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We have analyzed the beam spin asymmetry and the longitudinally polarized target spin asymmetry of
the Deep Virtual Compton Scattering process, recently measured by the Jefferson Lab CLAS collaboration.
Our aim is to extract information about the Generalized Parton Distributions of the proton. By fitting
these data, in a largely model-independent procedure, we are able to extract numerical values for the
two Compton Form Factors HIm and H̃Im with uncertainties, in average, of the order of 30%.

© 2010 Elsevier B.V. Open access under CC BY license.
The study of Generalized Parton Distributions (GPDs) is cur-
rently one of the most intense fields of research in hadronic
physics, both experimentally as well as theorically. GPDs give ac-
cess in an unprecedented way to the complex composite structure
of the nucleon (or more generally of hadrons), which, until now,
is not fully calculable from first principles of Quantum Chromo-
Dynamics (QCD). For instance, nucleon GPDs encode, in the so-
called “infinite momentum frame”, the longitudinal momentum
distributions of the quarks and gluons in the nucleon, their trans-
verse spatial distribution and the correlation between these two
distributions, which is new information. As a consequence of these
longitudinal momentum-transverse space correlations, there is the
possibility to access the contribution of quarks to the orbital mo-
mentum of the nucleon. This is of great interest for the “spin
puzzle” of the nucleon, a long-standing issue in nucleon structure
studies. We refer the reader to Refs. [1–8] for the original theo-
retical articles and recent comprehensive reviews on GPDs and for
details on the theoretical formalism.

Nucleon GPDs are the structure functions which are accessed,
through the factorisation property of QCD, in the hard exclusive
electroproduction of a meson or a photon off the nucleon. If we
focus on quark GPDs, the most favorable channel to access them
is the Deep Virtual Compton Scattering (DVCS) process, due to
the purely electromagnetic nature of the perturbative part of the
“handbag” diagram. This latter diagram is schematized in Fig. 1. At
large Q 2 = (e′ − e)2 and small t = (p − p′)2, the process in which
the same quark (or antiquark) absorbs the incoming virtual photon

E-mail address: guidal@ipno.in2p3.fr.
0370-2693 © 2010 Elsevier B.V.
doi:10.1016/j.physletb.2010.04.053

Open access under CC BY license.  
Fig. 1. The handbag diagram for the DVCS process on the proton ep → e′ p′γ ′ . There
is also a crossed diagram which is not shown here.

and radiates the final real photon, is predicted to be the domi-
nant one. The quantities x + ξ and x − ξ denote the longitudinal
momentum fractions of the initial and final quark (or antiquark)

respectively, where ξ = xB
2−xB

and xB = Q 2

2mν (with ν = Ee′ − Ee) is
the standard Deep Inelastic Scattering (DIS) variable.

For DVCS on the proton, several experimental observables mea-
sured in different kinematical regimes have been published this
past decade: cross sections (beam-polarized and unpolarized) from
the JLab Hall A collaboration [9], beam spin asymmetries (BSA)
[10,11] and longitudinally polarized target asymmetries (lTSA) [12]
from the CLAS collaboration and a series of correlated beam-
charge, beam-spin and transversely polarized target spin asymme-
tries from the HERMES collaboration [13–15]. The question arises:
from this large harvest of experimental observables, with still
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much more to come, how can the GPD information be extracted?
The issue is not trivial as we recall that:

• the Bethe–Heitler (BH) process is another mechanism which
leads to the same final state ep → epγ as DVCS. In the BH
process, the final state photon is radiated by the incoming or
scattered electron and not by the nucleon itself. Therefore, the
BH process, which dominates the cross sections in some kine-
matic regions, carries no information about GPDs. However, it
is relatively precisely calculable in Quantum Electro-Dynamics
(QED) given the nucleon form factors, which are quite pre-
cisely known at the kinematics we are presently interested in,
i.e. small t .

