 h 96 h

0 h
D

BrdU PKH26 Ki67 PKH26

P
K

H
P

O
S
 c

el
ls

0

25

50

75

100

BrdU Ki67

P
os

iti
ve

 c
el

ls
 (

%
)

(n = 30/each)

63%

3% 0%

30%

10-1

100

101

1 2 3 4

0

2

4

6

R2 = 1

R2 = 0.99

Passages

C
um

ul
at

iv
e 

sp
he

re
 n

um
be

r
(5

,0
00

 c
el

ls
 p

la
te

d)
 

0

100

200

300

400

100

101

102

103

1 2 3 4 5

R2 = 0.99

Passages
C

um
ul

at
iv

e 
sp

he
re

 n
um

be
r

(2
,5

00
 P

K
H

P
O

S
 c

el
ls

 p
la

te
d)

 

C

PKH26Bright field

GFP-Numb Merge

A
sy

m
m

et
ric

 d
iv

is
io

ns
 (

%
)

100

75

50

25

0

82%

6%

P
K

H
P

O
S

(n
=

30
)

P
K

H
N

E
G

(n
=

10
0)

G

P
K

H
N

E
G
 c

el
ls

PKHPOS

PKHNEG

N = 16 PKHPOS cells
Asymmetric: 13 (81%)
Symmetric: 3 (19%)

N = 23 PKHPOS cells
Asymmetric: 16 (70%)
Symmetric: 5 (21%)
Ambiguous 2 (9%)

Figure 1. Identification and Purification of

hNMSCs

(A) A mammosphere derived from PKH26-labeled

epithelial cells. The scale bar represents 100 mm.

(B and C) Propagation of mammospheres for

multiple generations starting from bulk epithelial

cells (B, open and closed circles indicate two

different patients) or FACS-sorted PKHPOS cells

(C). Top, linear scale; bottom, semilog scale.

Regression analysis trend lines and coefficients

(R2) are shown. Typical experiments, in triplicate,

are shown (additional statistical analyses are in

Figures S1B and S1C).

(D) A single PKHPOS cell, embedded in methylcel-

lulose, was monitored at the indicated times. Scale

bars represent 10 mm, and 100 mm in the bottom-

right panel.

(E) BrdU (left) and Ki67 (right) staining of PKHPOS

and PKHNEG cells. Quantification is shown on the

right.

(F and G) Asymmetric segregation of lentivirally

transduced GFP-Numb (F) or endogenous Numb

(G, confocal sections are shown) to one daughter

cell during cell division of a single PKHPOS cell

either embedded in methylcellulose (F) or grown

in suspension (G). Top, mock-treated; bottom,

treated with blebbistatin). Scale bars represent

10 mm. The solid white bar in (G) indicates the

cleavage plane of the two daughter cells. Quantifi-

cations are also shown.

See also Figure S1.
(Stingl and Caldas, 2007). With this background in mind, we used

the hNMSC signature to interrogate expression data sets of

breast cancers. We discovered that the signature can stratify

breast cancers according to their biological and molecular

features. We further showed that this is due to the different

number of cancer SCs (CSCs) (or cancer-initiating cells) present

within different types of breast tumors. Based on our data, we

propose a model of breast tumorigenesis that might resolve the

incongruence between the complexity of breast cancer pheno-

types and the simplicity of the normal breast parenchyma.

RESULTS

Isolation of hNMSCs
Cells from normal human mammary glands were labeled with

PKH26 and plated in suspension to allow mammosphere
Cell 140, 62–
growth (Figure S1A available online). As

expected, very few cells within mammo-

spheres retained strong epifluorescence

(Figure 1A). The sphere-forming effi-

ciency (SFE) of cells from the mammary

gland was 0.003%–0.01% (depending

on whether bulk mammary cells or pre-

enriched mammary epithelial cells were

employed, Figure S1B). The SFE of cells

obtained from dissociated mammo-

spheres was �0.1% (F2 in Figure S1B).

Normal mammospheres could be propa-
gated for at least four generations (Figure 1B), and their clono-

genic ability decreased exponentially (Figure 1B, Figure S1C):

at every generation, the SFE was �23% of that measured in

the preceding generation (Figure S1C). Mammospheres repro-

ducibly contained �300 cells per sphere (Figure S1D).

We estimated that in the normal mammary gland there is one

mammosphere-initiating cell per�7500 total cells or �2000 epi-

thelial cells (Figure S1D), in good agreement with previous

reports in mouse and human (Shackleton et al., 2006; Stingl et

al., 2006). In addition, we calculated that approximately one

mammosphere-initiating cell is present per mammosphere,

and that this cell is likely found within the PKH26-positive

(PKHPOS) cell fraction (Figure S1D). This was confirmed by moni-

toring of the ability of single cells, obtained from dissociated

mammospheres, to form second-generation mammospheres,

as a function of their PKH positivity. Only PKHPOS cells formed
73, January 8, 2010 ª2010 Elsevier Inc. 63
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Figure 2. Immunophenotypical and Func-

tional Characterization of PKHPOS and

PKHNEG Cells

(A) PKHPOS or PKHNEG cells were analyzed with the

indicated antibodies by IF. Green, antibody stain-

ing; red, PKH26 epifluorescence; blue, DAPI.

Scale bars represent 10 mm. Quantification is

shown in Figure S2A. Results are typical and

representative of three independent experiments.

(B) PKHPOS or PKHNEG cells were grown on Matri-

gel and analyzed in IF with the indicated anti-

bodies. Scale bars represent 10 mm. Quantification

is shown in Figure S2B. Results are typical and

representative of three independent experiments.

(C) PKHPOS or PKHNEG cells were grown in 3D in

Matrigel (bright field) and then stained with hema-

toxylin/eosin (H&E). Scale bars represent 100 mm

(PKHPOS) and 10 mm (PKHNEG).

(D) Serial sections (3 mm thick) of organotypic

outgrowths from PKHPOS cells were analyzed in

IHC with the indicated antibodies. Scale bars

represent 50 mm. Arrowheads point to basally

located, spindle-like shaped cells that are E-cad-

herin negative (left) and TP63 positive (right).

(E) IHC analysis of b-casein accumulation in the

lumen of 3D organotypic structures stimulated

with prolactin. The scale bar represents 50 mm.

