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In this paper we consider the class of the invex function introduced by Hanson.
We show that under certain condition an invex function defined on an invex set A
is preinvex on A. Similarly, a quasiinvex function defined on an invex set A is pre-
quasiinvex. © 1995 Academic Press, Inc.

1. INTRODUCTION
In 1981 Hanson [3] introduced a class of functions with convex like
property. This class is defined as follows.

DeriNiTION 1.1. We say that a differentiable function f: R* — R
belongs to Hanson’s class (or satisfies Hanson’s condition) if there exists
a function n : R™ X R*— R" such that for any x, y € R"

J&x) = f(y) = (mx, y))' VAy), (1.1

where V f(y) is the gradient vector of fat y and for any column vector a, a'
denotes its row transpose.

The importance of Hanson's class of functions in mathematical pro-
gramming is due to the following theorem observed by Hanson [3].

THEOREM L.1. Minimize f(x) subject to

gilx) =0, l=i<m, (1.2)
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where f, g;: R"— R, 1 = i = m, are once differentiable functions. Let ¥ €
S ={x|gilx) =0, 1 =i=< m}and let ¥ satisfy the Karush Kuhn Tucker
conditions [5, 6] of optimality. Then X is a minimizer of f over §.

The name invex with respect to 7 (a short form for invariant convex)
has been given to a function satisfying the Hanson property with the
function i by Craven [2]. This is because, if ¢ : R*— R" is a differentiable
and invertible transformation f satisfies the Hanson property with n iff f°
¢ satisfies the Hanson property with n(x, y) = J3! n(d(x), ¢(y)), where
J3! denotes the Jacobian of ¢ .

DeriNITION 1.2, Let f: R" — R. We say that fis pseudoinvex with
respecttomn : R" X R"— R" if

(n(x, Y)'VI(y) = 0 = flx) = f(y).

DefFINITION 1.3. Let f: R* — R be differentiable. We say that f is
quasiinvex with respect to n, where n : R* X R" — R, if

f) = f(y) 2 (nx, Y)VAy) =0.

In this note we study invex sets. Although there are examples of such
sets in the literature, they are mostly in R. See Weir and Mond [8]. We
show that how to build such sets into R" using invex sets in a lower
dimensional space.

The main results proved in this note relate a differentiable function
satisfying Hanson condition to a condition called preinvexity by Jeyaku-
mar [4]. The notion of a preinvex function is defined in the next section,
which also presents the main results.

2. INVEX SETS

DEFINITION 2.1. Wecall a set A C R"invex with respect to a given n:
Rr > R"— R if

x,yEA,OSAs1:>y+)m'(x,y)EA.

Remark2.1. ltis to be noted that any set in R" is invex with respect to
n{x,y) =0V x € R", y € R". However, the only function f: R"— Rinvex
with respect to 7 is the trivial function f(x) = ¢ V x € R”, where c is a real
number.

The definition essentially says that there is a path starting from y which
is contained in A. We do not require that x should be one of the end points
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of the path. However, if we demand that x should be an end point of the
path for every pair x, y then n(x, y) = x — y, reducing to convexity.

ExaMpLE 2.1. The following is an example of a bounded invex set in
R, which is invex with respect to a nontrivial n : R X R — R. Let us
consider the bounded set [—7, ~2] U [2, 10]. This set is a bounded invex
set with respect to 7 given as

nx,y=x-yx=0,y=0
X,y =x—-y,x=<0,y=0
nx,y)=-7-y,x=0,y=0
nx,y)=2-y,x=0,y=0.
Examples of an invex set and an invex function in R have been given in

Weir and Mond [8]. The following proposition enables us to construct
invex sets in R", starting from an invex set in R.

ProrosSITION 2.1. Suppose that S| C R, S, C R such that S, is invex
withrespectton, : R X R— R and S, is invex with respecttomn, . R X R —
R. Then S, X 8§, C RYis invex with respect ton : R? X R?— R? defined by

(le .Vl) (m(xl, yl))
n = :
X2, ¥2 n2(x2, ¥2)

Proof. This is easy to verify.

