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) dimerization is important for viral infectivity and is regulated by proteolytic
processing of the Gag precursor protein (Pr55gag) under the direction of the viral protease. The processing
occurs in successive steps and, to date, the step associated with formation of a wild-type (WT) level of gRNA
dimers has not been identified. The primary cleavage divides Pr55gag into two proteins. The C-terminal
polypeptide is termed NCp15 (NCp7–p1–p6) because it contains the nucleocapsid protein (NC), a key
determinant of gRNA dimerization and packaging. To examine the importance of precursor polypeptides
NCp15 and NCp9 (NCp7–p1), we introduced mutations that prevented the proteolytic cleavages responsible
for the appearance of NCp9 or NCp7. Using native Northern blot analysis, we show that gRNA dimerization
was impaired when both the secondary (p1–p6) and tertiary (p7–p1) cleavage sites of NCp15 were abolished,
but unaffected when only one or the other site was abolished. Though processing to NCp9 therefore suffices
for a WT level of gRNA dimerization, we also show that preventing cleavage at the p7–p1 site abolished HIV-
1 replication. To identify the minimum level of protease activity compatible with a WT level of gRNA dimers,
we introduced mutations Thr26Ser and Ala28Ser in the viral protease to partially inactivate it, and we
prepared composite HIV-1 resulting from the cotransfection of various ratios of WT and protease-inactive
proviral DNAs. The results reveal that a 30% processing of Pr55gag into mature capsid proteins (CA/CA-p2)
yielded a WT level of gRNA dimers, while a 10% Pr55gag processing hardly increased gRNA dimerization
above the level seen in protease-inactive virions. We found that full gRNA dimerization required less than
50% WT NC in complementation asssays. Finally, we show that if we destroy alpha helix 1 of the capsid
protein (CA), gRNA dimerization is impaired to the same extent as when the viral protease is inactivated.
Cotransfection studies show that this CA mutation, in contrast to the NC-disabling mutations, has a dominant
negative effect on HIV-1 RNA dimerization, viral core formation, and viral replication. This represents the first
evidence that a capsid mutation can affect HIV-1 RNA dimerization.

© 2008 Elsevier Inc. All rights reserved.
Introduction
The Gag and the Gag–pol polyproteins of HIV-1, also named
Pr55gag and Pr160gag–pol, are rapidly processed into a common N-
terminal component (the matrix–capsid-p2 polyprotein [MA–CA-p2])
and two C-terminal components: from Gag, the NCp7–p1–p6 moiety
(NCp15); from Gag–pol, a polyprotein that starts with the NCp7
sequence and can include the protease-reverse-transcriptase-inte-
grase sequence (Gowda et al., 1989; Mervis et al., 1988; Pettit et al.,
2004). This and subsequent processing is achieved by the viral
protease that is originally part of Pr160gag–pol and is active in both
this precursor form and as a processed product (Chen et al., 2001;
Pettit et al., 2004; Zybarth et al., 1994). NC designates the nucleocapsid
).

l rights reserved.
protein (e.g. in NCp15, NCp7) or the nucleocapsid amino acid sequence
within Pr55gag. NCp7 and NCp15 are typically 55 and 130 amino acids
in length. NC is implicated in early infection events, such as reverse
transcription of HIV-1 RNA and proviral DNA integration (e.g. Levin
et al., 2005; Thomas and Gorelick, 2008), and in late viral replication
events such as viral RNA dimerization, Gag–Gagmultimerization, viral
RNA packaging, Pr55gag processing, and virus stability (e.g. Kafaie
et al., 2008).

In vitro protease assays using recombinant HIV-1 protease and
Pr55gag have demonstrated that in stage 1, Pr55gag is processed into
MA–CA-p2 and NCp15. In stage 2, MA–CA-p2 and NCp15 are
simultaneously cleaved into MA, CA-p2, NCp9 (NCp7–p1) and p6, a
reaction that is roughly 10-fold slower than stage 1. Stage 3, which is
roughly 35-fold slower than stage 2, leads to the appearance of CA and
NCp7 at about the same time (Fig. 1) (Erickson-Viitanen et al., 1989;
Pettit et al., 1994; 2002; Wondrak et al., 1993). In this paper, a first
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Fig. 1. Left: maturation of the HIV-1 Gag precursor polyprotein in vitro, with the five major processing sites shown as vertical lines. The rate of cleavage of each site relative to the
initially cleaved p2/NC site is shown below, as determined by cleavage in vitro with recombinant protease (Pettit et al., 2002). Nx describes an N-fold reduction relative to the rate of
cleavage at p2/NC. Right: illustration of the processing steps inhibited in mutants p15 (Asn55-NSer in NCp7 + Phe16-NLeu in p1), p1p6 (Phe16-NLeu in p1), and p9 (Asn55-NSer
in NCp7).
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objective is to study the role of precursor proteins NCp15 and NCp9 in
HIV-1 genomic RNA (gRNA) dimerization.

NCp15 and its partial maturation product NCp9 represent 95% of
the Gag and Gag–pol proteolytic intermediates containing NC (the
ratio of Pr55gag to Pr160gag–pol is 20 to 1 during virus assembly). A
dimeric HIV-1 gRNA appears essential for viral infectivity because,
amongst other reasons, it facilitates gRNA strand exchange during
reverse transcription (Song et al., 2007, 2008, and references therein).
The first 55 amino acid residues of NC play key roles in gRNA
dimerization (Kafaie et al., 2008; Laughrea et al., 2001), but it is not
known if exercising these roles requires excision of the C-terminal
peptides p1 and/or p6. Proteolytic processing of the p2-NC cleavage
site is critical for HIV-1 RNA dimer maturation (Shehu-Xhilaga et al.,
2001). We have pursued this line of inquiry by determining how viral
RNA dimerization is affected when we abolish proteolytic processing
at either the p7–p1 junction (to prevent NCp7 production), or at the
p7–p1 and p1–p6 junctions (no NCp7 and no NCp9).

Additional interest in NCp15 and NCp9 comes from the study of
HIV-1 strains that are resistant to antiviral protease inhibitors (PI)
used in current therapies. These viruses carrymutations that reduce PI
binding to the viral protease but also impair protease activity in the
absence of inhibitor (Croteau et al., 1997; Rose et al., 1996b; Schock
et al., 1996). This impairment is often partially relieved by Gag
suppressor mutations (Carrillo et al., 1998; Zhang et al., 1997) that
render the p7–p1 and/or p1–p6 junctions more scissile (Doyon et al.,
1996; Mammano et al., 1998) and improve viral replication (Carillo
et al., 1998; Doyon et al., 1996; Mammano et al., 1998; Zhang et al.,
1997). The slow processing at the wild-type (WT) p7–p1 and p1–p6
junctions presumably becomes a replication bottleneck in PI-resistant
virions. Mutations enhancing cleavage at the p7–p1 and p1–p6
junctions then get selected and propagated.
A study of the role of NCp15 and NCp9 in the viral replication
cycle may clarify the reason behind the slow processing of NCp15
into NCp9 and NCp7. It may also shed light on a lifespan of NCp15
that is possibly longer than predicted from in vitro experiments.
Indeed, in vivo data are consistent with the interpretation that
proteolytic processing of NCp15 occurs later than the cleavage
between MA and CA (Gowda et al., 1989; Kaplan and Swanstrom,
1991; Mervis et al., 1988; Veronese et al., 1987). In acutely infected
CEM cells, an 80% conversion of Pr55gag into CA-p2 and CA (CA/CA-
p2) was seen in the cytoplasm, but no conversion into p6 was seen
(Kaplan and Swanstrom, 1991). Moreover, cleavage at the MA–CA site
is RNA-independent, while NCp15 maturation is slowed-down
approximately 10-fold in the absence of RNA (Sheng and Erickson-
Viitanen, 1994). Thus NCp15 and CA-p2 may conceivably be
processed at similar rates (the 9× of Fig. 1, derived in the presence
of RNA, would then become 90×). Peptides mimicking the p1–p6
cleavage site are hydrolyzed ≥50 and ≥2-fold less efficiently than
mimics of the MA–CA and CA-p2 cleavage sites, respectively (Schock
et al., 1996; Tozser et al., 1991). In short, the timing of NCp15
maturation in the isolated virus is not well known, other than NCp15
is produced rather early (Chassagne et al., 1986; Gowda et al., 1989;
Mervis et al., 1988; Veronese et al., 1987) and is fully processed in 3 to
4 day old HIV-1 (Henderson et al., 1992).