(F) Top: The indicated amounts of PKHPOS and

PKHNEG cells were transplanted into humanized

epithelium-cleared mammary fat pads of 21-day-

old immunocompromised NOD/SCID mice. MRU,

mammary-repopulating unit. Bottom: Whole-

mount analysis of 10-week-old mammary out-

growths. Scale bars represent 500 mm. The boxed

area is magnified on the right to better visualize the

outgrowth. A graphic indication (pie) of the

percentage of fat pad filled by the outgrowth is

also shown.

(G) Genomic FISH analysis to assess the human

origin of the fat pad mammary outgrowths from

PKHPOS cells, with specific human (hCOT, red) or

mouse (mCOT, green) Cot-1 probes (Extended

Experimental Procedures). Original magnification

320.

See also Figure S2.
mammospheres, with a SFE of �23% (PKHPOS pre-FACS in

Figure S1B; note that this number is in agreement with the

maximum expected SFE, Figures S1B and S1C).

We used FACS to isolate PKHPOS cells. Based on the typical

PKH26 distribution in mammospheres and the SFE of cells

from mammospheres, we isolated the most epifluorescent

0.2%–0.4% of the total cell population (PKHPOS cells, gated at

103–104 fluorescence units), as well as a ‘‘dull’’ population (gated

at 101–102 fluorescence units, PKHNEG cells) (Figure S1A, inset).

Only the PKHPOS population gave rise to mammospheres (Figure

S1A, inset), with a SFE of �11% (Figure S1B; note that on the

basis of this value and a series of normalizations, we estimate

that our PKHPOS population is �90% pure, Figure S1B). Of

note, PKHPOS cells could support at least four additional gener-

ations of mammosphere growth (Figure 1C, Figure S1C).

By monitoring microscopically the growth of PKHPOS cells

embedded in methylcellulose, we established that mammo-
64 Cell 140, 62–73, January 8, 2010 ª2010 Elsevier Inc.
spheres are truly the result of the clonal expansion of single

PKHPOS cells (Figure 1D). PKHPOS, but not PKHNEG, cells

showed features of the quiescent state, as evidenced by reten-

tion of BrdU and absence of expression of the proliferation

marker Ki-67 (Figure 1E). Moreover, PKHPOS cells divided asym-

metrically, as demonstrated by the unequal partitioning at

mitosis of the cell fate determinant Numb (Figures 1F and 1G)

(Gönczy, 2008).

Characterization of PKHPOS Cells
We analyzed PKHPOS cells, by immunofluorescence (IF), with

a panel of markers (Experimental Procedures). PKHPOS cells

shared features with both epithelial (CD24+/EpCAM+) and myoe-

pithelial (CD49F+/CK5+/TP63+) cells (Figure 2A, Figure S2A);

however, they did not express detectable terminal differenti-

ation markers, such as Muc1, E-cadherin, and ASMA (data not

shown), suggesting that lineage specification has not yet



occurred in these cells. PKHNEG cells, conversely, expressed

little or no CD24, CD49F, and TP63; compared to PKHPOS cells,

they displayed similar levels of EpCAM and lower levels of CK5

(Figure 2A, Figure S2A). Finally, PKHNEG cells did not display

detectable levels of Muc1 or ASMA (data not shown).

These findings suggest that, as expected of SCs, PKHPOS cells

are bipotent. This was confirmed in 2D-differentiation assays on

Matrigel. The majority (�87%) of colonies generated by PKHPOS

cells expressed both epithelial (EpCAM) and myoepithelial

(ASMA) markers (Figure 2B, Figure S2B). Within these colonies,

individual cells expressed either EpCAM or ASMA, but never

both, indicating terminal differentiation of cells into either the

epithelial or the myoepithelial lineage (Figure 2B, Figure S2B).

By contrast, PKHNEG cells originated either pure epithelial colo-

nies (97%) or, in rarer cases, pure myoepithelial colonies (Fig-

ure 2B, Figure S2B). When individual colonies were picked

and replated in suspension, bipotent colonies, originating

from PKHPOS cells, formed mammospheres at high efficiency,

whereas lineage-restricted colonies (either epithelial—origi-

nating from PKHPOS or PKHNEG cells—or myoepithelial—origi-

nating from PKHNEG cells) were unable to do so (data not shown).

We also used 3D Matrigel cultures, in which hNMSCs can

generate mammary gland organotypic outgrowths (Dontu et

al., 2003). PKHPOS cells generated two types of outgrowths,

which recapitulated several aspects of the mammary gland in

vivo: hollow, branched lobuloalveolar, and cavitated, acinar-

like structures (Figure 2C). Both epithelial (E-cadherin+) and my-

oepithelial (TP63+) cells could be detected in the acinar-like

structures (Figure 2D) by immunohistochemistry (IHC). In addi-

tion, these structures accumulated b-casein in the lumen, upon

prolactin stimulation (Figure 2E). PKHNEG cells did not form 3D

structures, but either grew as monolayers of terminally differen-

tiated cells (Figure 2C) or formed small structures that never

reached the dimension or acquired the differentiation-specific

features detected in the outgrowths generated by PKHPOS cells

(data not shown).

Finally, we analyzed the ability of PKHPOS cells to reconstitute

a normal mammary epithelium when transplanted into human-

ized epithelium-cleared fat pads of immunocompromised NOD/

SCID mice. PKHPOS cells were able to do so with an efficiency of

around 4% (one in 26 cells, range 1:10–66), while PKHNEG cells

could not reconstitute the mammary gland, even when injected

at concentrations as high as 105 cells/transplant (Figure 2F).

Of note, this value is compatible with the maximum expected

value of reconstitution, estimated on the basis of the replicative

kinetics of PKHPOS cells (Figure S1E). The outgrowths generated

by PKHPOS cells displayed the normal mammary gland cytoarch-

itecture (Figure 2G, Figure S2C) and were derived unequivocally

from transplanted human cells (Figure 2G, Figure S2D).