ExaMPLE 2.2. The above proposition shows that the following set in
R? is invex with respect to m:

Let us consider the invex sets S, =[5, —2]U [2,7], §, = [-7, -2] U
[2, 10] which are invex with respect to m, 12, respectively, where n, and
7, are given as

N, y)=x—-y,x=0,y=0 Mmx, ) =x—-y,x=0,y=0
m,y)=x-y,x=0y=0 nEy) =x-—y,x=0,y=0
mx,y)=-5-y,x=0,y=0 nx,y)=-7-y,x=0,y=0
mx,y)=2-y,x=0,y=0 nHx,y)=2-y,x=0,y=0.

Clearly, S; X S, is invex with respect ton = (’,”,;).

The following is an example of an invex set in R? which is not a carte-
sian product of two invex sets in R.
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ExaMPLE 2.3. Let us consider the set {(u, v) |u =0, v=0,u + v =3}
U, ) | u=0,v=0,3u -2v=9,u=<5} Alsolet yp = (7). This set
is invex with respect to the function 7 specified as

N =X~ Y, 0=x=30=y=3
M= X2 — Y2, 0=x;=0C63-x),0=y,=3-Xx)

m =X~ Yn 3=x=(B+3x),3=y = (3 + 2vy)
M2 = X2 — Y2, 0=xn=3,0=sy,=<3

m= -y, 3=x;=(B+%x),0=y =3
n = =y, OSX2S3,0<_Y (3—3'1)
m=73-y, 0=x,=33=y =G+
m = —ys 0=x,=(3-x),0=y,=3.

The general problem of identifying classes of invex sets in R” that are
useful in the theory of optimization remains open. In what follows we
consider nondifferentiable functions which have a convex like property
over an invex set. Such functions have been called preinvex by Jeyaku-
mar (4].

DEFINITION 2.2. Let A C R"be an invex set, with respect ton : R" X
R"— R". Let f: A — R. We say that fis preinvex if f(x2 + An(x!, x2)) =
MO + (1 - MNfD), Vi, xEA 0=)\=1.

DEFINITION 2.3. Let A C R" be an invex set, with respect ton : R* X
R"— R". We say that fis prequasiinvex with respect to 5 if x', x* € A,
0 = )\ = 1, implies that f(x* + An(x!, x2)) = max(f(x!), f(x?) for all x,,
nEAI=A=1.

Also we say that fis prepseudoinvex with respect to n if f(x!) < f(x?) =
SO+ An(x!, xD)) = MO + M1 = MDb(x!, x) forall 0 < A < 1, where b :
R" X R"—> R!is a positive function. These definitions are due to Pini [7].

Pini {7] shows that if fis defined on an invex set A and if it is preinvex
and differentiable then fis also invex with respect to n. The converse is
not true in general and Pini [7] gives an example.

In what follows, we shall show that with the following condition im-
posed on 7, a differentiable function which is invex on A, with respect to
7, is also preinvex.

Condition C. Let m : R® X R" — R", we say that the function 7
satisfies the condition C if for any x', x2,

n(x?, x2 + Ap(x', X)) = —Aqn(x!, x?),
nlx!, x2 + A, x1) = (1 = Mm(x!, x?)

foral0 =X = 1.
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THEOREM 2.1. Suppose that A is a preinvex set with respect to v and
suppose that f : X — R is differentiable where X is open and X 2 A.
Further suppose that f is invex with respect to n on A and that m satisfies
condition C. Then f is preinvex with respect to n on A.

Proof. Suppose that x!, x>’ € A. Let 0 < A < | be given and look at ¥ =
x2 + Anix', x?). Note that ¥ € A. By, the invexity of f we have

fixh) = f(&) = n(x!, X)'Vf(x). (2.1)
Similarly, the invexity condition applied to the pair x2, ¥ yields
f(x3) = f(X) = n(x, X)) Vf(X). (2.2)

Now, multiplying (2.1) by A and (2.2) by (1 — A) and adding, we note that
M) + (1 = MfD) — fIX) = (!, D) + (1 — Mn?, X)'Vf(X). How-
ever, by condition C, An(x!, X)' + (I — Mn(x2, ¥) = 0. Hence, the
conclusion of the theorem follows.

Remark 2.2. The above proof is similar to the proof in the convex
case.

Similarly, we can prove the following.
THEOREM 2.2. Let A C R" be invex with respecttomandlet f: X — R
be differentiable on X, where X is an open set containing A. Suppose that

[ is quasiinvex with respect to m on A and that v satisfies condition C.
Then f is prequasiinvex on A.