Though wild-type HIV-1 protease activity is probably needed for
processes that might include timely capsid formation or optimal
protection of gRNA against ribonucleases, full expression of other
protease-dependent processes may require less than wild-type
level of protease activity. A second important objective of this
paper is to identify the minimal protease activity compatible with a
WT level of HIV-1 RNA dimers. We introduced mutations partially
inactivating the protease, and we prepared composite HIV-1
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resulting from the cotransfection of various ratios of WT and
protease-inactive proviral DNAs. We then studied the effect of
these constructs on Pr55gag processing and gRNA dimerization in
the produced viruses. A third objective is to estimate the number
of WT NC sufficient for WT-like gRNA dimerization. To this end, we
prepared and analyzed composite virions resulting from the
cotransfection of WT and NC-disabled proviral DNAs. The results
of this manuscript provide new insights into the minimal protease
activity as well as the minimal NC complement needed to achieve
a full level of gRNA dimerization. Finally, we have uncovered an
apparent role of the capsid protein in gRNA dimerization. To add
context to the results, we have also studied the effect of most
mutations on gRNA packaging, virus stability and reverse tran-
scriptase packaging.

Results

HeLa cells were transfected in parallel with equal amounts of
pSVC21.BH10 or mutant proviral vectors. Proviral vector pSVC21.BH10
encodes an infectious HIV-1HXB2 molecular clone derived from the IIIB
strain of HIV-1 (Laughrea et al., 1997). After 48 h, viruses were isolated
from the culture supernatant, their capsid protein (CA) and reverse
transcriptase (RT) content was measured, and their gRNA was
extracted, electrophoresed on a non-denaturing agarose gel and
visualized by Northern blotting with a 35S-labeled HIV-1 riboprobe,
followed by autoradiography. Prior to virus purification, a small
volume of culture supernatant was kept to measure its CA content and
determine viral replication per unit of supernatant CA (Materials and
methods).
Fig. 2. Immunoblot of mutant HIV-1 preparations. Proteins were extracted from purified W
visualized using NCp7-reactive antibodies (A) or capsid protein-reactive antibodies (B, C an
CA. (A and B) Pr55gag maturation in HIV-1HXB2 mutated at the C-terminal Pr55gag cleavage
or produced by the cotransfection of WT and protease-inactive proviral DNAs at ratios of 1:
1.7:1 (PR 40%). The apparent slower mobility of Pr55gag in lane 5 was not seen in other W
maturation in HIV-1HXB2 mutated in alpha helix 1 of the capsid protein (SCA), or produced
FVI designates the substitution of PheValIle34 for ArgLysLys34 in the linker of the nucleoc
Maturation of NCp15 into NCp9 is essential for wild type like gRNA
dimerization but maturation of NCp9 to NCp7 has no effect on genomic
RNA dimerization and is essential for HIV-1 replication

To evaluate the activity of NCp7 precursors NCp9 and NCp15,
mutants p9, p15, and p1p6 were constructed (Fig. 1 and Materials and
methods). Thesemutants were produced bymutating the P1 positions
of NCp15 (Asn55 of NCp7 and Phe16 of p1) in order to modify the rate
of cleavage at the NCp7–p1 and p1–p6 sites, respectively (Pettit et al.,
2002). (The P1 position is the amino acid residue immediately
upstream of the scissile bond.) We were careful to choose mutations
that did not interfere with the translational frameshifting site of gRNA
or with the secondary structure of the downstream frameshift
stimulatory stem-loop; in contrast, replacing Phe16 in p1 by serine,
as found in some mutants related to our p1–p6 or p15 mutants (Coren
et al., 2007; Yu et al., 1995), eliminates at least one base-pair from the
frameshift stimulatory stem-loop (Dulude et al., 2002).

The level of Pr55gag processing was assessed in purified HIV-1
by immunoblotting, using antibodies against NCp7 (Fig. 2A) and
CAp24 (Fig. 2B). Mutation p9 (Asn55 of NCp7 replaced by serine)
blocked proteolytic maturation of NCp9 into NCp7 and p1, both in
isolated viruses (Fig. 2A, lane 4; Pettit et al., 2002) and in vitro,
when recombinant HIV-1 protease reacted with the Gag polyprotein
(Pettit et al., 2002). Mutation p1p6 (Phe16 of p1 replaced by leucine)
was designed to produce a longer-lived NCp15 intermediate (Fig. 1)
that matures directly into NCp7 because it should abolish cleavage
at the p1–p6 site. This implies delayed liberation of p6 from NCp15,
stable attachment of p1 to the amino-terminus of p6, no production
of NCp9, and unchanged timing of NCp7 appearance. Mutation p1p6
T and mutant HIV-1 and analyzed by SDS gel electrophoresis. Resolved proteins were
d D). Identities of bands are indicated at the margins of the blots; p24 corresponds to
sites. (C) Pr55gag maturation in HIV-1HXB2 mutated in the viral protease (PR−, 4×, 50×),
9 (PR 1%), 1:3.5 (PR 5%), 1:2.1 (PR 10%), 1:1.6 (PR 15%), 1:1.2 (PR 20%), 1:1 (PR 25%), and
estern blots of PR 15% virions, and was hardly visible in longer exposures. (D) Pr55gag
by the cotransfection of mutant and WT proviral vectors at a ratio of 1:1 (SCA+, FVI+).
apsid protein.