Transcriptomic Analysis of hNMSCs
We performed expression profile analysis of PKHPOS and

PKHNEG cells. We extracted RNAs from FACS-sorted cells

derived from three independent pools of mammospheres, each

from five to six individuals. We compared profiles of PKHPOS

and PKHNEG cells for each pool and obtained three separate

gene lists of differentially expressed genes (see the Experimental

Procedures). Considering the heterogeneity of the samples (see
above), the three lists overlapped significantly (Figure 3A). In

particular, 2306 probesets (psets) (the ‘‘hNMSC signature’’)

showed a concordant trend of regulation (increased/decreased

in two pools, and unchanged in the third one), and significant

enrichment (p < 1 3 10�8, Figure 3A). Within this group, 377

psets (the ‘‘3/3 signature’’) were consistently up- or downregu-

lated in all the three pools (expected 8.35, actual 377, enrichment

factor 45.11, p < 1 3 10�60, Figure 3A). The genes of the hNMSC

signature and of the 3/3 signature are listed in Table S1, together

with their functional annotation and other characteristics that will

be discussed later (see the Discussion).

The hNMSC signature, which readily distinguished PKHPOS

from PKHNEG cells (Figure 3B), was validated by testing the

expression of 69 transcripts on three independent RNA prepara-

tions of PKHPOS and PKHNEG cells, with 64% concordance with

the GeneChip data (83% if one considers only those genes, 53,

for which a reliable trend of regulation could be obtained,

Table S1). Similar results were obtained if only transcripts

present in the 3/3 signature were considered (Table S1).

We also used IF to validate the expression of selected genes

(based on the antibody availability) upregulated in PKHPOS

(JAG1, SOX4, DNER, and DLL1/DELTA) or PKHNEG (HEY1) cells.

JAG1, SOX4, DNER, and DLL1 were significantly enriched in

PKHPOS cells, whereas HEY1 was enriched in PKHNEG cells

(Figures 3C and 3D). Finally, we selected markers (CK5, TP63,

and SERPINB5/Maspin, for which antibodies suitable for IHC

are available), from those upregulated in PKHPOS cells, to test

whether they could identify hNMSCs within mammospheres.

All three markers were expressed in rare (frequently single) cells

within the mammosphere (Figure S3A).

Identification of hNMSCs In Vivo Using Markers
from the hNMSC Signature
hNMSCs are thought to reside in the basal layer of ducts and/or at

the level of the duct-branch points (Chepko and Smith, 1997;

Shackleton et al., 2006; Stingl et al., 2006). We analyzed the

expression of markers from the hNMSC signature (DLL1, CK5,

CD49F, JAG1, and TOPO2A) by IF (Figure 3E, Figure S3B) or

IHC (Figure S3B) on sections of human mammary glands. In IF

experiments, we used double labeling with EpCAM, which

allows the visualization of the epithelial layer. Since we have

shown that PKHPOS cells are EpCAM+, double-positive staining

for EpCAM and the selected hNMSC marker should identify those

rare cells displaying an EpCAM+/hNMSC-marker+ phenotype as

putative hNMSCs. Indeed, such rare double-positive cells were

found to reside in close proximity to the basal/myoepithelial layer

in ducts, or at the duct-branch point (Figure 3E, Figure S3B).

Next, we used surface markers, derived from the hNMSC

signature, to isolate cells endowed with mammosphere-forming

ability, directly from the mammary gland. We used markers

(CD24, CD49F, DNER, and DLL1) for which we had confirmed

the differential protein expression between PKHPOS and PKHNEG

cells (Figures 2A and 3C). In monoparametric FACS, all markers

were able to select populations enriched in mammosphere-form-

ing cells, as witnessed by SFEs 15- to 50-fold higher than that of

the bulk mammary population (Table 1, Figure S4A). Of note,

DNER and DLL1, which were not previously known as hNMSC

markers, were the most efficient ones (Table 1). We then tested
Cell 140, 62–73, January 8, 2010 ª2010 Elsevier Inc. 65
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Figure 3. Gene Expression Profiling of

hNMSCs and Immunophenotypical

Validation

(A) Venn diagram of the psets differentially

expressed in the PKHPOS/PKHNEG comparison in

the three RNA pools. The number of psets differen-

tially expressed, in each pool, is shown in paren-

theses. At the intersections of the Venn diagram,

the psets that fulfilled criteria for inclusion in the

hNMSC signature or in the 3/3 signature are

shown. p values were calculated as described in

the Extended Experimental Procedures.

(B) Two-way hierarchical clustering of PKHPOS and

PKHNEG samples by the hNMSC signature.

(C and D) FACS-sorted PKHPOS or PKHNEG cells

were analyzed with the indicated antibodies by IF

(C). Green, antibody staining; red, PKH26 epifluor-

escence; blue, DAPI. Scale bars represent 10 mm.

Quantification is shown in (D). Results are typical

and representative of three experiments that

yielded comparable results.

(E) Fresh sections of normal mammary glands

were analyzed in IF with the indicated antibodies.

Magnifications of the boxed regions are shown

on the top. The scale bar represents 10 mm.

See also Figure S3 and Table S1.
our markers in three combinations (CD24/CD49F/DNER, CD24/

CD49F/DLL1, and CD49F/DNER/DLL1) in triparametric sorting.

In all cases, only cells positive for the expression of all three

markers were able to support mammosphere growth (Table 1,

Figures S4B, S4C, and S4D), with efficiencies significantly

increased with respect to the monoparametric sorting (additional

data on biparametric FACS experiments are in Figure S4E). In

particular, the combination CD49F/DNER/DLL1 was the most

effective one and yielded cells displaying a SFE >500-fold higher

than that of the bulk mammary population (Table 1). Finally, we

showed that CD24H/CD49FH/DNERH cells, but not CD24H/

CD49FH/DNERL cells, could reconstitute a normal mammary

epithelium upon transplant (Figures S4F, S4G, and S4H).

We note that some of results reported herein on markers of

hNMSC are at variance with recently published ones (Lim et

al., 2009; Shipitsin et al., 2007). While these differences, and

possible explanations for them, are discussed in details in the
66 Cell 140, 62–73, January 8, 2010 ª2010 Elsevier Inc.
legend to Figure S4 (and in the corre-

sponding section of Extended Experi-

mental Procedures), the sum of our

results shows that markers of our hNMSC

signature reliably allow the identification

and the prospective isolation in vivo of

hNMSCs.