• in the QCD leading twist and leading order approximation,
which is the frame of this study, there are, for DVCS, four
independent GPDs: H, E, H̃ and Ẽ which correspond to the
various spin and helicity orientations of the quark and nu-
cleon in the handbag diagram. These four GPDs depend on
three variables x, ξ and t . Decomposing the DVCS amplitude
into real and imaginary parts leads to eight GPD-related quan-
tities. We will call them the Compton Form Factors (CFFs) and
they are the quantities which can in principle be extracted
from DVCS experiments. Following our conventions introduced
in Refs. [16,17], these eight CFFs are:

HRe = P

1∫

0

dx
[

H(x, ξ, t) − H(−x, ξ, t)
]
C+(x, ξ), (1)

ERe = P

1∫

0

dx
[

E(x, ξ, t) − E(−x, ξ, t)
]
C+(x, ξ), (2)

H̃Re = P

1∫

0

dx
[

H̃(x, ξ, t) + H̃(−x, ξ, t)
]
C−(x, ξ), (3)

ẼRe = P

1∫

0

dx
[

Ẽ(x, ξ, t) + Ẽ(−x, ξ, t)
]
C−(x, ξ), (4)

HIm = H(ξ, ξ, t) − H(−ξ, ξ, t), (5)

EIm = E(ξ, ξ, t) − E(−ξ, ξ, t), (6)

H̃ Im = H̃(ξ, ξ, t) + H̃(−ξ, ξ, t), (7)

ẼIm = Ẽ(ξ, ξ, t) + Ẽ(−ξ, ξ, t) (8)

with

C±(x, ξ) = 1

x − ξ
± 1

x + ξ
. (9)

In the QCD leading twist and leading order approximation,
these eight CFFs depend only on ξ (or equivalently xB ) and t .

In Refs. [16,17], we have developed and applied a largely
model-independent fitting procedure which, at a given experimen-
tal (xB , −t) kinematic point, takes the CFFs as free parameters and
extracts them from DVCS observables using the well-established
DVCS + BH theoretical amplitude. To be precise, our BH ampli-
tude is calculated exactly while our DVCS amplitude is taken at
the QCD leading twist. The expression of these amplitudes can be
found, for instance, in Ref. [18]. With this procedure, we have fit-
ted in Ref. [16] the JLab Hall A proton DVCS beam-polarized and
unpolarized cross sections. We could then extract the HIm and HRe

CFFs at 〈xB〉 = 0.36 and for several t values with average uncer-
tainties of the order of 35% for HIm and larger for HRe . In Ref. [17],
we have fitted several HERMES beam-charge, beam-spin and trans-
versely polarized target spin asymmetries. We could then extract
at 〈xB〉 = 0.09 and for several t values, the same CFFs HIm and HRe

with roughly similar uncertainties as for JLab.
The sources of uncertainty in our approach stem, on the one

hand, from the experimental errors of the data that we fit, and on
the other hand, from the fact that we take in our fits practically
all CFFs as free parameters, with relatively large and conservative
bounds. There are therefore minimum conjectures and surmises in
our work, which is certainly highly valuable. However, given that
we generally fit limited sets of data and observables, our problem
is in principle underconstrained. The consequence is that there are
maximum correlations and interferences between our fitted pa-
rameters. Hence the relatively large error bars in our results. In
these extremely conservative conditions, it is nevertheless remark-
able that we managed, in our previous works, to extract several
CFFs with well-defined uncertainties, fitting the very limited avail-
able data. The reason for this convergence of a few CFFs, in spite
of the underconstrained nature of the problem, is that some ob-
servables are in general dominated by some particular CFFs; for
instance, BSAs by HIm and beam charge asymmetries and cross
sections by HRe . Our uncertainties can only decrease in the fu-
ture as, on the one hand, larger (and more precise) sets of data
and observables sensitive to different CFFs become available and,
on the other hand, theoretical constraints are developed, such as
dispersion relations [19–22], which allow to reduce, in the most
model-independent way possible, the range of variation, or even
the number, of the CFFs.

We note that related DVCS fitting studies have been published
this past year [23,24]. They resulted also in the extractions of the
HIm and HRe CFFs with central values consistent with ours, al-
though with smaller uncertainties. These fits are however model
dependent. They either neglected all CFFs other than HIm and
HRe or (and) assumed a functional shape for the CFFs, allow-
ing them to fit several (xB , −t) points simultaneously. The un-
certainty associated with the model dependence and hypothe-
ses entering these approaches is then very difficult to estimate
and to take into account properly. Nevertheless, each of these
model-dependent and model-independent approaches have their
own merits and values. The fact that they all result in consistent
and compatible central values for the fitted HIm and HRe CFFs,
within error bars, gives mutual support and credit for each of
them.

