
Structure

Short Article
Crystal Structure of the Homology Domain
of the Eukaryotic DNA Replication
Proteins Sld3/Treslin
Hiroshi Itou,1,3,* Sachiko Muramatsu,2 Yasuo Shirakihara,1,3 and Hiroyuki Araki2,3,*
1Structural Biology Center, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan
2Division of Microbial Genetics, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan
3Department of Genetics, SOKENDAI, Yata1111, Mishima, Shizuoka 411-8540, Japan
*Correspondence: hitou@nig.ac.jp (H.I.), hiaraki@nig.ac.jp (H.A.)

http://dx.doi.org/10.1016/j.str.2014.07.001
SUMMARY

The initiation of eukaryotic chromosomal DNA repli-
cation requires the formation of an active replicative
helicase at the replication origins of chromosomal
DNA. Yeast Sld3 and its metazoan counterpart Tre-
slin are the hub proteins mediating protein associa-
tions critical for the helicase formation. Here, we
show the crystal structure of the central domain of
Sld3 that is conserved in Sld3/Treslin family of pro-
teins. The domain consists of two segments with 12
helices and is sufficient to bind to Cdc45, the essen-
tial helicase component. The structure model of the
Sld3-Cdc45 complex, which is crucial for the forma-
tion of the active helicase, is proposed.

INTRODUCTION

Chromosomal DNA replication is tightly regulated in eukaryotic

cells such that each replication origin in DNA fires just once at

the correct time during the cell cycle. The activation of the repli-

cative helicase, which unwinds the double-stranded DNA,

permitting DNA polymerase to synthesize DNA, is a key step of

the regulation. Active helicase is formed by loading of two essen-

tial components, Cdc45 and GINS, onto the Mcm2-7 helicase

core complex on the replication origin (Moyer et al., 2006). This

process requires another set of replication proteins, and in

budding yeast, one of the essential replication proteins, Sld3,

has emerged as a focal point of regulation in origin firing. Sld3

and Cdc45 form a complex that associates with origins in a

mutually dependent manner (Kamimura et al., 2001). The recruit-

ment of Sld3 to origins depends on the phosphorylation of the

helicase core complex by Dbf4-dependent kinase (DDK) (Masai

et al., 2006; Sheu and Stillman, 2006, 2010). On the other hand,

Sld3 is a substrate of cyclin-dependent kinase (CDK) (Tanaka

et al., 2007; Zegerman and Diffley, 2007), and the further

phosphorylation of Sld3 by a CDK recruits GINS to origins by in-

teracting with Dpb11 (Muramatsu et al., 2010), resulting in the

formation of a transient intermediate, preinitiation complex.

Sld3 is well conserved in yeast and fungi, and its functional coun-

terpart Treslin (also known as Ticrr) was found in metazoan (Ku-

magai et al., 2010; Sansam et al., 2010). Sld3 and Treslin differ in

their molecular sizes and amino acid sequences, except in the
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limited region called the Sld3/Treslin domain (Sanchez-Pulido

et al., 2010), suggesting that this domain is important for their

common function; however, the role of the conserved Sld3/

Treslin domain remains elusive because of a lack of structural

and biochemical information.

In this study, we elucidated the structural basis for the function

of the Sld3/Treslin domain. We determined the crystal structure

of the domain of budding yeast Sld3, and our structural and func-

tional analyses showed that the domain is a rhombic-shaped

molecule, consists of 2 segments with 12 helices, and is suffi-

cient to bind to Cdc45. The properties of the Cdc45-binding

site of the Sld3/Treslin domain seems to be complementary to

that of the proposed model of Cdc45. Based on the results, we

discuss the structure model of the Sld3-Cdc45 complex.