The hNMSC Signature Predicts
Biological and Molecular Features
in Breast Cancer
We used the hNMSC signature (and the 3/

3 signature) to perform a meta-analysis of

published breast cancer expression data

sets. We initially investigated whether
the hNMSC signature could stratify breast cancers according

to their biological characteristics, exemplified by tumor grade.

We employed two data sets published by Ivshina et al. (2006)

and Pawitan et al. (2005), from which we extracted the informa-

tion relative to poorly differentiated (G3) and well-differentiated

(G1) tumors (Extended Experimental Procedures). We tested,

by gene set enrichment analysis (GSEA), whether the genes of

the hNMSC signature were coordinately expressed in G3 versus

G1 tumors. There was a significant enrichment of genes upregu-

lated in PKHPOS cells among the genes upregulated in G3 tumors,

and a mirroring enrichment of concordantly downregulated

genes (Figure 4A, and Table S2, ‘‘Specificity controls’’ sheet).

From the GSEA of the Ivshina and Pawitan data sets, we identi-

fied 792 and 842 ‘‘core enriched genes,’’ respectively, with 595

genes in common (Figure 4C, Table S2). Comparable results

were obtained when we used, as a starting point for GSEA, the

more stringent 3/3 signature of 377 psets (Figures 4B and 4D).



Table 1. Sphere-Forming Potential of Purified Mammary Cell Fractions

Type of Sorting Cell Fraction Gate SFE (%) Enrichment (Fold)

Nonsorted Bulk mammary 0.003 ± 0.001

Monoparametric Sorting CD24 HIGH Fr. 1 0.100 ± 0.007 33

CD24 MEDIUM Fr. 2 <0.01

CD24 LOW Fr. 3 <0.01

CD49F HIGH Fr. 4 0.049 ± 0.015 16

CD49F MEDIUM Fr. 5 <0.01

CD49F LOW Fr. 6 <0.01

DNER HIGH Fr. 7 0.146 ± 0.005 49

DNER LOW Fr. 8 <0.01

DLL1 HIGH Fr. 9 0.121 ± 0.004 40

DLL1 LOW Fr. 10 <0.01

CD24/CD49F/DNER Multiparametric Sorting CD24HIGH, CD49FHIGH, DNERHIGH Fr. 17 0.659 ± 0.040 220

CD24HIGH, CD49FHIGH, DNERLOW Fr. 18 <0.01

CD24/CD49F/DLL1 Multiparametric Sorting CD24HIGH, CD49FHIGH, DLL1HIGH Fr. 19 0.512 ± 0.058 171

CD24HIGH, CD49FHIGH, DLL1LOW Fr. 20 <0.01

CD49F/DLL1/DNER Multiparametric Sortinga CD49FPOS (MED+HIGH), DLL1HIGH, DNERHIGH Fr. 21 1.591 ± 0.330 530

CD49F POS (MED+HIGH), DLL1HIGH, DNERLOW Fr. 22 <0.01

CD49F POS (MED+HIGH), DLL1LOW, DNERLOWb Fr. 23 <0.01

CD49FNEG (LOW), DLL1HIGH, DNERLOWb Fr. 24 <0.01

CD49FNEG (LOW), DLL1LOW, DNERLOWb Fr. 25 <0.01

Cells from the indicated FACS experiments (see also Figure S4) were tested for their mammosphere-forming ability. The column ‘‘gate’’ shows the

cellular fractions as from Figure S4. The fold enrichment was calculated with respect to the bulk mammary population.
a In these experiments CD49F-sorted cells were divided into a ‘‘positive’’ fraction (corresponding to the medium + high fractions of the monoparametric

sorting experiments) and in a ‘‘negative’’ fraction (corresponding to the low fraction of the monoparametric sorting experiments).
b CD49F POS/DLL1LOW, CD49F NEG/DLL1HIGH, and CD49F NEG/DLL1LOW cells were also tested for DNER and found to be DNERLOW (data not shown).
We then investigated whether the hNMSC signature could

distinguish among the molecular subtypes of breast cancer

identified by Perou et al. (2000) and Sørlie et al. (2001). The sig-

nature could separate basal-type tumors from other molecular

types of breast cancers (ErbB2-type, luminal-A or -B), in a

manner that was apparently independent of their histological

grade (Figure S5). Furthermore, GSEA showed enrichment of

genes concordantly upregulated in PKHPOS cells and in basal-

type tumors, despite the fact that 63% of the nonbasal tumors

were G3s, as compared to 16% G1s in the same group

(Figure S5).

Cancer-Initiating Cells in G3 and G1 Tumors
The above results show that the hNMSC signature can stratify

breast cancers on the basis of their biological and—at least in

part—molecular characteristics. One possible interpretation of

these results is that the heterogeneity of breast cancers might

reflect their content in SC-like cells (i.e., cancer stem cells

[CSCs]). To verify this possibility, we initially performed IHC/IF

analysis of G1 and G3 tumors with markers from the hNMSC sig-

nature (SERPINB5, TOP2A, CK5, TP63, SOX4, CD24, ADRM1,

DNER, DLL1, and JAG1). We found that the proportion of cells

expressing hNMSC markers was significantly higher (�3- to

4-fold, on average) in G3 versus G1 tumors (Figure 5A, Figure

S6A). In consecutive 3 mm thick sections from G3 tumors, we

detected simultaneous expression of hNMSC markers in clus-

ters of tumor cells (Figure S6B), suggesting that tumor cells
might express en bloc features associated with a SC program

(as also confirmed by IF results with other markers, Figure 5C).

Finally, we observed a similar trend in the SC-like content of

G3 versus G1 subtypes of preinvasive breast lesions (ductal

carcinomas in situ [DCIS]) (Figure 5B), supporting the idea that

the cells expressing hNMSC markers might constitute true

CSCs (or cancer-initiating cells) already present at a very early

stage of tumorigenesis.