Proof. Suppose that x!, x> € A and let f(x!) < f(x?). Consider the set
Q={x|x=x+ A, x), flx) > f(x), 0 <\ = 1}.

In order to show that fis prequasiinvex, we have to show that Q) = ¢.
Note that if ) # ¢ then by, continuity of f, the set

Q ={x|x=x+ Q' 1), f(x) > f(x), 0 <\ < 1}

is also nonempty. Hence, it is sufficient to show that ' = ¢, to complete
the proof.

Suppose now that ¥ € }'. We then have ¥ = x2 + An(x', x%), for some
0 < X < 1and f(¥) > f(x}) = f(x"). By the definition of quasiinvexity it
follows, considering the pair ¥ and x', that

(n(x!, T)VFE) < 0. (2.3)
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Similarly, considering the pair x* and ¥, it follows that

(n(?, X)) Vf(x) = 0. (2.4)
Hence by condition C, we have

—Ap(x!, x)'VfE) = 0 (2.5)
and

(1 — M, XD)Vf(E) = 0. (2.6)

Now (2.5) and (2.6), together with the fact that 0 < A<, imply that

n(x?, x')'Vf(x) = 0. (2.7

Note that (2.7) holds for any ¥ € Q’. Now suppose that {}' # ¢. Let
X € ' and let

= x4 apx!, x).

By the continuity of f we can find \* < A < A < I such that for all A €
(A*, A), we have

FO2 + An(x!, x2) > fx?),
FGE + Mqxt, xD) = f(xd)

(It is possible that A* = 0.) Let A(A) = f(x* + An(x', x?)); we have h(A*) =
). )

Now, by the mean value theorem applied to the function 4 : [A*, A] we
have

. dh
hV) = ho) = =

where A € (A%, ):) or

FO2 + A, x) = f) = qx!, D)V + An(x, x).
The right-hand side is positive by our hypothesis, but the left-hand size is
zero by (2.7), as x* + Aqn(x', x¥) € Q, by construction; hence, we have a

contradiction. The proof follows in this case. The proof is similar in case

f(x?) = flxh).
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Remark 2.3. It is easy to show that a differentiable function which is
pre-quasiinvex with respect to 0, on a set A which is invex with respect to
7, is also quasiinvex. Our theorem 2.2 is a converse of this under condi-
tion C.

COROLLARY 2.1. Suppose that g : R" — R is quasiinvex with respect
to m. Further, suppose that condition C is satisfies by m then § =
{x | g(x) =< 0} is also invex with respect to 7.

Proof. This is clear from pre-quasiinvexity of g under the condition of
the corollary.

The above corollary is useful in constrained minimization. We can
easily show the following result.

THEOREM 2.3. Let f: R"— R be a differentiable and pre-pseudoinvex
Junction on an invex set A with respect to a function v : R" X R" — R",
Then f is quasiinvex with respect to n.

THEOREM 2.4. If f: R"— R is pre-pseudoinvex then f is pre-quasiin-
vex with respect to the same 7.

THEOREM 2.5. Let f: R" — R be a pre-pseudoinvex function with
respect to . Also assume that ¢ : R — R is a nondecreasing function.
Then, the composite function ¢of is pre-pseudoinvex with respect to 7.

THEOREM 2.6. Let f: R" — R be a pre-pseudoinvex function on an
invex set A C R" with respect ton : R" X R"— R". Assume that n(x, y) #
0 whenever x # y. Then every strict local minimizer of the function f is
also a strict global minimizer. The set of points which are strict global
minimizers is invex with respect to 7.

Remark 2.4. Like pre-pseudoiinvexity the above two theorems also
hold in the case of pre-quasiinvexity (see Pini [7]).

In the following example we can verify that condition C holds. This
shows that condition C may hold for a large class of functions m, rather
than just for the trivial case n(x, y) = x — y.

ExampLE 2.4. Consider Example 2.1 for the bounded set [-7, —2] U
[2, 10]. In this set condition C holds with respect to % given as
n(x, y) =x -y, x=0,y=0
nx, y) =x -y, x=0,y=0
nx,y)=-7-y, x=0,y=0
Nnx,y) =2 -y, x=0,y=0.
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