RESULTS AND DISCUSSION

The Sld3/Treslin Domain Comprising the Cdc45-Binding
Domain
Genetic evidence suggests that the Sld3/Treslin domain inter-

acts with Cdc45 (Kamimura et al., 2001; Nakajima and Masu-

kata, 2002; Tanaka et al., 2011b). To test the physical interaction

between the Sld3/Treslin domain of Sld3 (Ser148-Lys430; Fig-

ure 1A) and Cdc45 of budding yeast, both proteins were coex-

pressed in Escherichia coli cells and examined to determine

whether they could be copurified. A His tag was connected to

the domain, allowing the protein to be purified from the cell

extract using Ni-affinity resin. The result showed that Cdc45

did copurify with the Sld3/Treslin domain (Figures 2A and 2B).

The intensity of the protein bands showed that these proteins

bind in a stoichiometric one-to-one ratio (Figure 2A), indicating

the domain alone is sufficient to form a stable complex with

Cdc45. Therefore, we named the Sld3/Treslin domain the

Cdc45-binding domain (Sld3-CBD).

The Properties of Sld3-CBD Seem to BeComplementary
to the Supposed Structure Model of Cdc45
Sld3-CBD (Ser148-Lys430) was crystallized, and its tertiary

structure was determined (Table 1). This domain shows a

rhombic-shaped compact structure with 12 helices (Figure 1B).

Helix H7 passes through the center of the molecule as a back-

bone, and the other helices are placed around the helix through

hydrophobic interactions.

Sld3-CBD does not perfectly match the Sld3/Treslin domain

proposed by the bioinfomatic study (Sanchez-Pulido et al.,
47, September 2, 2014 ª2014 Elsevier Ltd All rights reserved 1341

mailto:hitou@nig.ac.jp
mailto:hiaraki@nig.ac.jp
http://dx.doi.org/10.1016/j.str.2014.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2014.07.001&domain=pdf


(legend on next page)

Structure

Sld3/Treslin Homology Domain Crystal Structure

1342 Structure 22, 1341–1347, September 2, 2014 ª2014 Elsevier Ltd All rights reserved



Structure

Sld3/Treslin Homology Domain Crystal Structure
2010); it comprises an extra N-terminal region. This extended

part contains one of the regions necessary to interact with

Cdc45 (Tanaka et al., 2011b), and the amino acid sequences in

this region also showed homology among the Sld3/Treslin pro-

teins (Figure 1A). The crystal structure of Sld3-CBD clearly

showed that both of the regions necessary to bind to Cdc45

(Tanaka et al., 2011b) belong to the same structural domain;

furthermore, these two regions are on the same side of the mole-

cule (helices H1–H2 and H11–H12: Figures 1A and 1B). More

interesting, amino acid substitutions of Sld3-CBD that weaken

the interaction with Cdc45 (Kamimura et al., 2001) (Figure 1A)

were mapped on the same surface, suggesting that this side of

Sld3-CBD interacts with Cdc45 (Figure 1B).

The compact structure of Sld3-CBD seems to fit well with its

binding partner, Cdc45. Small-angle X-ray scattering (SAXS)

suggested that Cdc45 is a V-shaped molecule comprising a

core region with lateral extensions (Krastanova et al., 2012;

Szambowska et al., 2014). In addition, bioinformatic analyses re-

vealed a homology between Cdc45 and RecJ, which belongs to

the DHH family (Krastanova et al., 2012; Sanchez-Pulido and

Ponting, 2011). Structural superimposition and sequence align-

ment of the proteins suggested that the characteristic acidic

insertion occurred on the concave surface of the core region of

Cdc45 (Krastanova et al., 2012).