We also used markers from the hNMSC signature (CD49F,

DNER, DLL1, Figure 5C; see also the legend to Figure S6C—

and the corresponding section of Extended Experimental Proce-

dures—for the rationale for the use of these markers) to isolate

prospectively CSCs from breast tumors. Consistent with the

data obtained in IHC/IF (Figures 5A and 5C), in triparametric

FACS, we recovered 2- to 4-fold more triple-positive cells from

G3 than from G1 tumors (Figure 5D). Triple-positive (CD49F+/

DLL1H/DNERH) cells, but not cells negative for DNER (CD49F+/

DLL1H/DNERL) (see Figure S6D for FACS profiles) were able to

form mammosphere-like structures (Figure 5E). Of note, cells

sorted from G3 tumors were �3-fold enriched in mammo-

sphere-initiating cells compared to cells sorted from G1 tumors

(Figure 5E). Finally, we proved that CD49F+/DLL1H/DNERH cells,

both from G3 and G1 tumors, are enriched in cancer-initiating

cells, as they were able to form tumors upon xenotransplanta-

tion, more efficiently than unsorted cells (Figure 5F, com-

pare also to Figure S7B for more experiments with unsorted

cells).
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Figure 4. Prediction of Tumor Grade by the hNMSC Signature

(A and B) GSEA results for genes upregulated (top) and downregulated (bottom) in PKHPOS cells, in the Ivshina (left) and Pawitan (right) cohorts of samples.

(A) GSEA analysis with the hNMSC signature.

(B) GSEA analysis with the 3/3 signature. ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate-adjusted q value. Genes were first

ranked according to the expression ratio (G3 over G1).

(C and D) Venn diagrams of the core enriched genes identified in (A) and (B) (C and D correspond to the analyses in A and B, respectively); the significance of the

overlap (P) was calculated by binomial distribution.

See also Figure S5 and Table S2.
The precise correspondence between the data obtained in

IHC/IF (Figures 5A and 5B), and those obtained by prospective

isolation of CSCs (Figures 5D–5F) strongly argues in favor of the

possibility that G3 tumors indeed display a higher CSC content

than G1 tumors. If so, this should be reflected in different abilities

of unsorted cells from the two types of tumors to form mammo-

sphere-like structures in vitro and to give rise to tumors, when

transplanted in vivo. To test this, we initially employed a cohort

of 28 patients (eight normal, five G1, and 15 G3). Cells from all

patients grew as spheroids, when plated in suspension culture

(Figure 6A). G1 tumors formed mammosphere-like structures

with an efficiency slightly, but significantly, higher than hNMSCs,

both at the first and second generations (Figure 6A). Conversely,

G3 tumors displayed �3-fold higher SFE than normal or

G1-derived cells (Figure 6A), in good agreement with the 3- to

4-fold increase in putative CSCs evidenced in the IHC/IF analysis

(Figure 5A). In addition, G3 tumors gave rise to spheroids that

were almost twice as big as those generated by normal or G1 cells

(Figures 6A and 6B). Of note, in PKH26-labeling experiments,

spheroids from G3 tumors displayed�4-fold more PKHPOS cells

than spheroids from G1 tumors (Figure 6B, Figure S7A).
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Finally, in xenotransplantation experiments, cells from both G1

and G3 tumors gave rise to tumors. In G1s (seven tumors tested),

the frequency of CSCs was comparable to that of hNMSCs

present in the normal gland (Figure 6C, quantitations in Figure

S7B), in agreement with the mammosphere data of Figure 6A. In

G3 tumors (eight tumors tested), we detected an�4-fold increase

in CSCs (Figure 6C, Figure S7B). In addition, G3 tumors grew to

a larger size with respect to G1 tumors (Figure 6D, top), again in

agreement with data on mammosphere size, shown in Fig-

ure 6A. Tumors obtained in mice retained the G1 and G3 charac-

teristics of the original human tumors (Figure 6D, bottom). Finally,

comparable results were obtained when cells derived from G1

or G3 mammospheres were used to induce tumors in mice

(Figure S7C), thus formally linking the data obtained in the mam-

mosphere assay and in the tumor transplantation experiments.

DISCUSSION

We report here a method, based on the functional labeling of

hNMSCs, that enables the purification of hNMSCs to near homo-

geneity. We demonstrated that cells prospectively isolated from
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Figure 5. Cells Expressing Markers of the hNMSC Signature Are Enriched in G3 versus G1 Tumors

(A) Paraffin-embedded or frozen OCT-embedded sections were analyzed with markers derived from the hNMSC signature in IHC (CK5, TP63, SERPINB5,

TOPO2A, SOX4, and DLL1) or IF (CD24, JAG1, ADRM1, and DNER). Examples of staining are on the left (original magnification 340). Scale bars represent

50 mm (right); additional examples of stainings are in Figure S6A. Quantification is on the right, as obtained on multiple sections from three to five tumors in

each group (statistical significance G3 versus G1 is shown). Data are expressed as the percentages of positive tumor cells (mean ± SD) in the total epithelial

population.

(B) Paraffin-embedded sections (3 mm thick) from the indicated type of preinvasive DCIS lesions were analyzed in IHC with the indicated antibodies. Results were

confirmed on multiple sections from three different DCIS for each subtype. Original magnification 340.

(C) Representative image of a fresh section of a G3 tumor analyzed in IF with the indicated antibodies (DNER, CD49F, and DLL1). Magnifications of the boxed

regions are shown on the right. Scale bars represent 10 mm.

(D) Bar graph depicting the frequency of different cell populations identified by FACS analysis with antibodies against the indicated markers, in G1 (n = 6) and

G3 (n = 10) tumors (FACS profiles are in Figure S6D). Data are expressed as the percentage of the total number of epithelial cells. Data are expressed as the

percentages of positive tumor cells (mean ± SD) in the total epithelial population.

(E) FACS-sorted CD49F+/DLL1H/DNERH and CD49F+/DLL1H/DNERL cells (fractions 5 and 6 in Figure S6D) from G1 (n = 2) and G3 (n = 2) tumors were tested for

their mammosphere-forming ability. Data are from two independent experiments, each performed in duplicate.

(F) FACS-sorted (shown on the left, see Figure S6D) or unsorted cells, from three G1 and 3 G3 tumors, were transplanted at the indicated numbers into mammary

fat pads of 21-day-old immunocompromised NOD/SCID mice. The number of tumors/injections is shown.

See also Figure S6.
cultured mammospheres through this methodology (PKHPOS

cells) possess all the features expected for authentic hNMSCs.