In this Letter, we continue our model-independent fitting ap-
proach focusing this time on the CLAS BSAs and lTSAs, which we
had not considered so far. As was already mentioned in our ini-
tial work on the subject [16], fitting only the CLAS BSAs, without
any model-dependent hypothesis or input, was not constraining
enough. In other words, fitting only BSAs, i.e. only one observ-
able, with seven or eight unconstrained CFFs does not lead to
well-defined solutions. However, inspired by our recent rather suc-
cessful fit of a series of HERMES asymmetries [17], we now want
to investigate if progress can be made with the addition of a new
observable, namely the lTSAs, to be fitted simultaneously with the
BSAs. Indeed, lTSAs have been measured by the CLAS collabora-
tion as well and have actually received little attention from GPD
phenomenologists so far. Since the BSAs are in general dominantly
sensitive to HIm and the lTSAs to H̃Im [16,25], our expectation is
to extract some quantitative information on these two particular
CFFs, which would be new information for H̃Im in particular.

Let us describe these CLAS data. Regarding BSAs, the Hall B col-
laboration has measured their φ distribution at 57 (xB , −t , Q 2)
points (φ is the standard angle between the leptonic and hadronic
planes of the DVCS process). The values of xB extend from ≈ 0.13
up to ≈ 0.46, those of −t from ≈ 0.13 GeV2 up to ≈ 1.3 GeV2 and
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Table 1
Summary of the four kinematical points which have approximately the same
(xB , −t) values, around xB = 0.25. We have four different fit versions: (lTSA+BSA1),
(lTSA + BSA2), (lTSA + BSA3) and (lTSA + BSA1 + BSA2 + BSA3).

〈xB 〉 〈−t〉 〈Q 2〉
lTSA 0.29 0.31 1.82
BSA1 0.25 0.28 1.69
BSA2 0.25 0.28 1.95
BSA3 0.25 0.28 2.21

those of Q 2 from ≈ 1.2 GeV2 up to ≈ 3.3 GeV2. The amplitude of
these BSAs range from ≈ 0 up to ≈ 0.3 [10].

Regarding lTSAs, the data is much more scarce: in Ref. [12],
only their sin(φ) moment is available at a few (xB , −t , Q 2) points.
The average kinematics of this whole set of data is 〈ξ〉 = 0.16 (i.e.
〈xB〉 ≈ 0.275), 〈−t〉 = 0.31 GeV2 and 〈Q 2〉 = 1.82 GeV2. Within
this phase space, the lTSA sin(φ) moments have been extracted
differentially, either for three xB values (≈ 0.20, 0.29 and 0.40) or
for three −t values (≈ 0.15, 0.24 and 0.43 GeV2). There are there-
fore six lTSAs available, which are actually not statistically inde-
pendent since they are extracted from the same set of data which
has been binned either in xB or in t . However, even if sparse, these
data are extremely valuable as we will show in the following. Their
amplitudes range from ≈ 0.07 to ≈ 0.38, with uncertainties ex-
tending from 30% to more than 100%.

Following our notation of Ref. [17], the BSAs can also be de-
noted as ALU and the lTSAs moments as Asinφ

UL . We will use this
notation on our figures. To summarize, in this Letter:

BSA = ALU = σ+(φ) − σ−(φ)

σ+(φ) + σ−(φ)
, (10)

lTSA = AUL = σ+(φ) − σ−(φ)

σ+(φ) + σ−(φ)
, (11)

where σ refers to the ep → epγ cross section and the upper index
refers to the beam (Eq. (10)) or target (Eq. (11)) spin projection,
respectively on the beam axis and on the virtual photon direction.
Asinφ

UL is then the sinφ Fourier coefficient of the asymmetry.
In the first stage, we will see what information one can extract

from the simultaneous fit of one lTSA and one BSA whose (xB , −t ,
Q 2) values approximatively match. In the second stage, we will fit
simultaneously one lTSA and the two or three BSAs which have
the same (xB , −t) values, irrespective of the Q 2 value. Assuming
the dominance of the QCD leading twist and leading order DVCS
contribution, i.e. that CFFs do not depend on Q 2, the idea is to
improve the statistical accuracy and increase the constraints on our
fitting procedure.