Fig. 3. Replication of HIV-1HXB2 mutated at the C-terminal Pr55gag cleavage sites, in
residues 26–28 of the viral protease (4× and 50×) and in the capsid protein (SCA). MT2
cells were infected with an amount of undiluted progeny virus equal to 10 ng of CAp24
antigen. Virus growth was monitored by measuring reverse transcriptase activity
(cpm/μl) in culture fluids at various times. The replication of 10,000-fold diluted wild-
type HXB2 was also studied for comparative purposes.
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prevented proteolytic maturation of NCp15 into NCp9 and p6 in
vitro (Pettit et al., 2002) and in isolated viruses (Fig. 2A, lane 3). In
addition, it rendered the NCp7–p1 junction less scissile. (Thus
the p1p6 mutation itself, or the presence of covalently linked p6,
Fig. 4.Dimerization level of viral RNA isolated fromHIV-1HXB2mutated at the C-terminal
Pr55gag cleavage sites. Genomic RNAs extracted from the respective virions were
electrophoresed on a 1% non-denaturing agarose gel and analyzed by Northern blotting.
The representative lanes contain viral gRNA isolated from one 100 mm tissue culture
dish. D:mature dimer.M:monomer. Inmutant PR−, the aspartic acid at position 25 of the
viral protease active site was replaced by arginine (Song et al., 2007). This totally
inactivates the protease. Note that immature dimers of the type seen in PR− HIV-1
migrate slower thanWTgRNA dimers [Song et al., (2007), and references therein]. BH10
(HXB2) gRNA samples were 77%±0.5% dimeric (n=29) and PR− gRNA samples were 46%
±2.5% dimeric (n=4). The gRNAdimerization level is independent of the amount of gRNA
electrophoresed or of the concentration of DNA used in transfections (25-fold range of
gRNA/proviral DNA concentrations tested (Song et al., 2007)) (not shown).
impaired cleavage at the NCp7–p1 junction.) The result was p1p6
viruses whose NC was about 70% NCp15 and 30% NCp7 (Fig. 2A, lane
3). In comparison, only traces of NCp9 and NCp15 were visible in
BH10 (Fig. 2A, lane 1). Mutation p15 was constructed by combining
the p9 and p1p6 mutations (Materials and methods). The NC of the
produced viruses was exclusively in the NCp15 form (Fig. 2A, lane
2), indicating that the p9 and p1p6 mutations abolished cleavage at
the p7–p1 and p1–p6 junctions. In mutant p1p6, it could not be
directly verified if the inhibition was as expected, for lack of an anti-
p6 antibody, but the presence of large amounts of NCp15 clearly
shows that the cleavage between p1 and p6 was dramatically
inhibited; consistent with this is the absence of traces of NCp9 in
Fig. 2A lane 3.

Similar amounts of CAp24 were produced by each transfected
proviral DNA, indicating that the mutations created no overt assembly
defect (not shown). The virion samples also did not contain
appreciable amounts of Pr55gag or partially processed p41 products,
indicating that the mutations in the C-terminus of Pr55gag did not
alter the overall processing into CAp24 and MAp17 (Fig. 2B).

Mutations p15 and p9 abolished viral replication while p1p6
delayed the appearance of the viral production peak by 6 days (Fig. 3).
Thus, viruses that are unable to cleave p1 from NCp9 exhibit dramatic
replication delays.

In mutant p15, the percentage of gRNA dimerization was 76%
relative to wild type level vs. 60% in protease-inactive (PR−) virions.
Mutations p9 and p1p6 had little impact on gRNA dimerization (Fig. 4
and Table 1). Thus we can conclude that proteolytic maturation to
NCp9 is sufficient to achieve WT gRNA dimerization yield, despite a
blocked viral replication (p9 results), and that WT gRNA dimerization
yield can be achieved despite a 30% complement of NCp7 and a block
to the formation of NCp9 (p1p6 results). We can also conclude that
free NCp15 stimulates gRNA dimerization poorly, but better than
NCp15 in the context of unprocessed Pr55gag.

Genomic RNA packaging seemed unchanged by the mutations;
and the mutations had no effect on RT packaging (Table 1),
suggesting that normal amounts of Pr160gagpol were produced
despite the location of some of them within the translational
frameshift stimulatory stem-loop of gRNA. Virus stability was
reduced by the p1p6 and p15 mutations but unaffected by the p9
mutation (Table 1).
Table 1
Effect of mutations introduced into the C-terminal Pr55gag cleavages sites, or
inactivating the viral protease, on HIV-1 infectivity, genomic RNA dimerization,
genomic RNA packaging, packaging of reverse transcriptase activity, and virus stability

Construct
namea

Viral
replicationb

gRNA
dimerizationc

gRNA
packagingc

RT
packagingc

Virus
stabilityc

1 HXB2 + 100 100 100 100
2 PR− − 60±3 nd nd nd
3 p9 − 96±2 108±23 110±5 120±10
4 p1p6 +/− 97±1 133±45 115±5 58±5
5 p15 − 76±7 106±14 90±7 70±7

The values for HXB2 are arbitrarily set at 100, and the values for the mutants are
expressed as % of wild-type level. Genomic RNA dimerization numbers were obtained
by densitometric analysis. Genomic RNA packaging was measured by dot–blot
hybridization. RT packaging was defined as CA-normalized RT activity: the RT activity
of isolated virions divided by their CA content, relative to the ratio found inWT samples.
Virus stability was defined as CA content of purified viruses divided by CA content of the
culture supernatant, relative to the ratio found inWT samples (Materials and methods).
nd: not done.

a Mutant p9, p1p6, and p15 are defined in Fig. 1. PR− is defined in Fig. 4.
b +: identical or close to wild type; +/−: equivalent to wild type diluted more than 10

000-fold; −: no viral replicaton detected.
c Margins of errors designate the standard error of 3 to 6 independent experiments

for gRNA dimerization (4 on average), 2 to 5 independent experiments, for gRNA
packaging (3.5 on average), and 2 independent experiments for RT packaging and virus
stability.



Fig. 5.Dimerization level of viral RNA isolated fromHIV-1HXB2 mutated at residues 25 to
28 of the viral protease, or from HIV-1 produced after cotransfecting HeLa cells with
wild-type and PR- proviral vectors at ratios ranging from 1:9 to 1.7:1. Experimental
conditions as in Fig. 4. The “D” marks the position of mature gRNA dimers such as the
dimers seen in WT virions. Dimeric gRNAs isolated from PR−, PR 1% and 50× virions
have an immature, slower mobility (Materials and methods).
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Wild-type gRNA dimerization yield despite a 30% CA/CA-p2 level

The minimal level of Pr55gag processing sufficient for wild-type-
like gRNA dimerization is unknown. Mutations Thr26-NSer and Ala28-
NSer, in the HIV-1 protease active site, reduce 4-fold and 50-fold,
respectively, the catalytic activity (kcat) of recombinant protease
against a decapeptide that mimics the protease-reverse-transcriptase
cleavage site (Rosé et al., 1995). We inserted these mutations in the
BH10 provirus to produce mutants termed 4× and 50×, respectively.
Various ratios of BH10 and protease-inactive (PR−) proviral DNAs
(from 1:9 to 1.7:1) were also cotransfected into cells. The resulting
mutant or composite HIV-1 particles were analyzed for the ability to
process Pr55gag and produce dimeric gRNAs (Figs. 2C and 5A). The
mutation Asp25-NArg, in the protease active site of PR− virions,
Table 2
Effect of mutations introduced at residues 25–28 of the HIV-1 protease, and effect of cotrans
processing and genomic RNA dimerization

Construct namea HXB2 in cotransfection PR− in cotransfection

1 HXB2 100 0
2 PR− 0 100
3 4× – –

4 50× – –

5 PR 1% 10 90
6 PR 5% 22 78
7 PR 10% 32 68
8 PR 15% 39 61
9 PR 20% 45 55
10 PR 25% 50 50
11 PR 40% 63 37

In columns 4 to 6, the values for HXB2 are arbitrarily set at 100, and the values for the mut
Genomic RNA dimerization numbers were obtained as in Table 1.

a Mutants 4× and 50× are Thr26Ser and Ala28Ser in the viral protease. PR− is defined in
b 4× and 50×: expected protease activity based on the reaction of recombinant proteasewit

activity based on the protease being active only as a dimer, on identical affinities of WT an
proteins in a random way.

c Margins of errors designate the standard error of 2 to 4 independent experiments for gRN
inactivates the viral protease (Gottlinger et al., 1989; Song et al., 2007),
which is a member of the aspartic protease family (Davies, 1990). The
composite virus particles were termed PR 1% to PR 40% (Fig. 2C;
Table 2), to indicate their expected average protease activity based on
simple theory (identical affinities of WT and Asp25-mutated
Pr160gag–pol for each other; assembly of coexpressed viral proteins
in a random way) and actual experimentation (Babé et al., 1995) (see
Materials and methods).