This allowed functional and molecular studies of hNMSCs,

leading to a number of conclusions relevant to the homeostasis

of the hMNSC compartment and its subversion in cancer.

Molecular Features of hNMSCs and of the Progenitors
of the TA Compartment
By exploiting the high degree of purity of PKHPOS cells, we

obtained comparative molecular profiles of hNMSCs and of their
immediate progeny, which were validated by several molecular

and cellular criteria. In principle, molecular determinants and

pathways of the hNMSC signature should reflect circuitries

that are relevant to the maintenance of the hNMSC compart-

ment, and to the molecular strategies enacted by progenitors

to exit this compartment. Many such circuitries could be readily

identified (Table S1, ‘‘Functional classification’’ sheet), including:

(1) regulators of cell survival, cell cycle, and telomerase activity,

which seemingly underlie the hNMSC quiescent state and their

refractoriness to apoptosis; (2) growth factor and chemokine
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Figure 6. Poorly Differentiated Breast Cancers Are Enriched in Cancer-Initiating Cells

(A) SFEs (F1, top; F2, middle) and mammosphere size (bottom). Results are shown as box plots, extending from the 25th to the 75th percentiles (red line, median).

The whiskers below and above each box plot extend to the 1.53 of the interquartile range (75th–25th percentile). *p % 0.01, **p < 0.0001.

(B) Representative images of mammospheres from PKH26-labeled G1-derived and G3-derived tumors (additional characterizations are in Figure S7A). Scale

bars represent 100 mm.

(C) Frequency of mammary repopulating units (MRU) in bulk mammary normal cells (Nor), and of cancer-initiating cells (CICs) in tumor cells from individual G1 and

G3 tumors (G1, G3). The complete set of data is in Figure S7B. A total of seven G1 and eight G3 tumors were analyzed. In two experiments (pool), tumor cells from

three pooled G1 and G3 tumors were xenografted. The Estrogen receptor (ER) status of the primitive tumors is reported. When indicated, Estrogen pellets (Pel.)

were used.

(D) Top: Representative tumor growths at the sites of injection of 100,000 tumor cells from G1 or G3 tumors (Macro). Arrows point to the tumors. Bottom: Repre-

sentative images of IHC analysis of the different tumor types used in (C), and of their corresponding xenotransplants, with the indicated antibodies. Original

magnification 320.

See also Figure S7.
receptors, and molecules involved in cell-to-cell and cell-to-

extracellular matrix contacts, which suggest the ability of SCs

to organize their ‘‘niche’’ by interacting with neighboring cells,

and to respond to their special environment; (3) transcription

and chromatin remodeling factors, possibly required to regulate

transcriptional programs; and (4) molecules involved in oxidative

stress/drug response and in DNA damage checkpoint/repair, in

line with the notion that SCs are uniquely programmed to

preserve their homeostasis, and in particular their genome integ-

rity (see Table S1, where a more detailed discussion is also

provided).
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While a comprehensive analysis of the molecular characteris-

tics of the hNMSC signature will be impossible here, one feature

is worth mentioning. We have previously shown that p53 criti-

cally controls the binary fate decision of NMSCs in the mouse

mammary gland by influencing the rate of symmetric versus

asymmetric self-renewing cell divisions (Cicalese et al., 2009).

While some caution is due when extrapolating results from

mice to humans, it is nevertheless tempting to speculate that

similar regulatory mechanisms might also exist in hNMSCs.

Indeed, we found that genes annotated as putative p53 targets

on the basis of chromatin immunoprecipitation experiments



(Wei et al., 2006) were significantly enriched (p < 0.002) in the

hNMSC signature. In particular, we found that 42 out of 426

‘‘highly reliable’’ putative p53 targets (Wei et al., 2006) were

present in the hNMSC signature (Table S1, ‘‘p53 putative targets

sheet’’).

SCs and the Heterogeneity of Human Breast Cancers
When the hNMSC signature was applied to the meta-analysis of

breast cancer expression data sets, we found out that it was

predictive of biological and molecular features of human

breast cancers. Thus, breast cancers can be distinguished

based on their degree of resemblance to the hNMSC molecular

phenotype.

Recently, Ben-Porath et al. described an embryonic stem-like

signature, which could predict, in breast cancers, tumor grade

and several additional features, including clinical outcome

(Ben-Porath et al., 2008). A direct comparison of our results

with those of Ben-Porath et al. is not straightforward, since

they meta-analyzed several gene sets associated with human

embryonic stem cell identity and used different tools for the anal-

ysis of gene set enrichment patterns. In general, however there is

no significant overlap between the hNMSC signature and signa-

tures of the ES state. For instance, the ‘‘ES exp1’’ signature of

Ben-Porath et al., which includes 380 genes and separates

clearly G3 from G1 tumors, shows an overlap of only 16 concor-

dantly regulated genes with the hNMSC signature.

There are plausible reasons to explain the lack of overlap.

First, the starting points of the signatures are not the same. In

our case, adult mammary SCs were analyzed, while the study

of Ben Porath et al. meta-analyzed signatures representative of

various embryonic SC states. Second, signatures do not portray

the ‘‘absolute’’ molecular picture of a given condition, but only

the comparative picture with respect to another condition.

Thus, a ‘‘SC signature’’ can be different according to whether it

was derived by comparison of the SC to a pluripotent progenitor,

a committed progenitor, or a differentiated cell—a consideration

to bear in mind also when comparing our data to other signatures

reported for mammary SCs (see for instance Raouf et al. [2008]

and discussion in the legend to Table S1 and in the correspond-

ing section of Extended Experimental Procedures). Still, indi-

vidual signatures might explore the same molecular ‘‘universe’’

from different (and limited) viewpoints, possibly leading to similar

biological conclusions. From this perspective, the conclusions of

our studies and of those of Ben-Porath et al. are remarkably

similar, in that in both cases genes associated with SC identity

(adult or embryonic, respectively) could stratify breast tumors

according to biological and molecular features.