The Conserved Acidic Region of Cdc45 Is Important for
the Interaction with Sld3
We then tested the function of the acidic region of Cdc45 for

Sld3 binding. The homology model of the DHH homology

domain of human Cdc45 (Sanchez-Pulido and Ponting, 2011)

suggested that the amino acids substituted in the cdc45 muta-

tion cdc45-27 (Leu131-Pro) (Kamimura et al., 2001), which

weaken the interaction between Sld3 and Cdc45, are on the

concave surface of the Cdc45. Thus, we substituted the

conserved acidic residues near the mutation site. The Cdc45

D2N mutant, whose Asp91, Asp124, Asp149, and Asp150
Figure 1. Amino Acid Sequence Alignment and the Crystal Structure o

(A) Alignment of the Sld3/Treslin domain from fungal Sld3 (SACCE: S. cerevisia

saccharomyces pombe; SCHOY: Schizosaccharomyces octosporus; ASPFU: Asp

MOUSE: Mus musculus; DANRE: Danio rerio;and XENLA: Xenopus laevis) is sho

create the initial alignment, and it was further aligned to match the secondary stru

server (Kelley and Sternberg, 2009) to that of Sld3-CBDdetermined by the crystal s

that of Sld3-CBD determined by the crystal structure in this study are indicated

structure of Sld3-CBD indicate disordered regions in the crystal. The conserve

alignment and also colored in red, green, and blue. The numbers in parentheses b

numbers of S. cerevisiae Sld3 is indicated above the alignment. The conserved r

S. cerevisiae Sld3) is highlighted with a yellow box. Positions of the amino acid

identified from S. cerevisiae (sld3-4: Arg269Cys+ Asp578Gly; sld3-5: Gly125Asp+

are highlighted with magenta boxes, and those from S. pombe (Sp sld3-10: Glu3

kajima and Masukata, 2002) are highlighted with orange boxes. The regions nece

et al., 2011b), are shown with magenta lines above the alignment. The basic res

positively charged region are highlighted with sky-blue boxes.

(B) Ribbon representations of the crystal structure of Sld3-CBD. The atomic mod

Asp337 and Pro362-Asn371 could not be placed because of poor electron density

three Sld3-CBD molecules. Views of the molecule are from the direction perpend

panel shows the presumed Cdc45-binding interface suggested by genetic analys

the TS mutants sld3-4, sld3-5, sld3-7, and sld3-8 (Kamimura et al., 2001) and in S

conserved basic amino acids forming the basic patch are shown inmagenta, oran

the protein tertiary structure in this figure were generated using PyMOL (Schrödi

(C) Surface-charge representation of Sld3-CBD. The direction of view is the same

2001). Blue and red on the molecular surface show the positively and negatively
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were substituted with Asn, was coexpressed with the His-

tagged Sld3-CBD in E. coli cells, and the Sld3-CBD was purified

from the cell extract. The result showed that Cdc45 D2N signif-

icantly reduced its binding capacity to Sld3-CBD (Figure 2B).

This result is consistent with phenotype of cdc45 D2N cells,

which grow very slowly at 34�C and whose growth was restored

by high-copy SLD3 (Figure 2C). Phenotypic defects caused by

reduced protein interaction are often restored by an increased

dosage of the partner protein. These results indicated that the

conserved acidic region, which is supposed to be located on

the concave surface of Cdc45, is important to the interaction

with Sld3.

The Conserved Flexible Region in Sld3-CBD Is
Responsible for the Formation of the Complex with
Cdc45
The crystal structure showed that Sld3-CBD has two conserved

basic regions as the possible binding site for the conserved

acidic region of Cdc45. One is the region from residue 301–

330 of Sld3. This region is conserved in Sld3/Treslin proteins

and comprises many basic residues, although the region seems

to be structurally flexible (Figures 1A and 1B). We hypothesized

that this flexible region functions to bind to Cdc45. To test this

hypothesis, we coexpressed the His-tagged Sld3-CBD (D301–

330) lacking the conserved 30 amino acids of this region and

Cdc45 in E. coli cells, and purified the Sld3-CBD using Ni-affinity

resin. The deletion of the 30 amino acids significantly reduced

the recovery of Cdc45 (Figure 2B), indicating a reduced binding

capacity of Sld3-CBD (D301–330) to Cdc45. This is consistent

with phenotype of sld3 D301–330 cells, which grow very slowly

at 37�C and whose growth was restored by high-copy CDC45

(Figure 2D). Moreover, direct interaction between the peptide

consituting the conserved flexible region (residue numbers

296–332) and Cdc45 was observed in in vitro analysis. Cdc45

protein could be copurified with the His-tagged Sld3 peptide

using Ni-affinity resin (Figure 3). The result also showed that
f the Homology Domain Shared by Sld3/Treslin Family Proteins