The proportion of CA/CA-p2 was 0% of WT level in PR− virions, 5%
in PR 1% virions, 11% in 50× virions, 28% in PR 5% virions, 38 to 42% in
PR 10% to PR 15% virions, 70 to 81% in PR 20% to PR 40% virions, and
90% of WT level in 4× virions (Table 2). Thus a 20% expected protease
activity suffices to produce viruses containing predominantlymatured
polyproteins, but not a 10% expected protease activity (PR 20% and PR
10% in Table 2).

In PR−, PR 1%, 50×, PR 5% and PR 20% virions, the percentage of
gRNA dimers was 60, 59, 69, 92 and 95% of WT, respectively, vs. a CA/
CA-p2 level of 0, 5, 11, 28 and 70% of WT (Table 2). Thus gRNA
dimerization dropped fromWT-like levels in PR 5% virions (28% ofWT
CA/CA-p2 level) to protease-inactive levels in PR 1% and 50× virions
(5–10% of WT CA/CA-p2 level). Genomic RNA dimerization was not
significantly improved after 50× viruses were incubated at 37 °C in
cell-free growthmedium for 24 h, while that seen in PR 5%, PR 10% and
PR 15% viruses was undistinguishable from WT (data not shown).

50% disabled NC per virus do not impair gRNA dimerization and do not
significantly impair HIV-1 replication

To gain insights into the minimum number of NC needed to
achieve aWT level of gRNA dimerization in isolated viruses, HeLa cells
were cotransfected with equimolar amounts of WT and NC-defective
proviral DNAs. The resulting composite HIV-1 particles were analyzed
for dimeric gRNA content, relative to non-composite NC-defective
HIV-1. The goal was to verify if the WT NC could rescue the defective
NC. NCp7 has 15 highly basic amino acid residues and only four highly
acidic ones. Its central portion consists of two zinc-containing motifs
(termed zinc fingers) that are 14-residue long, each, and are separated
by a 7-residue linker peptide (Kafaie et al., 2008).

Five NC mutations were studied by this cotransfection protocol:
ΔF1 and 3EF1 [they disabled the N-terminal zinc finger by deleting it
(ΔF1) or replacing its 3 highly basic residues (Lys14, Lys20 and Arg26)
by 3 glutamic acids], S3E and FVI (they disabled the linker region by
replacing ArgLysLys34 by GluGluGlu34 or PheValIle34, respectively),
and ΔF2 (deleted the second zinc finger). Each mutation strongly
fected wild-type and PR- proviral vectors in ratios ranging from 1:9 to 1.7:1, on Pr55gag

Expected protease activityb Pr55gag processingc gRNA dimerizationc

100% 100% 100
0 0 60±3
25% 92±2 97±2
2% 11±3 69±2
1% 5±3 59±1
5% 28±6 92±2

10% 38±5 94±2
15% 42±4 94±3
20% 70±12 95±2
25% 72±8 96±2
40% 81±7 100±2

ant viruses or those produced by cotransfections are expressed as % of wild-type level.

Fig. 4.
h a decapeptide substrate (Rosé et al., 1995). PR 1% to PR 40%: expected average protease
d Asp25-mutated PR160gag–pol for each other, and on assembly of coexpressed viral

A dimerization (3 on average), and 2 independent experiments for Pr55 gag processing.



Fig. 6. Dimerization level of viral RNA isolated from viruses produced by 1:1 co-transfections of NC-mutated and HIV-1HXB2 proviral DNAs. Experimental conditions and
interpretation of gel mobilities are as in Fig. 4 and Fig. 5. S3E+, 3EF1+, ΔF1+, (…) PR−/+ designates viruses resulting from the cotransfection of mutant (S3E, 3EF1, ΔF1, PR−, etc.) and
BH10 proviral vectors.

Fig. 7. Electron cryomicrographs showing the various morphologies seen in wild-type and mutant HIV-1 preparations. Ranging from 80 to 200 nm in size, HIV-1 virions were
classified in Table 3 as follows:

- One layer with core: one-layer membrane particle with a significant core which is typically conical (typical example shown in a), and one-layer membrane particle, typically
spherical with a usually off-centered small, irregular core (typical example shown in b).

- One-layer with no core: one-layer particle with no density inside (typical example shown in c), and particles for which it was not clear if one or several layers were present
(example in d).

- Two- or multiple-layer membrane particle with no significant density inside (typical example shown in e).

- Multiple layer membrane particles in a croissant shape (typical example shown in f).

- Two-layer membrane particle with a distinct density inside (typical example in g).

- One-layer membrane particle encasing an off-centered circular membrane-like vesicle (typical example in h).

- Irregular shapes (i.e. too large, too small, or bizarre shapes such as shown in i). Scale bar equals 200 nm.
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impaired gRNA dimerization in non-composite virions (Fig. 6, even
numbered lanes; Kafaie et al., 2008), and abolished viral replication
(Kafaie et al., 2008). However in composite HIV-1, regardless of the
cotransfected NC mutation, gRNA dimerization levels were indis-
tinguishable from those found for WT virions (Fig. 6, odd numbered
lanes). This indicates that the inability of the mutant NC to properly
stimulate gRNA dimerization was fully rescued by the 50% comple-
ment of WT NC. This is not due to rescue of hypothetically insufficient
Pr55gag processing, because the NC mutations that were studied did
not strongly affect Pr55gag processing (Kafaie et al., 2008). In addition,
the inability of the NC-mutated HIV-1 to replicate was fully rescued by
the 50% complement of WT NC (not shown). Since immature HIV-1 is
composed of about 4000 Pr55gag polyproteins (Benjamin et al., 2005;
Briggs et al., 2004), the results indicate that 2000 disabled NC per virus
do not impair gRNA dimerization and do not significantly impair HIV-
1 replication.

Destroying helix 1 of CA impairs gRNA dimerization, capsid formation
and viral replication in a dominant negative way, in contrast to
inactivating the NC linker

Mutation S3E abolishes core formation inside HIV-1 virions (Sheng
et al., 1997), suggesting that interaction between NC and RNA
influences virion morphology. Other NC mutations generate HIV-1
that are 80% immature in morphology, vs. 3% immature in WT
(Cimarelli et al., 2000a, 2000b; Poon et al., 1996). Since NC structure
influence capsid formation, we questioned whether CA structure
influenced NC-directed gRNA dimerization. To address this issue, we
constructed HIV-1 mutant SCA (short CA), in which residues 16 to 34
of CAwere replaced by an unrelated hexapeptide HisLeuThrLeuSerSer.
The purpose was to destroy the alpha helix 1 of CA and interfere with
the fullerene structure of the capsid [as well as with another type of
CA–CA interactions (Berthet-Colominas et al., 1999)] without impair-
ing virus production, which depends on an intact CA C-terminal
domain (Dorfman et al., 1994; Wang and Barklis, 1993). [The HIV-1
capsid appears to be largely composed of closed hexameric arrays of
capsid proteins. Each CA hexamer displays an inner ring of six N-
terminal domains (NTD), and an outer ring of six C-terminal domains
that connects to neighboring hexamers. NTD–NTD interactions are
mediated through alpha helices 1, 2 and 3 of each NTD, namely
residues 17–30, 35–43, and 49–58. These form an 18-helix bundle in
the center of the hexamer (Ganser-Porntillos et al., 2007; Mortuza
et al., 2004)].