There are two major ways of interpreting these findings. On the

one hand, different types of breast cancers might represent

a continuum in which each subclass corresponds to an incre-

mental degree of divergence from the hNMSC. On the other, it

is possible that the degree of similarity of a tumor to the hNMSC

signature might simply reflect the CSC content of the tumor. Our

experiments fully supported this latter possibility, as we could

show that G3/poorly differentiated tumors contain more CSCs

(or cancer-initiating cells) than G1/well-differentiated tumors,

although we do not know yet whether this is a general property

of poorly differentiated tumors or of a subset of them. In turn,
these findings argue that the heterogeneity of breast cancers

could be explained, at least in part, by the number/proportion

of cells displaying stem-like features contained within the tumor.

The Cellular Origin of Human Breast Cancers
Our findings do not directly address the question of the origin of

mammary cancer-initiating cells, i.e., whether they derive from

malignant transformation of a hNMSC or from progenitors that

have reacquired self-renewal ability. We have previously shown

that skewing self-renewal division from an asymmetric (one

stem / one stem + one progenitor) to a symmetric (one

stem / two stems) mode is a critical step in a model of murine

mammary cancerogenesis (Cicalese et al., 2009). Kinetic anal-

ysis also revealed that when CSCs undergo self-renewal, they

tend to skip rounds of asymmetric cell division in favor of

symmetric division (Cicalese et al., 2009). Indeed, we report in

this manuscript evidence (see Figure 6B and discussion in the

legend to Figure S7A) that a different rate of skipping of asym-

metric division might determine the different number of cancer

stem cells in G3 versus G1 tumors, and might therefore sit at

the heart of the biological and clinical heterogeneity of breast

cancers.

Together, data in our present and previous (Cicalese et al.,

2009) studies suggest a scenario for mammary tumorigenesis.

In this model, normal SCs are the targets of different oncogenic

events. The nature of the transforming event(s) determines the

frequency with which the transformed SCs will skip asymmetric

self-renewing division. This, in turn, will determine the final

number of CSCs within the tumor tissue, and a number of biolog-

ical and clinical features of the tumor. This model does not

preclude additional differential effects of the transforming

events, which might, for instance, only allow differentiation

toward a certain lineage or up to a certain point in the differenti-

ation program, thus further contributing to the heterogeneity of

breast cancers (Lim et al., 2009; Shipitsin et al., 2007).

Finally, we have shown, in a model of murine cancerogenesis,

that reduced tumor growth can be achieved by pharmacological

interference with the self-renewing properties of CSCs (Cicalese

et al., 2009). Here, we show that the number of CSCs in human

breast cancers can vary greatly, with discernible impact on

several clinical and pathological features. Together, these data

provide strong support for the concept of ‘‘cancer stem cell-

targeted therapy’’ to eradicate cancer.

EXPERIMENTAL PROCEDURES

Clinical Samples

Fresh, frozen, or archival formalin-fixed paraffin-embedded (FFPE) mammary

tissue specimens were collected at the European Institute of Oncology (Milan,

Italy). All tissues were collected via standardized operative procedures

approved by the Institutional Ethical Board, and informed consent was

obtained for all tissue specimens linked with clinical data.

Cultivation of Mammospheres and FACS Procedures

Epithelial cells, from reductive mammoplasties (Pece et al., 2004), were

allowed to adhere for 24 hr in complete SC medium (Dontu et al., 2003). Cells

were trypsinized, filtered through a 100 mm and a 40 mm cell strainer, resuspen-

dend in PBS (�500,000 cells/ml), and labeled with PKH26 (Sigma, 10�7 M,

5 min). Labeled cells were plated (30,000 cells/ml) in suspension (Dontu et

al., 2003). After 7–10 days, mammospheres were harvested, dissociated
Cell 140, 62–73, January 8, 2010 ª2010 Elsevier Inc. 71



enzymatically (0.05% trypsin/0.5 mM EDTA for 10 min, plus filtering

through a 40 mm cell strainer), and subjected to FACS analysis with a FACS

Vantage SE flow cytometer (Becton & Dickinson) to yield PKHPOS and PKHNEG

cells.

IF of PKHPOS and PKHNEG cells was performed on cytospin preparations

fixed with 4% formaldehyde (5 min)/cold methanol (5 min). IF on mammary

glands (from OCT-embedded, snap-frozen samples) was performed on

3 mm thick sections, fixed for 10 min with cold methanol/acetone (1:1, v/v).

IHC was performed as previously described (Pece et al., 2004).

The preparation of FACS-sorted samples, directly from bulk mammary

gland (Figure S4), is described in the Extended Experimental Procedures.

Differentiation Assays

For 2D differentiation assays, PKHPOS and PKHNEG cells were plated at clono-

genic density (500 viable cells/well) onto glass slides coated with Matrigel (BD

Biosciences) and grown for 10 days in primary mammary epithelial cell

medium (Pece et al., 2004), followed by IF with the appropriate antibodies.

3D Matrigel cultures were performed as described (Dontu et al., 2003); where

indicated, treatment with prolactin (Sigma) was for 10 days at 5 mg/ml.

Immunofluorescence, Immunohistochemistry, and Image

Quantitative Analysis

For the immunophenotypical characterization of PKHPOS cells and PKHNEG

cells shown in Figure 2 and in Figure 3C, we employed the following primary

antibodies: for IF analysis, anti-CD49F and anti-TP63 (BD Bioscience Phar-

Mingen), anti-SOX4 and fluorescein isothiocyanate (FITC) anti-ASMA (Sigma),

anti-CD24 and biotinylated anti-EpCAM (Neomarkers), anti-CK5 (Covance),

anti-HEY1 (ABR-Affinity BioReagents), anti-JAG1 and anti-Delta/DLL1 (Santa

Cruz Biotechnology), anti-ADRM1 (Abnova), and biotinylated anti-DNER (R&D

Systems). Samples were analyzed under an AX-70 Provis (Olympus) fluores-

cence microscope equipped with a black and white cooled CCD camera

(Hamamatsu c5985), or with a Leica TCS SP2 AOBS confocal microscope

equipped with 405, 488, 543, and 633 nm laser lines. Digital images were

computer processed with Adobe Photoshop CS2. For the quantitative analysis

of IF experiments performed on PKHPOS and PKHNEG cells, the ImageJ image-

analysis software (W. Rasband, National Institutes of Health) was used to

measure the specific mean intensity on an average of ten cells for each anti-

body staining. Background intensity was initially subtracted by placing

‘‘regions of interest’’ over areas devoid of specific signal.