e; KLULA: Kluyveromyces lactis; ASHGO: Ashbya gossypii; SCHPO: Schizo-

ergillus fumigatus) and Treslin/Ticrr from vertebrates (HUMAN: Homo sapiens;

wn. Hyphens indicate deletions. CLUSTAL W (Larkin et al., 2007) was used to

ctures of Sld3/Treslin proteins predicted using the Phyre2 structure prediction

tructure. The secondary structure of human Treslin predicted by the server and

below and above the alignment, respectively. Dashed lines in the secondary

d (*) and the conserved change (: and .) amino acids are marked below the

eside the sequences indicate residue numbers of each protein, and the residue

egion found in the structurally disordered region (residue numbers 301–330 in

substitutions in the mutations that showed temperature-sensitive (TS) growth

Phe170Ser; sld3-7: Leu176Pro; and sld3-8: Pro407Leu) (Kamimura et al., 2001)

38Gly; Sp sld3-41: Ser153Leu+ Leu309Pro; and Sp sld3-52: Trp310Arg) (Na-

ssary for binding with Cdc45, suggested by yeast two-hybrid analysis (Tanaka

idues conserved near the presumed Cdc45-binding interface and forming the

el from Tyr154 to Ser421 was obtained. The structure for the regions Glu295-

caused by structural disorder. The crystallographic asymmetric unit contained

icular (top panel) and coaxial (bottom panel) to the backbone helix H7. The top

es (Kamimura et al., 2001; Tanaka et al., 2011b). The amino acids substituted in

p sld3-10, Sp sld3-41, and Sp sld3-52 (Nakajima and Masukata, 2002) and the

ge, and sky blue, respectively, in the space-fillingmodel. The representations of

nger).

as in (B). The surface electric potential was calculated using APBS (Baker et al.,

charged regions, respectively.
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Figure 2. Analyses of the Interaction be-

tween Sld3 and Cdc45

(A) Sld3-CBD (Ser148-Lys430, molecular mass

33.1 kDa) and the full-length Cdc45 (molecular

mass 74.2 kDa) were coexpressed in E. coli. Sld3-

CBD was purified using a His tag connected to it.

The lanes are labeled as follows, M, molecular

weight markers; ppt, insoluble fraction from the

cell extract; sup, lysate of the cell extract; UB,

unbound fraction fromNi-affinity chromatography;

WS, fraction washed from the Ni-affinity resin;, EL,

eluate from the Ni-affinity resin. In this analysis, the

eluted fraction (lane EL) was further purified using

size-exclusion chromatography (SEC) to remove

free Sld3-CBD (Figure S2).

(B) The lysate of the cell extract (input) and the

eluate from the Ni-affinity resin were analyzed

using immunoblotting using anti-Sld3 (red) and

anti-Cdc45 (green) antibodies (Tanaka et al.,

2011a). The interaction between the mutated

Sld3-CBD and Cdc45 was also analyzed in vitro

using the purified proteins (Figure S3).

(C) The plasmids YEp195CDC45 (high-copy plas-

mid expressing Cdc45; positive control), YEp195

(vector only; negative control), and YEp195SLD3

(high-copy plasmid expressing Sld3) were trans-

formed into cdc45D::LEU2 bearing YCp22cdc45

(D2N) and incubated at the indicated temperature

for 3 days.

(D) The plasmids YEp195SLD3 (high-copy plasmid

expressing Sld3; positive control), YEp195 (vector

only; negative control), and YEp195CDC45 (high-

copy plasmid expressing Cdc45) were trans-

formed into sld3D::LEU2 bearing YCp22sld3

(D301–330) and incubated at the indicated tem-

perature for 2 days.
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the binding capacities of Sld3-CBD and the peptide to Cdc45

D2N protein are significantly reduced (Figure 3).

