
Stochastic Processes and their Applications 31 (1989) 307-314 
North-Holland 

307 

WHAT CAN OR CAN’T BE ESTIMATED 
IN BRANCHING AND RELATED PROCESSES? 

Ellen MAKI 

Department of Biostatistics, Ontario Cancer Institute, 500 Sherbourne St., Toronto, Ontario, Canada 

Philip McDUNNOUGH 

Department of Statistics, University of Toronto, Toronto, Ontario, Canada 

Received 23 April 1987 
Revised 25 October 1988 

Estimation of the underlying distribution is considered for the incompletely observed random 

walk and the incompletely observed Galton-Watson branching tree. Based on infrequent observa- 

tion of a random walk, parameters not completely determined by the first few moments of the 

underlying distribution cannot be consistently estimated. A similar result is given for the branching 

tree when observations are sums of family sizes. When the offspring distribution belongs to the 

power series family MLE’s are obtained from an approximate likelihood. 

random walk * Galton-Watson branching tree * consistent estimation 

1. Introduction 

A Galton-Watson branching tree is constructed as follows. A fixed number, N, of 

individuals, ancestors of the tree, act independently to produce the next generation 

of the tree. Specifically, each of the N ancestors dies, leaving behind a random 

number of offspring who make up the first generation. This process continues, with 

members of one generation dying and leaving offspring to form the next generation. 

Let p( . 11) denote the offspring distribution and 2, the total number of individuals 

born into generation n. The Galton-Watson process {Z,,; n = 0, 1,2,. . .} is known 

to be Markov with transition probabilities P(Z,, = i/Z,_, =j) =p(i(j), where p( . Ij) 

is the j-fold convolution of p( * 11). In this article, only processes with ~(011) =0 

and offspring mean p > 1 are considered (i.e. we restrict ourselves to processes that 

explode w.p. 1.). 

We can go about making observations on the Galton-Watson tree in a number 

of ways. One possibility is to observe the process {Z,}. For this scheme of observa- 

tions, estimation of the mean, p, and variance, u*, of p( . 11) has been considered 

by many authors (cf. Dion and Keiding (1977)). Also, Lockhart (1982) has shown 

under fairly general conditions that when the observations are {Z,,} the only para- 

meters of the offspring distribution that can be consistently estimated are p and (T*. 

At the other extreme is the case where the whole tree is observed and the entire 

0304-4149/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82361719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


308 E. Maki, f? McDunnough / Consisfent estimation 

offspring distribution can be estimated. Of course, this leads us to ask what happens 

in intermediate cases, including situations in which family sizes, rather than offspring 

numbers, are observed. 

The observation of an individual’s family size rather than their number of offspring 

is useful in the study of kin number problems (cf. Waugh (1981), Joffe and Waugh 

(1982)). The incomplete observational scheme where individuals are sampled from 

one or several consecutive generations and their family sizes recorded has been 

studied by the authors. The probability structure of this model was examined and 

estimates of p and p( . 11) were obtained in Maki and McDunnough (1989). 

In this article we consider the case where a random sample is taken at each of 

several consecutive generations and a total of family sizes is recorded for the sample 

from each generation. A similar type of problem arises in an incompletely observed 

random walk. Here observations consist of sums of i.i.d. random variables; the 

number of random variables comprising the sums may vary. Guttorp and Siegel 

(1985) have given a condition for the existence of consistent estimates of moments 

in the incompletely observed random walk. We will give a separate condition for 

the nonexistence of consistent estimates of certain parameters in the incompletely 

observed random walk. The results of Maki and McDunnough (1989) show that 

family sizes are asymptotically i.i.d. and that sums of family sizes are therefore 

asymptotically sums of i.i.d. random variables. Making use of this fact and using 

the results for the incompletely observed random walk, we will obtain separate 

conditions for the existence and nonexistence of certain parameters of the offspring 

distribution on the basis of observing sums of family sizes. 

2. The incompletely observed random walk 

Consider a random walk, S, = Y, + Y2 +. * . + Y,,, where the random variables Yi 

are i.i.d. We will consider only the case where the Yi are non-negative integer-valued 

random variables and have probability function p( . 11). 

Suppose that observations are made on the random walk at non-random (integer- 

valued) time points n,= 0, n,, n2,. . . . Denote the interobservation times by ri = 

n, - nipI 3 i 2 1. Guttorp and Siegel (1985) have shown that if Ci rf-k = 03, then the 

first k moments of p( . 11) can be consistently estimated. For k = 3 this condition is 

both necessary and sufficient. We will show here that if 1, ry’k-2”2<M, then we 

cannot consistently estimate any moment of order greater than k. While this does 

not provide a single condition which is both necessary and sufficient, it does provide 

a partial solution to the question of what can and cannot be consistently estimated 

for any given sequence of interobservation times {rj}. 