Among the six available lTSAs, we first focus on the lTSA
which has been measured at the kinematic point (xB , −t, Q 2) =
(0.29,0.31,1.82). Unfortunately, the BSAs and the lTSAs were ob-
tained in two different Hall B experiments so that they have not
been measured at exactly the same average kinematics. The match-
ing of the kinematics between the different observables can thus
be only approximate. Among the 57 BSAs, the two BSAs whose
kinematics are the closest to the lTSA kinematics that we focus on,
are at (0.25,0.28,1.69) and (0.25,0.28,1.95). We therefore note
at this stage the differences between the xB values (0.25 vs. 0.29),
the −t values (0.28 vs. 0.31) and Q 2 values (1.69 or 1.95 vs. 1.82).
There is a third BSA measurement which has the same xB and t
values as the two BSAs just mentioned but whose Q 2 is equal to
2.21 GeV2. We will use this extra BSA in our Q 2-independent “sec-
ond stage” fitting. We recapitulate these four kinematic points on
which we presently focus in Table 1.

For the fitting procedure, as in Refs. [16,17], we minimize our
theoretical calculations of the DVCS observables based on the well-
known DVCS + BH amplitude by the standard χ2 function, using
MINUIT [26]. We recall that the parameters to be fitted are the
CFFs of Eqs. (1)–(8). As in Refs. [16,17], we have actually consid-
ered only seven CFFs, setting Ẽ Im to zero. This is based on the
theoretical guidance which approximates the Ẽ GPD by the pion
exchange in the t-channel whose amplitude is real. With the hy-
pothesis of the dominance of the leading twist amplitude in the
DVCS process, this is the only model-dependent assumption that
enters our fitting procedure. A last feature entering our fitting pro-
cess is that we have to bound the domain of variation of the fitting
parameters. Without bounds, our fits which are in general un-
derconstrained, would probably not converge and/or would yield
values for the fitted parameters with infinite uncertainties. Follow-
ing what we have done and explained in details in Refs. [16,17], we
bound the allowed range of variation of the CFFs to ±5 times some
“reference” VGG CFFs. VGG [18,27] is a well-known and widely
used model which provides an acceptable first approximation of
the CFFs, as shown in our previous studies [16,17] and as will be
confirmed furtherdown in the present work. We do not really con-
sider this as a model-dependent input since this allowed deviation
of a factor ±5 with respect to the VGG model values is extremely
conservative. We recall that GPDs have to satisfy a certain number
of normalization constraints in general, these being all fulfilled by
the VGG model. Finally, since the problem at stake is non-linear
and the parameters are correlated, we use MINOS for the uncer-
tainty calculation on the resulting fitted parameters [26].

Before presenting our results, we also want to outline the
point that our aim is to fit the lTSA and BSA(s) with the same
CFFs, which therefore should correspond to unique (xB , −t) val-
ues. As the data of Table 1 do not, unfortunately, have exactly
the same kinematics, as mentioned previously, there is an ambi-
guity in defining the precise (xB , −t) values of the fitted CFFs.
We will consider that the CFFs that we will fit to the kinematic
points of Table 1 correspond to the values of the BSA kinemat-
ics, i.e. (0.25,0.28), as the BSA observable is in general the most
significant statistically. This approximation is to some extent sup-
ported by the VGG model which predicts about 8% difference for
HIm between xB = 0.25 and 0.29 (at −t = 0.28 GeV2) and less than
2% for H̃Im for this same kinematic change. We stress that this
kinematical matching problem is of a rather trivial nature and it
is sufficient that future experiments, measuring different observ-
ables, simply agree to analyze data at the same central kinematics
to avoid this extrapolation issue.