Another candidate that could be responsible for the binding to

the acidic region of Cdc45was found near the presumed Cdc45-

binding interface suggested by the genetic analyses (Kamimura

et al., 2001; Tanaka et al., 2011b) (Figure 1C). The basic residues

clustered in the region are well conserved among the Sld3/

Treslin proteins (Figure 1A). To test function of the basic region

for the interaction with Cdc45, the basic amino acids clustered

here were mutated (Sld3-CBD KR2E mutant). In this mutant,

the basic amino acids conserved among the Sld3/Treslin pro-

teins and their side chain are directed toward the solvent area

in the crystal structure of Sld3-CBD, whose Lys181, Arg186,

Arg192, Lys404, and Lys405 were substituted with Glu. The

His-tagged Sld3-CBD KR2E protein was coexpressed with

Cdc45 in E. coli cells, and the Sld3-CBD mutant was purified

using Ni-affinity resin. The result showed that the mutations did

not show an obvious effect on the binding capacity of Sld3-

CBD to Cdc45 (Figure 2B). However, the Sld3 KR2E mutation

did cause a severe phenotypic defect in yeast; the sld3 KR2E

cells were not viable (Figure S1 available online). These results

indicated that the conserved basic region of Sld3-CBD is impor-

tant for functions other than Cdc45 binding.
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The Model of the Sld3-Cdc45 Complex and Its
Functional Significance
These results allowed us to consider the binding model of Sld3

and Cdc45 (Figure 4). The convex-shaped compact structure

of Sld3-CBD seems to fit with that of its binding partner

Cdc45, suggested in the previous studies (Krastanova et al.,

2012; Szambowska et al., 2014). The conserved acidic region

of Cdc45, which is supposed to be located on the concave sur-

face of the molecule, is important for the interaction with Sld3.

Interaction between the acidic region and the conserved basic

region of Sld3 (residue numbers 301–330) is important for com-

plex formation. The conserved basic region of Sld3 is structurally

flexible, and this flexibility may be important for the formation of a

stable complex. Another binding interface for Cdc45 that was

suggested by the previous genetic analyses (Kamimura et al.,

2001; Tanaka et al., 2011b) is located on the convex surface of

Sld3-CBD. Amino acid substitutions that weaken the interaction

with Cdc45 (Kamimura et al., 2001) are mapped onto the loop

regions connecting the helices on the binding interface and on

helix H7 near the loops (Figure 1B), suggesting that the shape

of the interface is important to maintain the interaction with

Cdc45. Although the tertiary structure of fission yeast Sld3 is

not available, the amino acid alignment of the Sld3/Treslin
d All rights reserved



Figure 3. Analysis of the Interaction between Cdc45 and the

Conserved Structurally Flexible Region of Sld3-CBD

The purified Cdc45 protein wasmixedwith various His-tagged versions of GST

(negative control), Sld3-CBD (positive control), and Sld3 peptide (residues

296–332), and the His-tagged proteins were collected using Ni-affinity resin.

The lanes are labeled as follows: M, molecular weight marker; UB, unbound

fraction from the Ni-affinity resin; EL, eluate from the Ni-affinity resin.

Table 1. Summary of Data Collection and Refinement Statistics

Data Collection (Beamline PF-NE3A)

Parameters Native Se-SAD (Peak)

Wavelength (Å) 1.00000 0.97889

Resolution (Å)a 50.0 – 2.40

(2.44 – 2.40)

50.0 – 2.80

(2.85 – 2.80)

Cell bonds (Å) a = 65.3, b =

92.8, c = 160.9

a = 66.2, b =

92.5, c = 160.7

Cell angles (�) a = b = g = 90.0 a = b = g = 90.0

Space group P212121

Unique reflections 39,283 25,250

Completeness (%) 99.2 (98.0) 99.6 (100)

Averaged redundancy 10.8 (9.5) 10.8 (10.7)