Define a doubly infinite sequence {rN,i} by putting rN,i = TN+,-,. For any given N, 

consider an incompletely observed random walk with interobservation times rN,r, 

rN,2,-... If we define Vi to be U, = S,r -S,,_, where ni = xi=, rN, j, then U, is the 

sum of rN,i i.i.d. random variables. Recall that p( . 11) is the distribution underlying 
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the random walk, and use p( . lj) to denote its j-fold convolution. The following 

lemma will be useful in proving a lack of consistent estimates. In what follows, 

lattice offset is defined as the smallest integer k for which p( kj 1) > 0 and lattice size 

is the greatest integer j for which P( Y = k mod j) = 1. 

Lemma 1. Let p( . 11) and q( . 11) be two non-singuhzrprobabihtyfunctions belonging 

to some family 9’. Suppose that p and q have the same (finite) first k moments, the 

same lattice size and lattice oflset. Then for the incompletely observed random walk 

with xi r_(km2)‘2 < CO we have 

lim sup IPN(A) - QN(A)I = 0, 
N+= A 

wherePN(A)=P((LJ,, U,,.. .) E A linterobservations times are {rN,i}), and P, Q are 

probability measures corresponding to p, q. 

Proof. We have supA IPN(A)- QN(A)I = limjea) SupA IPN”(A) - Q”“(A)I, where 

PNi’ is the restriction of PN to the sigma-field U( U,, U,, . . .). Now 

s”~p j+(A) - QN”(A)I 

=$~;..ClP”“(U,=m ,,..., C_.$=mj)-QN”(U1=m, ,..., CJj=mj)l 
m, 

(1) 

From Theorem 22.1 of Bhattacharya and Ranga Rao (1976), a local limit theorem 

for lattice distributions, we know that there is a constant c, dependent on p and q, 

for which 

f Ip(milrN,,)-q(m,lrN,,)I d cr~~-2)‘2. 
WI,=0 

From here it follows that 

sup IPN(A) - QN(A)I G 
A 

The sum CT=, r;(kp2”2 is finite, and so lim,,, Cy=, r;(kpZ)‘2 = 0, from which we 

conclude that /P”(A)-QN(A)j+O as N+a. 

Intuitively, what Lemma 1 tells us is that random walks having the same first k 

moments and defined on the lattice are indistinguishable on the basis of “infrequent” 

observations. This idea is presented formally in Theorem 1, where we show that 

parameters of the underlying distribution cannot be consistently estimated if they 

are not determined entirely by the first k moments and lattice size and offset. 
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Theorem 1. Suppose that p and q are two distributions which satisfy the conditions of 

Lemma 1. Let 0 be somefunctional of the distribution which is not completely determined 

by the first k moments, lattice size and lattice ofSset. If T is a consistent estimate of e 
for the incompletely observed random walk with I:=, rlCk-*“* < 00, then e(P) = O(Q), 

where P and Q are probability measures corresponding to p and q. 

Proof. Suppose that e(P) # e(Q), and that T( U, , U,, . . .) is a consistent estimator 

of 0. For any fixed N we can choose n large enough so that 

sup ( PN+” (A) - QN+“(A)j <e 
A 

(2) 

where 0 < F < 1. Since p and q are not singular, there is some integer x for which 

p(xl1) and q(xl1) are both greater than zero. Define the event B as 

B = { U, = xrN,L,. . . , U,_, = xrN,n-l}. 

Clearly, each of PN(A) and ON(A) is greater than zero. 

Since T is a consistent estimator of 0, we must have PN ({ T( U1, U,, . . .) = e(P)}) = 

1. Now, we can write 

PN({T(U,, U,,...)=e(P)}nB) 

= PN(B)PN(T(xrN,l,. . . , XrN,n-I, u,, u,,+,, . . .) = e(p)), 

from which we see that PN(T(XrN,,, . . , xrN,n_l, U,,, UN+,, . .) = 13(p)) = 1. This 

last statement, however, is equivalent to PN+“( T(xr,,, , . . . , xrN,H-l, U,, U,, . . .) = 

~(P))=1.Similarly,sinceQN(B)~OandQN(T(U,,U~,...)=~(P))=O,wemust 

have QN+n(T(XrN,l,. . . , xrN,n_l, U,, U,, . . .) = 0(P)) =O. It follows then that 

pN+n(T(XY,y,,, . . . ,XYN,n-1, u,, u,, . . .)= o(P)) 

- QN+“( T(xr,,,, . . . , xrN,n_l, U1, U2, . . .) = e(P)) = 1 

which is a contradiction of (2). Therefore we must have B(P) = fl( Q). 

As pointed out by Guttorp and Siegel (1985), a Galton-Watson process with 

offspring mean p > 1 grows at least as fast as an incompletely observed random 

walk with ri = 0’ for any 0 in the interval (0, p). Thus, since Ci 0-’ < ~0, moments 

of order greater than two cannot be consistently estimated from the generation sizes 

of a Galton-Watson tree. This is the result obtained by Lockhart (1982). 