Not surprisingly, the SCA mutation prevented viral replication
(Fig. 3). It also impaired cleavage at theMA–CA site located 15 residues
upstream such that 70% of the CA of SCA virions were present in p41
form, i.e. as polyprotein MA–CA-p2 (Fig. 2D). The most intriguing
finding was that SCA virions appeared nearly as gRNA dimerization
defective as PR− virions. Moreover, this gRNA dimerization defect was
not rescued by cotransfection with equimolar amounts of SCA and
Table 3
Distribution of virion morphologies, expressed as percentage of the total number of viruses

One-layer with
core (Panels a
and b, Fig. 7)

One-layer No
core (Panels c
and d, Fig. 7)

Two-layer No
core (Panel e,
Fig. 7)

Croissant shape
No core (Panel f
Fig. 7)

BH10 82 3 11 1
PR− 2 7 68 4
PR 25% 75 1 14 3
S3E 27 5 53 1
S3E+(1:1) 74 2 17 2
SCA 17 47 14 2
SCA+(1:1) 12 62 7 1

The pelleted viruses from each 48-hour transfection were analyzed by electron cryomicro
observers. Two of them did not knowwhich images corresponded towhich sample. Theywer
constructs were found only within the first 3 morphological categories. Most differences w
pooled the last 4 categories into one (probably named “aberrant”) because, together, they r
BH10 proviral DNAs. Specifically, the % of gRNA dimers was 65±3% and
73±2% ofWT in SCA and SCA+ virions, respectively (lanes 12–14 in Fig.
6). In sharp contrast, the dimerization defects exhibited by all of the
tested NC mutations were fully rescued (Fig. 6). Some gRNA bands
were somewhat diffuse, but not more diffuse than what was seen in
other mutants by us and others (Kafaie et al., 2008; Song et al., 2008,
and references therein).

Mature HIV-1 particles contain cores consisting of a conical protein
shell that is composed of about 1300 CA that encase the electron-dense
gRNAdimer complexedwithNCproteins (Benjamin et al., 2005; Briggs
et al., 2003). Electron cryomicroscopic analysis of isolated SCA virions
indicated an absence of visible cores in amajority (80–85%) of them, vs.
an absence of cores in 15–20% of WT virions (Fig. 7 and Table 3).
Because less thanone-half of themature CAare used to generate a core,
it is conceivable that the poor core formation seen in SCAvirions could
be rescued by cotransfection with equimolar amounts of WT proviral
DNAs. We compared the electron cryomicroscopic appearance of
mutants S3E, S3E+, SCA, SCA+, PR−, and PR 25%, relative to WT. [S3E+,
SCA+, PR 25% designates HIV-1 resulting from the cotransfection of
mutant (S3E, SCA, PR−, respectively) and BH10 proviral vectors at a
ratio of 1:1.] The results are shown in Fig. 7 and Table 3. There was no
significant difference in morphology between SCA and SCA+ virions,
between S3E+ and WT virions, and between PR 25% and WT virions.
Both SCA and SCA+ virionswere deficient in cores (∼15% of virions had
cores), while S3E+, PR 25% and WT virions were equally rich in cores
(75–80% of virions had cores). This suggests that SCA can dominantly
interfere (Herskowitz, 1987) with core formation and gRNA dimeriza-
tionwhile S3E and PR−mutations cannot. There was a very significant
difference in morphology between PR− and PR 25% virions (∼0% and
∼75% of virions with cores, respectively) and between S3E and S3E+
(∼25% and ∼75% of virions with cores, respectively). This indicates a
near total rescue of core formation when S3E or PR− proviral vectors
were cotransfected with BH10. Finally, SCA+ HIV-1 were replication-
inactive, while S3E+ virions replicated indistinguishably from WT
virions (not shown).

Discussion

In this manuscript we have examined the effects of NC and CA on
HIV-1 gRNA dimerization. Our results can be summarized as follows.
1) Removal of p1 from NCp9 is not needed for a WT level of gRNA
dimerization, but is essential for viral replication (p9 results; Table 1).
Thus, production of NCp7 and/or free p1 is essential for HIV-1
replication but none of these 2 proteins are required for gRNA
dimerization. 2) The chaperone activity of NCp15 is not sufficient for a
WT level of gRNA dimerization, because NCp15 stimulates gRNA
dimerization to a level intermediate between the levels seen in
protease-inactive and WT viruses (p15 result). 3) The poor dimeriza-
tion associated with non-maturation of NCp15 (p15 result) is rescued
when the NC of HIV-1 is 70% in NCp15 form and 30% in NCp7 form
analyzed

,
Two-layer with
core (Panel g,
Fig. 7)

Off-centered No
core (Panel h,
Fig. 7)

Irregular shape No
core (Panel I,
Fig. 7)

Total number
of viruses

0 2 1 194
0 15 4 138
0 5 2 290
0 10 4 179
2 2 1 210
2 12 6 258
2 12 5 177

scopy. Particles in the microscopic field of view were analyzed by four independent
e categorized as explained in Fig. 7. Themost significant differences between the various
ithin the 4 other morphological categories were non-significant. We could easily have
epresented only 13%, on average, of BH10, PR 25%, S3E, S3E+, SCA and SCA+ virions.



240 J. Kafaie et al. / Virology 385 (2009) 233–244
(p1–p6 result). This indicates that NCp9, free p6 and free p1 are not
required for gRNA dimerization. 4) A 50% complement of WT NC
(1 WT NC for 1 disabled NC) suffices for a WT level of gRNA
dimerization, regardless of the mutation in NC (Fig. 6). 5) A 30%
Pr55gag processing into CA/CA-p2 suffices for a WT level of gRNA
dimerization (PR 5% results), but a 10% processing stimulates
dimerization barely more than unprocessed Pr55gag (50× results).
6) Viral replication requires processing of both NCp15 cleavage sites
(Fig. 3); a WT level of gRNA dimerization requires processing at only
one of these sites, nomatter which one. 7) It is possible to inhibit gRNA
dimerization by mutating the capsid sequence; this mutation has
dominant negative effects on viral core formation, gRNA dimerization
and viral replication.

The p9mutant is intriguing because it failed to replicate. To explain
this phenomenon, we note that, in vitro, NCp9 is less efficient than
NCp7 or NCp15 as a nucleic acid chaperone in processes requiring both
nucleic acid destabilization and nucleic acid annealing (Cruceanu
et al., 2006a). Compared to NCp7 and NCp15, NCp9 is more efficient at
binding and aggregating double-stranded nucleic acids (Mirambeau
et al., 2006), but less efficient at rapidly binding and dissociating from
nucleic acids (Cruceanu et al., 2006a). This relative inability to
facilitate numerous nucleic acid rearrangements by means of a rapid
kinetics of protein–nucleic acid interaction (Cruceanu et al., 2006b),
may strongly disadvantage the p9 mutant in processes such as strand
transfer during reverse transcription. Paradoxically, NCp9, or a variant
1 amino acid longer, can be more active than NCp7 in some RT-
associated in vitro assays such as RT-directed excision repair (Bampi
et al., 2006), RNase H activity of a truncated RT (Cameron et al., 1997),
or recruitment of RT into nucleoprotein complexes (Lener et al., 1998).