Mean I/s 34.6 (3.7) 32.8 (5.4)

Rmerge (%)b 6.5 (40.0) 7.3 (47.8)

Refinement

Resolution range of data used (Å) 19.6–2.4

Reflections used 32,583

R factor (%)c 21.7

Free R factor (%)d 26.2

Average B factor (Å2) 48.93

Number of protein molecules in

asymmetric unit

3

Total number of nonhydrogen atoms

Protein 5,193

Nonprotein 111

Solvent 178

Rmsd from standard values

Bonds (Å) 0.018

Angles (�) 2.008

Ramachandran plote

Residues in favored regions (%) 97.9

Residues in allowed region (%) 2.0

Residues in disallowed region (%) 0.1
aValues in parentheses are for the outermost resolution shell.
bRmerge =

P
h

P
jj <I>h � Ih,jj /

P
h

P
j Ih,j where <I>h is the mean intensity of

symmetry-equivalent reflections.
cR factor =

PjFobs � Fcalj/
P

Fobs, where Fobs and Fcal are the observed

and calculated structure factor amplitudes, respectively.
dFree R factor value was calculated for R factor using only an unrefined

subset of reflections data (5%).
eRamachandran plot was calculated using RAMPAGE (Lovell et al.,

2003).
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proteins suggests that the mutations in Sld3 that weaken the

interaction with Cdc45 in fission yeast (Nakajima and Masukata,

2002) are also located on the same convex surface (Figures 1A

and 1B). Because Cdc45 is twice as large as Sld3-CBD and is

thought to be a V-shaped molecule comprising lateral exten-

sions, this molecule can bind to both Cdc45-binding segments

of Sld3, although the two segments lie on opposite sides of the

molecule.

Such extensive interactions between Sld3 and Cdc45 through

two spatially separated segments may induce conformational

changes in Cdc45 for loading onto the Mcm2-7 complex. This
Structure 22, 1341–13
is because Cdc45 is not loaded onto the Mcm proteins properly

without Sld3/Treslin (Heller et al., 2011; Kamimura et al., 2001;

Kumagai et al., 2010; Nakajima and Masukata, 2002). It is

possible that these Sld3/Treslins work asmolecular chaperones,

forming a complex that changes or stabilizes the conformation of

Cdc45 to make it suitable for binding to the Mcm proteins. The

structure of free Cdc45 estimated by the SAXS analyses (Krasta-

nova et al., 2012; Szambowska et al., 2014) does not fully match

that of Cdc45 in the active replicative helicase complex, as

analyzed by cryoelectron microscopy (Costa et al., 2011); free

Cdc45hasa rather elongatedconformation, suggestingaconfor-

mational change of the protein, which supports the hypothesis.

The conserved basic region observed near the Cdc45-binding

interface on the convex surface of Sld3-CBD did not directly

contribute to the interaction with Cdc45. However, this region

is indispensable for cell viability, indicating its functional impor-

tance for functions other than Cdc45 binding. Because the basic

residues clustered in this region are highly conserved among the

Sld3/Treslin proteins, it is possible that the region is the binding

interface for the other conserved replication proteins. Sld3

seems to bind to the DDK-phosphorylated Mcm proteins (Heller

et al., 2011; Tanaka et al., 2011a; Yabuuchi et al., 2006); there-

fore, their binding interface is expected to have a positive charge.

At present, we cannot rule out the possibility that the formation of

the Sld3-Cdc45 complex creates the binding interface for the

Mcm proteins; the conserved basic region is a potential binding

site for phosphorylated Mcm to form a preinitiation complex.