3. Incomplete observation of a Galton-Watson tree 

Consider the Galton-Watson tree with ~(011) = 0 and offspring mean k > 1. Suppose 

that {r;} is a sequence of non-negative integers with P(Z, > r,, i 2 112, = N) = 1 for 

all N 2 1, and define rN,i = r,+i_,. When the Galton-Watson process is begun with 

N ancestors, we will select rN,i individuals from those present at generation #i and 
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observe their combined total offspring, say Vi. When P(Z, > rN,i+r, I’ 2 llZ, = N) = 1 

for all N 2 1, the random variables U, , U,, . . . constitute an incompletely observed 

random walk. Thus, the results of Section 2 apply here. Extension of these results 

to the case where P(Z, > TN,,+,, i 2 112, = N) + 1 as N + 00 is straightforward, 

although messy, and is not presented here. 

When the observations made are totals of family sizes, we will show that certain 

moments of the asymptotic family size distribution (denoted p( . )) cannot be 

consistently estimated. Since there is a one-to-one correspondence between moments 

of p( . ) and p( . 11) via the relation p(i) = @(i/1)/p (cf. Maki and McDunnough 

(1989)), moments of the offspring distribution p( . 11) will also not be estimable. 

Suppose that observations S, are made at generations n 4 i s n + T,, each S, being 

the total of r, family sizes. In what follows, we will assume that P(Z, > r,, i 2 112, = 

N) = 1, and that for some cy in the interval (0, -In E(l/ Y)/ln p) (Y -p( . II)), we 

have C :znq, rf (NW I)-” + 0 as n + 00. Under thes conditions, the asymptotic distribu- 

tion of S,, &+,, . . . , &+7-,, is known (cf. Maki and McDunnough (1989)). The 

following lemma is similar to the lemma given for the incompletely observed random 

walk, and we will use it later to show the nonexistence of consistent estimates. 

Lemma 2. Let p( . 11) and q( . 11) be two non-singular distributions belonging to some 

class 9. Assume that p and q have the same mean p > 1, the samejinite moments of 

order 2 through k, the same lattice size and lattice ofiet, and that ~(011) = q(Oll) = 0. 

If lim,,, Cy+Ta rJ(kP2)‘2 = 0, then 

lim SUP IP((S, . . . , S,+T,,) E Cl- Q((&, . . . , SntT,,) E C)l = 0. 
n+m <‘ 

Proof. We will use Pa and QA to denote probabilities calculated under the assump- 

tion that the family sizes are i.i.d. ip( ill)/p and iq(i(l)/p respectively. Let S, = 

(S,, . . , Sn+7,,) and i, = (iI,. . . , iT,,,+,). Then 

s;~ IP(S,E C)-Q(S,E C)l =iC IW, =i,)-Q(S,, =L)l 
i,, 

~tCIP(S,=i,)-P,(S,=i,)l+fCIQ(S,=i,)-Q,(S,=i,)l 
i,, i,, 

+tCIPA(Sn=in)-QA(Sn=in)l. (3) 
i,, 

Denote the terms in (3) t,, t,, and t,. With regard to the first term t,, we find that 

t, =C JP(S, = i,) - P,(S, = i,)l 

SC IP(S, =i,)-PCS, =i,, I(Dn,~,,)= 111 
6, 

+C I%% = L, r(Dn,T,,)=l)-P.(Sn =L)l 

= p(K,,,) +C I%% = in, I(D,,T,,)=l)-P~(Sn=in)l 
i,, 

(4) 
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where D,,, is the event that each of the R, = r,, f. . . + r,,,,, individuals in the 

combined sample belong to different families, and I is its indicator function. The 

probability P(Si = i,, I(D,,,,) = 1) is obtained from Maki and McDunnough (1989). 

We have P( Dt;,T,,) + 0 as n + ~0 and 

C IP(% = I,, I(D,.r,,) = 1) - PA(%, = I,,)1 
i,, 

In this last expression we have used B, as the set of all 1 x r,,_, vectors 1, for which 

II,] = i,. The random variables ICJ,,+~_,,,~ are defined by Un,i, = i, +I:&;_+, YLk’, and 

Un+j-l,i,= i,+I::~,~:_, Y!,!+‘j_,for2~j~TT,+1,wherethe YI”arei.i.d.p(.\l)and 

Z, = Cf:jl Y I”. The quantity in (5) can be expressed as 

It can be shown, as in Maki and McDunnough (1989), that this last expression--f 0 
if c~+S, 

r:p -‘O + 0. Thus, the term t, in (3) converges to 0. Similar arguments show 

that tZ+O. 