To explain how gRNA dimerization was impaired in the p15
mutant, we note that NCp15 has as much affinity for single-stranded
nucleic acids as NCp7 (Cruceanu et al., 2006a) but is inefficient at
aggregating nucleic acids, no matter whether they are single-stranded
or double-stranded (Mirambeau et al., 2006). This deficiency is
consistent with the poor production of gRNA dimers seen in p15
virions.

The replication defect of the p1–p6 mutant is in good agreement
with replication defects previously observed with two different p1–p6
cleavage mutants (Yu et al., 1995; Coren et al., 2007). A severe defect
during or just before proviral DNA integration has been noted in p15
and p1–p6 cleavagemutants comparable to ours (Coren et al., 2007). It
has been suggested that a lack of NCp9 was responsible for this
integration defect (Coren et al., 2007).

Putting together our results and Song et al. (2007), it follows that a
30% level of CA/CA-p2 in grown-up viruses (48 h post transfection)
yields a greater level of gRNA dimers than an 80% level of CA/CA-p2 in
newly released viruses (Song et al., 2007). [In newly released HIV-1,
the percentage of gRNA dimers was 80% of the level seen in N2 h old
HIV-1 (Song et al., 2007).] To reconcile these results, we suggest that
gRNA dimerization yield responds neither instantaneously nor within
minutes to the number of processed Pr55gag made available by the
virus. The proportion of gRNA dimers would depend on a combination
of the number of processed Pr55gag available plus the time (in tens of
minutes or in hours) they had to act on gRNA. A large number of
processed Pr55gag can dimerize gRNA in a short time (Song et al.,
2007); but a smaller number can achieve the same or better results
albeit in viruses that are many hours older (this paper). It would be
interesting to know the earliest age at which PR 5% HIV-1 contain a
mature level of gRNA dimers. Given the contrast between the effects of
a 10% and a 30% CA/CA-p2 level on gRNA dimerization, it seems
possible that the gRNA of 6 h old PR 5% virions may be less dimeric
than in newly released virions.

Our data are consistent with previous experiments showing that a
20% complement of WT NC suffices for a WT level of gRNA packaging
(Schwartz et al., 1997), and that sequential passaging of an HIV-1NL4–3
mutant similar to the p9 mutant restored the NCp7–p1 site within
4 weeks (Coren et al., 2007). The latter result supports our finding that
proteolytic processing at the NCp7–p1 junction is essential for HIV-
1HXB2 replication (Fig. 3). The HIV-1NL4–3 mutant, however, replicated
much faster than the p9 mutant. It is known that some mutations in
NC, though less than a majority of them, impair HIV-1HXB2 more than
HIV-1NL4–3 (Cimarelli and Luban, 2001; Kafaie et al., 2008). Note also
that substituting leucine for Phe16 of p1 in HIV-1HXB2 impeded
cleavage at the upstream NCp7–p1 junction (p1p6 result), while
substituting serine did not, in HIV-1NL4–3 (Coren et al., 2007).

Reducing the proportion of CA/CA-p2 to 80–85% of WT level, by
means of suboptimal PI concentrations, does not impair gRNA
dimerization (Moore et al., 2008), and correlates with altered virion
morphology, notably the presence of electron dense material on one
side, rather than in or near the center, of the virus particle (Kageyama
et al., 1994; Kaplan et al., 1993; Moore et al., 2008). Our data were
obtained by means of protease mutations or cotransfection studies,
and they extend these results by showing that a 30% —but not a 10%—
level of CA/CA-p2 is compatible with full gRNA dimerization.

Why is the mature CA level higher than the expected protease
activity? Namely, why is there a 5% CA/CA-p2 level in PR 1% virions, a
28% level in PR 5% virions, and a 70% level in PR 20% virions, when the
protease activity of PR 1%, 5%, and 20% virions is expected to be 1%, 5%,
and 20% of WT, respectively? The answer is most likely that protease-
directed Pr55gag maturation is completed in WT long before viruses
reach 48 h of age, but is still in the linear range of its kinetics inmutant
50× and in most virions resulting from cotransfected PR− and WT
proviral DNAs. Given that PR 20% HIV-1 yield a 70% CA–CA-p2 level,
and assuming linearity of Pr55gag processing kinetics over the range
PR 1% to 20%, it follows that PR 10%, 5% and 1% cotransfections should
yield 35%, 18% and 4% processing levels. This is not significantly
different from to the 38%, 28% and 5% that were experimentally seen
(Table 2).

Since Pr55gag processing was more complete in 4× HIV-1 than in
PR 40% HIV-1 (Fig. 2C; Table 2), the Thr26Ser protease mutant might
have been better termed 2× rather than 4×, to reflect our observation
that its protease activity seems to be at least 50% of WT. This is
supported by the finding that the kcat of the 4× recombinant HIV-1
protease is only 1.5-fold lower than WT against a peptide mimicking
the CA-p2 junction (Konvalinka et al., 1995). In agreement with our
results, CA/CA-p2 levels of b10% and 80–90% of WT were previously
reported for 50× (Rosé et al., 1995) and 4× virions (Konvalinka et al.,
1995; Rosé et al., 1995), respectively.

Several results (e.g. large gRNA dimerization yield in PR 5% virions;
rescue of gRNA dimerization by a 50% complement of WT NC) indicate
that mutant and BH10 Pr55gag/Pr160gag–pol polyproteins produced
by cotransfection do not assemble separately. The results are
compatible with assembly of the coexpressed mutant and BH10
polyproteins in a wholly or partly random way.

We have shown that deleting alpha helix 1 of CA, and some
adjacent residues, profoundly compromises HIV-1 in its ability to
dimerize gRNA. This represents the first evidence that a capsid
mutation can affect gRNA dimerization. This surprising effect is
probably not due to the considerable presence of p41 in the SCA
mutant, because specifically blocking processing at the MA–CA
cleavage site does not impair gRNA dimerization (Shehu-Xhilaga
et al., 2001), though it results in virions containing no conical capsid
shell (Gottlinger et al., 1989). The poor gRNA dimerization seen in SCA
virions may be related to the inability of the SCA mutation to
efficiently stimulate core formation. This inability morphologically
distinguishes SCAvirions fromHIV-1 specifically unable to process the
MA–CA cleavage site (Gottlinger et al., 1989). Since the HIV-1 capsid
shell is 5 to 10 times less voluminous than the virus (Benjamin et al.,
2005; Briggs et al., 2003), and since unstructured cores are N10 times
less voluminous than the virus, the concentration of gRNA in the SCA
mutant may be an order of magnitude lower than in WT. The same
may befall NCp15/p9/p7, if they are assumed enclosed by the capsid in



Table 4
Primers used to introduce intended mutations in HIV-1HXB2

Construct name Primer (all primers are sense)

p9 5′gattgtactgagagacaggcttcttttttagggaagatctggccttcc
p1p6 5′cctacaagggaaggccagggaatcttcttcagagcagaccagagccaac
4× 5′ctaaaggaagctctattagattcaggagcagatgatacag
50× 5′ggaagctctattagatacaggatcagatgatacagtattagaag

All primers were synthesized by ACGT corp. in Toronto (Canada).
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WT. Alternatively, the SCA mutation may act on gRNA dimerization at
the RNA level. However this seems unlikely because it would
contradict the current understanding that there is no gRNA dimeriza-
tion site located 3′ of nt 500 (the midmatrix section) of gRNA (Song
et al., 2008). SCA may also have an idiosyncratic effect: in addition to
inactivating a function of theWTcapsid protein, it may endowCAwith
an interfering activity unconnected to the native function of CA.