EXPERIMENTAL PROCEDURES

Coexpression of Cdc45 and the Sld3/Treslin Domain of Yeast Sld3

The Sld3/Treslin domain of Sld3 (Sld3-CBD, residue numbers 148–430) and

the full-length Cdc45 of Saccharomyces cerevisiae were coexpressed in
47, September 2, 2014 ª2014 Elsevier Ltd All rights reserved 1345



Figure 4. The Model of Sld3-Cdc45 Complex

Our results suggest that Sld3-CBD is sufficient for binding with Cdc45. Sld3-

CBD has two binding segments for the interaction: the conserved structurally

flexible region and the convex surface suggested by genetic analyses (Ka-

mimura et al., 2001; Tanaka et al., 2011b). The former is indicated to interact

with the acidic concave surface of the Cdc45 core region, and the latter is

expected to interact with the lateral extension of Cdc45. These extensive in-

teractions through two spatially separated segments may induce conforma-

tional changes in Cdc45 to enable it to bind to the Mcm2-7 complex.
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E. coli using a pET-Duet1 tandem expression vector (Merck Millipore,

Darmstadt). To connect a His tag to the C terminus of the Sld3/Treslin domain,

an extra 24 nucleotides encoding an octapeptide comprising hexahistidines

(LEHHHHHH) was added to the 30 end of the domain of Sld3 gene. The protein

was purified using the Ni-affinity column (His-spintrap; GE Healthcare Life

Sciences) equilibrated with a buffer containing 20 mM Tris-HCl (pH 7.5),

0.3 M NaCl, 20 mM imidazole, and 10% glycerol, and the bound proteins

were eluted with a buffer containing 20 mM Tris-HCl (pH 7.5), 0.3 M NaCl,

0.5 M imidazole, and 10% glycerol. The fractions were analyzed using SDS-

PAGE. After western blotting, the proteins were visualized and quantified using

fluorescence-conjugated secondary antibodies and the Odyssey infrared

imaging system (LI-COR Biosciences).

The same experiments were performed with the combinations of the mutant

Sld3-CBD (D301–330, the Sld3-CBD lacking the residues from position 301 to

330; and KR2E, the Sld3-CBD containing Lys181Glu, Arg186Glu, Arg192Glu,

Lys404Glu, and Lys405Glu substitutions) and Cdc45, and of Sld3-CBD

and the mutant Cdc45 (D2N, the Cdc45 containing Asp91Asn, Asp124Asn,

Asp149Asn, and Asp150Asn substitutions).

Preparation and Crystallization of Sld3-CBD Protein

The His-tagged Sld3-CBD protein was expressed in E. coli using the pET-26b

(+) vector (Merck Millipore). The protein was purified using the His-trap crude

FF column (GE Healthcare Life Science) equilibrated with a buffer containing

20 mM Tris-HCl (pH 7.5), 0.3 M NaCl, 20 mM imidazole, and 10% glycerol.

The bound proteins were eluted with a buffer containing 20 mM Tris-HCl

(pH 7.5), 0.3 M NaCl, 0.5 M imidazole, and 10% glycerol. The eluate was

applied to a Resource S column (GE Healthcare Life Sciences) equilibrated

with a buffer containing 20 mM piperazine-N,N0-bis(2-ethanesulfonic acid

(PIPES)-NaOH (pH 6.6) and 0.2 M NaCl, and the bound proteins were eluted

using a linear gradient of NaCl from 0.2 to 1.0 M in 20 mM PIPES-NaOH

(pH 6.6). The Sld3-containing fraction was further purified using a Superdex

200pg column (GE Healthcare Life Sciences) equilibrated with a buffer con-

taining 20 mM Tris-HCl (pH 7.5), 0.3 M NaCl, and 10% glycerol. The purified

protein was dialyzed against a buffer containing 10 mM Tris-HCl (pH 7.5),

0.2 M NaCl, and 1 mM dithiothreitol (DTT) and concentrated to 33 mg/ml using

an ultrafiltration device (Vivaspin, Sartorius Stedim Biotech, Goettingen) prior

to crystallization. Crystallization experiments were performed using the

vapor-diffusion method, and the best crystals were obtained under conditions

consisting of 0.1 M Tris-HCl (pH 8.4), 0.1 M lithium sulfate, and 12.5% poly-

ethylene glycol 4000 (PEG 4K) at 20�C. The selenomethionine (Se-Met)-

substituted Sld3-CBD for single-wavelength anomalous diffraction (SAD)

analysis was purified similarly; the growth medium was changed from Luria-

Bertani (LB) to the M9 medium supplemented with 25 mg/ml Se-Met. The
1346 Structure 22, 1341–1347, September 2, 2014 ª2014 Elsevier Lt
Se-Met-substituted Sld3-CBD was crystallized under conditions consisting

of 0.1 M Tris-HCl (pH 8.0), 0.1 M lithium sulfate, and 10% PEG 4K.