For immunohistochemical analysis of FFPE sections obtained from normal

and tumor breast biopsies or from mammospheres, the primary antibodies

used were as follows: anti-CK5, anti-Estrogen receptor, anti-EpCAM (Dako,

clone Ber-EP4), and anti-TP63 (Dako), anti-SERPINB5 (Oncogene), anti-

TOPO2A (Chemicon), anti-E-cadherin (BD Biosciences PharMingen), anti-b-

casein (a kind gift from C. Streuli), anti-SOX4 (Abcam), anti-CD24 (NeoMarkers),

anti-DLL1 (SantaCruz), and anti-CK8/18 (Novocastra). Immunocomplexes

were visualized by the ABC peroxidase method (Vector Laboratories).

RNA Extraction and GeneChip Hybridization

Total RNA was extracted with the Arcturus PicoPure RNA Isolation Kit

(Arcturus Engineering, CA) according to the manufacturer’s instructions and

analyzed with the Agilent 2100 Bioanalyzer (Agilent Technologies). Total

RNA (50–100 ng) was amplified with the Affymetrix T7 Polymerase-based

double linear amplification protocol. Complementary RNA probes (10 mg)

were hybridized onto the Affymetrix HG-U133_Plus_2 ChipSet (Santa Clara,

CA), according to Affymetrix technical protocols. The average intensity of

each array was scaled to a predefined value (target intensity) of 500, in order

to make arrays comparable.

Expression Profiles and Meta-Analysis

Hybridization onto the Affymetrix (Santa Clara, CA) HG-U133_Plus_2 ChipSet

was as previously described (Vecchi et al., 2007). The statistical analysis was

performed with the Affymetrix MAS5 ‘‘Comparison Analysis’’ algorithm (Affy-

metrix Statistical Algorithm Reference Guide, version 5 edition) by direct

comparison of each PKHPOS fraction (baseline array) against its corresponding

PKHNEG fraction (experimental array), within individual matched pairs. Among

all the psets differentially expressed in at least one comparison (n = 10575), we
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selected only those showing a concordant trend of regulation (either increased

or decreased) in at least two comparisons and assigned a ‘‘not changed’’ call

in the third comparison. Given the differences in RNA yield and hybridization

efficiency among the three pools of samples, for data presented in Fig-

ures 3A and 3B, expression data were independently mean normalized within

each comparison, and normalized values were then imported in GeneSpring

GX software version 7.3.1 (Agilent Technologies, Santa Clara, CA) without

any further adjustment. Additional details (also with reference to validation

experiments performed by quantitative RT-PCR) are in the Extended Experi-

mental Procedures. Data sets have been deposited in NCBI’s Gene Expres-

sion Omnibus, and are accessible through GEO Series accession number

GSE18931.

Procedures for meta-analysis of published breast cancer data sets (Ivshina

et al., 2006; Pawitan et al., 2005) are in the Extended Experimental Procedures.

Transplantation Assays into the Cleared Fat Pads of NOD-SCID Mice

Three-week-old female NOD/SCID mice were anesthetized by an i.p. injection

of Tribromoethanol (Avertin) (150 mg/kg). For the xenotransplant of human

normal mammary cells (either PKHPOS or PKHNEG cells, or bulk mammary

cells, or normal mammospheres), the number 4 inguinal mammary glands

were cleared and humanized with 2.5 3 105 nonirradiated telomerase-immor-

talized human mammary fibroblasts (a generous gift from G. Dontu, University

of Michigan, and R. B. Clarke, University of Manchester) and 2.5 3 105 irradi-

ated (4 Gy) fibroblasts, as previously described (Kuperwasser et al., 2004;

Proia and Kuperwasser, 2006). Two weeks after humanization, donor normal

mammary cells, combined with a new batch of irradiated and nonirradiated

fibroblasts to enhance the engrafment, were resuspended in an equal volume

of a Phenol-red free Matrigel (Becton Dickinson) mixture, supplemented with

0.04% trypan blue (Sigma), to a final volume of 35 ml, and injected into the

humanized site.

For the xenotransplant of human breast cancer cells, tumor biopsies were

dissociated mechanically and enzymatically and cells, resuspended as above,

were injected directly into cleared mammary fat pads of NOD/SCID mice. At

the same time, a 60 day release Estrogen (17-b estradiol) pellet (0.72 mg/pellet;

Innovative Research of America) was placed subcutaneously on the back of

the mouse’s neck with a trocar, when indicated.

Animals injected with normal breast cells were euthanized after 10 weeks.

Animals injected with cancer cells were euthanized when the tumors were

approximately 0.5–1.2 cm in the largest diameter, to avoid tumor necrosis

and in compliance with regulations for use of vertebrate animal in research.

For whole-mount analysis, the fat pads were removed, fixed in Carnoy’s solu-

tion (ethanol, glacial acetic acid, chloroform), and stained with 0.2% carmine

alum (carmine, AlKSO4). For IHC analysis, samples of normal mammary whole

mounts and of tumor xenotransplants were FFPE and assayed with the appro-

priate antibodies. Measurements of total ductal outgrowth area on whole

glands were taken essentially as previously described (McCaffrey and Macara,

2009). All measurements were made with ImageJ imaging software (W. Ras-

band, National Institutes of Health). In brief, fat pad filling was measured by

drawing a shape around the fat pad, with the Freehand tool. Ductal areas

were measured by drawing a shape that connected the tips of ducts. The

percentage of fat pad filled was measured by the formula (ductal area/fat

pad area) 3 100, and is shown in the corresponding whole-mount images

with a graphic indication (pie) of the extent to which each transplant filled

the fat pad.

The transplantation frequency was calculated by Poisson statistics, using

the ‘‘statmod’’ software package for the R computing environment (http://

www.R-project.org/) as previously described (Shackleton et al., 2006) and

a complementary log-log generalized linear model (two-sided 95% Wald

confidence intervals or, in case of zero outgrowths, one-sided 95% Clop-

per-Pearson intervals), respectively. The single-hit assumption was tested

as recommended and was not rejected for any dilution series (p > 0.05).
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