In order to show that t3-+0, we make use of the fact that under Pa and QA the 

random variables Si are independent and each is the sum of i.i.d. random variables. 

The results for the partially observed random walk are therefore applicable, and 

we have 

T,+’ n+T,, 
t,sc c r,,+,-2 

-(k-2)/2 = c c r;(k-2)12. 
(6) 

j=l ,=" 

By assumption the last sum in (6) + 0 and our proof is complete. 

Proceeding as for the random walk, we use Lemma 2 to demonstrate that certain 

parameters of the offspring distribution cannot be consistently estimated from sums 

of family sizes. In what follows, P, Q are probability measures corresponding 

to P, 4. 
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Theorem 2. Suppase p( . 11) and q( . 11) are two oflspring distributions which satisfy 

the conditions of Lemma 2, and let 13 be some functional of the asymptotic family size 

distribution not determined entirely by thejrst k moments, lattice size and lattice oflset. 

then we must h~~es~;~))~ 0(Q). 

IS a weakly consistent estimator of t3 and CE’“’ r,T’k-2”2+ 0, If F, = F(S,,, . . 

Proof. Suppose that 0(P) # 0(Q). If F, is a consistent estimator of 0, then P(JF, - 

B(P)(<fi)-+l and Q(jF,-B(Q)/<S)-+l as n + 00. We can choose n large enough 

so that we have 

(i) P((F,-B(P)(<S)>I-e and Q(IFn-B(P)(<S)<e, and 

(ii) SUP IP((S,, . . . , S,+7,,) E C) - Ott%, . . . , S,+T,,,) E Cl< E. 
C 

These two conditions clearly contradict each other since the first implies that 

IP(IF,-~(P)I<~)-Q((F,-B(P)(<~)~>I-~F>~ 

for an appropriate choice of &. Thus we must have e(P) = e(Q). 

4. Parametric estimation 

In Maki and McDunnough (1989) the problem of estimating the offspring distribu- 

tion from an approximate likelihood was considered for the case where the offspring 

distribution was a member of the power series family and the entire vector of family 

sizes was observed. We will show here that by observing family size totals and using 

the asymptotic likelihood function, we obtain the same estimates as when we observe 

individual family sizes. 

Assume that the offspring distribution is of the form p(il1) = e’a,A(e))‘, i= 

1,2,3, . . . where 8 > 0, the ai are known constants, and A( 0) = 1 e’a,. The asymptotic 

family size distribution, in this case, is p(i) = (ia,),‘-‘{A’( e)}-‘, also a member of 

the power series family. The estimate of f(0) = lt eA”(e)/A’(e), obtained by 

maximizing the asymptotic likelihood function and based on observing individual 

family sizes, is X = R;;’ CyzT,v C;:+; Xi”. Now, the asymptotic likelihood function 

can be expressed as 

n+T, r,r+, 
{A~(e)}-RfleRta(x-l) n fl x;j)a,,,,, 

;=n ;=, 

and so it follows from the factorization theorem that X is a sufficient statistic. 

A result which is useful here is one due to Keiding and Lauritzen (1978). They 

have shown that if t(X) is sufficient and is the MLE of some function of 0, say 

T(e), based on observation of X, then it is also the MLE of r(e) when only t(X) 

is observed. Consequently, in the problem considered here, X is also the MLE of 

f(0) when we observe only family size totals. Thus, the results given in Maki and 
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McDunnough (1989) for estimating 8, p, and p( * 11) continue to hold under this 

scheme of incomplete observation. 

While this result may also hold when p( . 11) belongs to some other parametric 

family, it will clearly not be true in general. 

5. Conclusion 

In this article, we have presented results for the incompletely observed random walk 

and the incompletely observed branching tree. We have shown, in Section 2, that 

when a random walk is observed “infrequently” (i.e. C r;(2k-3)‘2 < CO), moments of 

order greater than 2k - 1 cannot be consistently estimated. This result is a comple- 

ment to that of Guttorp and Seigel (1985), who have shown that when “frequent” 

observations are made on the random walk (i.e. C riCk-*) = co), the first k moments 

can be consistently estimated. While these two results together do not provide a 

single condition which is both necessary and sufficient for the consistent estimation 

of the first k moments, they do give a partial answer to the question of what can 

or cannot be estimated in a partially observed random walk. 

The incomplete observations of a branching tree considered in this article were 

sums of family sizes. Using the fact that family sizes are asymptotically i.i.d., we 

showed that the results for the partially observed random walk also hold for the 

incompletely observed branching tree. 

When the offspring distribution is known to belong to some parametric family, 

we expect to be able to estimate more than in the nonparametric case. Indeed, we 

have shown that this is true for the power series family of offspring distributions. 

Using an approximate likelihood, we are able to obtain an estimate of p( . 11) which 

in fact coincides with that obtained from observation of individual family sizes. 
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