Point mutations in alpha helices 1–3 of the NTD of CA (e.g. R18A/
N21A, A22D, E28A/E29A, M39D, A42D, D51A) prohibit formation of
conical capsids, but may allow formation of more or less distinct cores
in HIV-NL4–3 (Von Schwedler et al., 1998, 2003). Similarly, mutations
W23A, F40A and D51A (Tang et al., 2001), deletion of residues 19–21
(Dorfman et al., 1994), or small insertions between amino acid
residues 11/12, 19/21 or 51/52 of CA (Reicin et al., 1996) result in
particles containing no cone-shaped cores, and even no defined cores
in the case of W23A (Tang et al., 2001). It will be interesting to verify
whether smaller mutations in helices 1 or 2 of CA, such as the point
mutations studied by Tang et al. (2001), or Von Schwedler et al.
(2003), impair gRNA dimerization.

Materials and methods

Plasmid construction

Proviral vector pSVC21.BH10 encodes a HIV-1HXB2 cDNA clone.
Mutant proviral vectors, except p15, were constructed from pSVC21.
BH10 by PCR mutagenesis, using primers described in Table 4. The
nucleotide positions are based on the sequence of HIV-1 gRNA. To
prepare mutants p9, p1p6, 4× and 50×, a DNA fragment extending
from Apa I to Bcl restriction sites (Amersham) was synthesized with
the desired mutations by PCR, and ligated into pSVC21.BH10. Mutant
p15 was constructed from mutant p9, using the primers for the p1p6
mutant. The PCR-produced DNA fragment was then ligated into
pSVC21.BH10. To prepare mutant SCA, restriction sites Nar I and Spe I
were usedwith the primers depicted in Table 4. Aftermutagenesis and
ligation, all mutated DNA fragments produced by PCR were com-
pletely sequenced (ACGT Inc., Toronto) to verify that the desired
mutation, and no other mutation, was introduced by the mutagenic
procedure.

Cell culture and transfections

HeLa Cells were cultured at 37 °C in a medium consisting of
Dulbecco's modified Eagle's medium (DMEM), 10% fetal calf serum,
ampicillin and streptomycin (Invitrogen). The PolyFect transfection
reagent (Qiagen) was used to transfect 9 μg of proviral DNA into 50% to
70% confluent HeLa cells in 100- by 20-mm petri dishes containing
10 ml of culture medium. In cotransfections, the total amount of
proviral DNA transfected remained 9 μg.

Calculation of expected protease activity in composite HIV-1

Viruses produced by cotransfection cannot be uniform in composi-
tion, even if all coexpressed viral proteins could coassemble in a
random way. However, the larger the number of transcribed proviral
DNAs per successfully transfected cell, the smaller the variance in
composition will be. Transfected HeLa cells typically contain 105
exogenous plasmids per cell and 103 exogenous plasmids per nucleus
(Ludtke et al., 2002; Tseng et al., 1997; Vaughan et al., 2006)). This may
translate into ∼300 transcribed proviral DNAs per successfully
transfected cell, based on observing that microinjection of 3 protein-
coding plasmids per nucleus generates detectable amounts of
exogenous proteins in ≥50% of microinjected HeLa cells (Ludtke
et al., 2002). Assuming identical affinities between WT and Asp25-
mutated Pr160gag–pol (Babé et al., 1995), and random coassembly of
the coexpressed viral proteins, the names we gave to the composite
protease-defective HIV-1 (PR 1%, PR 5%, etc.) should closely represent
the average protease activity of the HIV-1 population produced by
cells containing ≥40 transcribed proviral DNAs. If there were only 10
transcribed proviral DNAs per cell, PR 1%, PR 25% and PR 40% HIV-1
would only need to be renamed PR 1.9%, PR 28% and PR 50%,
respectively (Spiegel, 1961). These alternative numbers would not
change any conclusion of this paper.

The HIV-1 protease is active only as a dimer, and each monomer
contributes, via Asp25, one of the two catalytic aspartic acid residues
required in the active site of the enzyme (Babé et al., 1995; DiIanni
et al., 1990; Krausslich, 1991; Rose et al., 1996a). Thus the protease
activity yielded by the coexpression of BH10 and PR− proviral DNAs is
related to the proportion of WT protease dimers in the composite
viruses. For example, cotransfection of BH10 and PR− proviral DNAs at
a 1 to 1 ratio and assembly of synthesized viral proteins in a random
way should yield an activity that is 25% of WT on average (Babé et al.,
1995), or barely larger (see above), even though, statistically, a
minority of produced viruses contain an equal number of WT and
Asp25-mutated proteases (a minority of successfully transfected cells
will contain an equal number of BH10 and PR− proviral DNAs, but on
average they will).

Viral replication assay

Mutant proviruses and the parental BH10 provirus were indepen-
dently transfected into HeLa cells. Virus-containing supernatantswere
collected 48 h post-transfection and passed through 0.2 μm pore-size
cellulose acetate filters to remove the cells. The CAp24 content of
these clarified supernatants was measured using an ELISA kit
(Vironostika HIV-1 Antigen, Biomerieux). Equal amount of the super-
natants (10 ng of CAp24 content) were used to infect equal numbers of
MT2 cells (6×106 cells in 10 ml of RPMI 1640 medium, 10% fetal calf
serum, ampicillin and streptomycin (Invitrogen), per petri dish). In the
human T-cell line MT2, only a short time lag separates infection from
viral replication (Harada et al., 1985). After 2 h, cells were washed
twice to remove unbound viruses and were then maintained in
serum-supplemented medium. On every other day, cells were diluted
1 in 2 into fresh medium and the RT activity in the supernatant of the
removed medium was determined. RT activity measurements were
made over a period of 14 days.

RT activity

The exogenous (oligo (dT) directed) RT activity was measured by
adding 40 μl of RT cocktail (60 mM Tris–HCl [pH 7.9], 180 mM KCl,
6 mM MgCl2, 6 mM dithiothreitol, 0.6 mM EGTA, 0.12% Triton X-100,
6 μg/ml oligo (dT), 12 μg/ml poly(rA), 0.05 mM 3 H dTTP) to a 10 μl
sample. After incubation for 2 h at 37 °C, the reaction was stopped
with cold 10% TCA (150 μl per well), and precipitated for 30min at 4 °C.
The precipitate was blotted, washed and scintillation counted.

Virus purification and isolation of HIV-1 viral RNA

Filtered virus-containing supernatants were centrifuged (SW41
rotor, 35 000 rpm, 4 °C, 1 h), through a 2 ml 20% (w/v) sucrose cushion
in phosphate-buffered saline (PBS). The virus pellet was dissolved in
400 μl sterile lysis buffer [50 mM Tris (pH7.4), 50 mM NaCl, 10 mM
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EDTA, 1% (w/v) SDS, 50 μg tRNA per ml, and 100 μg proteinase K per
ml], and extracted twice at 4 °C with an equal volume of buffer-
saturated phenol–chloroform–isoamylalcohol (25:24:1) (Invitrogen).
The aqueous phase was precipitated overnight at −80 °C with 0.1
volume of 3 M sodium acetate (pH 5.2) and 2.5 volumes of 95%
ethanol, and centrifuged at 14,000 rpm in an Eppendorf 5145 micro
centrifuge at 4 °C for 30 min. The gRNA pellet was rinsed with 70%
ethanol, and dissolved in 10 μl buffer S (10 mM Tris (pH 7.5), 100 mM
NaCl, 10 mM EDTA and 1% SDS) (Song et al., 2007).