Data Collection and Structure Determination

X-ray diffraction data were collected from the cryocooled crystals (supple-

mented with 20% [v/v] ethylene glycol as a cryoprotectant) on the struc-

tural biology Beamline BL-NE3A in the Photon Factory (KEK, Tsukuba).

The native and SAD data were collected at wavelengths 1.00000 and

0.97889 Å, respectively, and processed using HKL2000 (Otwinowski and

Minor, 1997). The structure was determined using the SAD method using

SOLVE (Terwilliger and Berendzen, 1999) and PHASER (McCoy et al.,

2007) in PHENIX suite (Adams et al., 2010). The initial atomic model was ob-

tained using RESOLVE (Terwilliger, 2000, 2003), and the remaining parts

were built manually using COOT (Emsley and Cowtan, 2004). The model

was refined using the native data up to 2.4 Å resolution using LAFIRE (Yao

et al., 2006) with REFMAC5 (Murshudov et al., 1997) in CCP4 suite (CCP4,

1994). The data collection, phasing, and model refinement are summarized

in Table 1.

In Vivo Analyses of the Sld3 and Cdc45 Mutants

Plasmid YEp195CDC45 of YS4 cells (Dcdc45::LEU2 [YEp195CDC45]) (Tak,

2004) was replaced with YCp22CDC45 (D2N) using the plasmid-shuffling

method (Kamimura et al., 2001). The resulting cells were used for the transfor-

mation of various plasmids. The transformants were streaked onto SD-Trp,

Leu, Ura plates and incubated at 25�C and 34�C for 3 days. Plasmid

YEp195SLD3 of YYK13 cells (Dsld3::LEU2 [YEp195SLD3]) (Kamimura et al.,

2001) was replaced with YCp22SLD3 (D301–330), and the resultant cells

were used for the subsequent transformation of various plasmids. The trans-

formants were streaked onto SD-Trp, Leu, Ura plates and incubated at 25�C
and 37�C for 2 days.

Construction of the Plasmids Expressing the Mutated Proteins

All the plasmids expressing the mutated proteins used in this study were

prepared using PCR using the PrimeSTAR Mutagenesis kit (Takara Bio,

Shiga).

In Vitro Binding Assay

His-tagged Sld3 peptide (residue numbers 269–332) and glutathione S-trans-

ferase (GST) were expressed in E. coli using pET26b (+) vector (Merck Milli-

pore) and purified using the Ni-affinity column (His-trap crude FF). Flag-tagged

Cdc45 and Cdc45 D2N proteins were respectively expressed in E. coli and

purified using M2 agarose beads (Sigma-Aldrich). The purified proteins were

dialyzed against a buffer containing 20 mM Tris-HCl (pH 7.5), 0.3 M NaCl,

0.005% Triton X-100, and 10% glycerol. Four micromoles of the His-tagged

Sld3-CBD, Sld3 peptide, and GST were each mixed with 0.4 mMof the purified

Cdc45 or Cdc45 D2N and incubated for 0.5 hr on ice. The mixtures were

applied to the Ni-affinity column (His-spintrap) equilibrated with the dialysis

buffer, and the His-tagged proteins were eluted using a buffer containing

20 mM Tris-HCl (pH 7.5), 0.3 M NaCl, 0.5 M imidazole, 0.005% Triton X-100,

and 10% glycerol. The fractions were analyzed using SDS-PAGE.
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