Electrophoretic analysis of HIV-1 gRNA

The gRNA was electrophoresed under non-denaturing conditions
and identified by Northern (RNA) blot analysis (Song et al., 2007).
Electrophoretic conditions were 4 V/cm for 4 h on a 1% (w/v) agarose
gel in TBE2 (89 mM Tris, 89 mM Borate and 2 mM EDTA, pH 8.3) at
4 °C. After electrophoresis, the gel was heated at 65 °C for 30 min in
10% (w/v) formaldehyde, and the embedded RNAs were diffusion
transferred to a Hybond N+ nylon membrane (Amersham). After
drying at room temperature for 2 h, crosslinking (3000 j in a UV
Stratalinker), and prehybridization at 42 °C for 3 h in 6× SSPE (1× SSPE
is 0.15 M NaCl, 10 mM NaH2PO4, and 1 mM EDTA {pH 7.4}), 50% (w/v)
deionized formamide, 10% dextran sulfate, 1.5% SDS, 5× Denhardt's
reagent, 100 μg/ml salmon sperm DNA, the membrane was hybridized
overnight in prehybridization buffer devoid of Denhardt's reagent in a
rotating hybridization oven at 42 °C to approximately 25 μCi of 35S-
labeled antisense RNA 636–296 (a 356-nt RNA that is the antisense of
the 296 to 636 region of the HIV-1 genome prepared with the SP6
Megascript kit [Ambion]) (Laughrea and Jetté, 1996). This was
followed by two 30 min washes in 1× SSC [1× SSC is 0.15 M NaCl
plus 0.015 M sodium citrate]– 0.1% SDS at room temperature and
37 °C, and one 30 minwash in 0.2× SSC–0.1% SDS at 45 °C (Laughrea et
al., 1997), exposure to a Kodak BioMax MR X-ray film, and
densitometric analysis.

Densitometric analysis

The autoradiograms were scanned and analysed with the NIH
1.6.3 program. Care was taken to scan variously exposed films to
guard against over-exposed or under-exposed bands or spots. The
monomer and dimer bands were considered of equal width. That
width was approximately twice the vertical size of the D and M
letters used to indicate dimers and monomers in the relevant
figures. Material located elsewhere in the gels was not taken into
account in the calculation of the percentage of dimers. On the left
side of each Northern blot, “D” indicates the position of WT (i.e.
mature) gRNA dimers. Genomic RNA dimers from PR 1% and 50×
virions migrated 20% slower than WT gRNA dimers, and were
therefore located above the “D” marker. In other words, they
migrated like PR− gRNA dimers (Song et al., 2007, and references
therein), which are also called immature dimers. The portion of the
densitometric profile taken as representing the dimer or monomer
band was centered on the peak of dimer or monomer intensity, no
matter the respective positions of the dimer and monomer peaks.
The diffuse character of many bands may reflect conformational
diversity among the gRNA molecules. It is not due to poor resolution
of the gels because heat denatured gRNAs formed a sharp band at
the monomer position (not shown).

Genomic RNA packaging

The amount of gRNA per unit CAp24 of virus was quantitated by
hybridization with antisense RNA 636–296 using a dot–blot assay.
Virus pellets were resuspended in 400 μl of Trizol LS reagent
(Invitrogen), and incubated at 30 °C for 5 min. 100 μl of chloroform
was added, followed by shaking for 15 s and incubation at room
temperature for 15 min. After centrifugation (12,000 ×g, 15 min, 4 °C),
the colorless aqueous upper phase was mixed with 250 μl of isopropyl
alcohol, incubated at room temperature for 10 min and centrifuged
again. The precipitated RNA was washed once with 500 μl of 70%
ethanol, pelleted (7500 ×g, 5 min, 4 °C), air-dried, dissolved in 10 μl
RNase-free water and stored at −20 °C. Serial 10-fold dilutions of wild
type RNA samples, normalized for input virion CAp24, were used to
construct a standard curve. 29 μl of buffer F (100% deionized
formamide, 20 μl; 20× SSC, 2 μl; 37% formaldehyde, 7 μl) was added
to each sample, followed by incubation (68 °C, 15 min) and chilling on
ice. After adding 78 μl of 20× SSC buffer, samples were vacuum-suction
transferred to a Hybond N+ nylon membrane (Amersham) sand-
wiched within a Hybri-Dot filtration manifold (Bethesda Research
Laboratories). The wells were washed twice with 1 ml of 10× SSC, and
suction continued for a further 5 min to dry the membrane. The
membrane was removed, dried for 4 h, cross-linked, pre-hybridized,
hybridized, autoradiographed and scanned as for Northern blot
analysis (above). To confirm the scans, each individual spot of the
nylon membrane was excised and scintillation counted.

Virus stability and RT packaging

1.2 ml of filtered virus-containing supernatant was pelleted
through a 0.3 ml 20% sucrose cushion in the TL-100 Beckman
ultracentrifuge (TLA 55 rotor, 45,000 rpm, 1 h, 4 °C). The virus pellet
was dissolved in 10 μl of PBS and its CAp24 content was measured
using an ELISA kit (Vironostika HIV-1 Antigen, Biomerieux). The CA
content of the purified viruses divided by the CA content of the 48 h
culture supernatant, relative to the ratio found in WT, was taken as a
measure of virus stability (Wang and Aldovini, 2002; Wang et al.,
2004). The ratio pellet/supernatant was 0.43±0.07 in WT (this was
taken to mean 100 in Table 1).

The exogenous RT activity of the pelleted viruses divided by their
CA content, relative to the ratio found in WT, was interpreted as RT
packaging.

Immunoblots and Pr55gag proteolytic maturation

At 48 h post-transfection, cells were lysed in ice-cold NP-40
containing buffer (100 mM NaCl, 10 mM Tris, 1 mM EDTA, 0.5% NP-
40, and protease inhibitor cocktail [Roche]). Supernatants were
cleared by centrifugation at 3000 ×g and filtered (0.22 μm). Viruses
were then concentrated through a sucrose cushion by ultracentrifu-
gation. Equal amounts of viruses (judged by CAp24-ELISA) were lysed
in the above buffer and subjected to SDS-polyacrylamide gel
electrophoresis. Viral proteins were detected by immunoblotting
using an enhanced chemiluminescence immunoblot detection kit
(Amersham). A rabbit anti-capsid antibody (ABT-Trinity Biotechnol-
ogy, CA, USA), as well as a rabbit NCp7 antiserum (kind gift from R. J.
Gorelick), were used for protein recognition. The signals for CA-
containing or NC-containing proteins were quantitated by densito-
metric scanning and analysed with the NIH 1.6.3 program. The signal
obtained from the CA/CA-p2 band was divided by the total signal
obtained from all CA-containing proteins, to calculate what is
reported as Pr55gag processing level.

Electron cryomicroscopy

5 μl of purified viruses were added to glow-discharged EM holey
carbon grids and were blotted and frozen hydrated by plunging into a
bath of liquid ethane slush (Dubouchet et al., 1988). They were stored
under liquid nitrogen temperature until transfer to a 626 Single Tilt
Cryotransfer System (Gatan Inc.) and observed with a FEI G2 F20 cryo-
STEMmicroscope operated at 200 kV (FEI, Inc). Images were recorded
on a Gatan Ultrascan 4k×4k Digital (CCD) Camera System Camera at a
nominal magnification of 29,000× at a defocus level of −2.5 to −3.5 μm.
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