We now display in Fig. 2 the result of our fits. The left panel
shows the φ distribution of the three BSAs mentioned above and
the right panel the sin φ moment of the lTSA. The dashed curves
are the results of the fit of the lTSA (of the right panel) with
each individual BSA. The thick solid curves are the results of the
fit of this same lTSA with the three BSAs simultaneously (these
three BSAs having the same (xB , −t) values but different Q 2, see
Table 1). On the right panel, the four empty circles show the cor-
responding results of the fit for the lTSA: the first three for the
fit with the individual BSAs and the fourth one for the fit with
the three BSAs simultaneously. For comparison, we also show in
this figure the predicted results for the BSAs (dotted curve) and
the lTSA (empty cross) of the standard VGG model [18,27]. It is
seen that the VGG model overestimates the three BSAs by approx-
imately 0.1 (i.e. ≈ 30%) and underestimates the lTSA by roughly
the same proportion.

We now show in Fig. 3 the fitted values, with their error bars,
of the only two CFFs, HIm and H̃Im , out of seven, that came out
of our fitting procedure with finite MINOS uncertainties. We recall
that the MINOS uncertainties correspond to a deviation of 1 from
the value which minimizes χ2. These uncertainties can be asym-
metric if the χ2 function is not symmetric around the minimum,
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Fig. 2. Comparison of our fit results with the experimental data. The three left panels show the three experimental BSAs (i.e. ALU ) as measured in Ref. [10] (solid circles). The
right panel shows the experimental lTSA moment (i.e. Asinφ

UL ) as measured in Ref. [12] (solid circle). The four panels correspond to the four (xB , −t , Q 2) kinematic points
presented in Table 1 (from left to right: BSA1, BSA2, BSA3 and lTSA). All four observables have approximately the same (xB , −t) values, taken as (0.25,0.28), but different
Q 2 values. On the BSA panels, the dashed curve is the result of our fit, fitting only the individual BSA of the relevant panel with the lTSA, i.e. from left to right: fit of
(BSA1 + lTSA), (BSA2 + lTSA) and (BSA3 + lTSA). The solid line is the result of our fit, fitting simultaneously the three BSAs and the lTSA, i.e. (BSA1 + BSA2 + BSA3 + lTSA). This
latter fit therefore assumes that CFFs do not depend on Q 2. The results of these four fit versions for the lTSA are displayed in the right panel (with the relevant Q 2 values
accompanying the arrows). On the BSA panels, the dotted curve is the prediction of the standard VGG model. Its prediction for the lTSA is displayed as the empty cross.
Fig. 3. Results of our fits for the HIm and H̃Im CFFs. The empty squares (circles)
show our results when the boundary values of the domain over which the CFFs are
allowed to vary is 5 (3) times the VGG reference values. Both results have been
slightly shifted left (right) from the central Q 2 value for sake of visibility. The four
sets of results correspond, from left to right, to the fits (lTSA + BSA1), (lTSA + BSA2),
(lTSA + BSA3) and (lTSA + BSA1 + BSA2 + BSA3) as indicated in Table 1. In particular,
the (lTSA + BSA1 + BSA2 + BSA3) fit, which corresponds to an average Q 2 value of
1.95 GeV2, is displayed within a box. The empty diamond indicates the results of
our fits, in the (lTSA + BSA1 + BSA2 + BSA3) fit version, when only the H and H̃
GPDs are taken as fitting parameters. The empty cross indicates the VGG prediction.

which is the sign of a non-linear problem in general. The fact that
only HIm and H̃Im converge in our fitting process reflects, as was
mentioned earlier, the particular sensitivity of the BSA and lTSA
observables, respectively, to these two CFFs. The other five CFFs did
not converge in our fitting procedure to some well-defined value
or domain: either their central value reached the boundaries of the
allowed domain of variation or MINOS could not reach the χ2 + 1
value to fully determine the associated uncertainties. These fea-
tures were well studied [16,17] in our earlier works. They reflect
the fact that the contribution to the χ2 of those CFFs which did
not converge is relatively weak and that the fit is barely sensitive
to them. However, it is important to include them in our fit be-
cause they play a role, through correlations, in the determination
of the error bars on the two “convergent” CFFs.

In Fig. 3, we display four sets of results for HIm and H̃Im ,
which correspond to the four fit versions that we mentioned ear-
lier. Three sets correspond to the fits of the lTSA with each one
of the BSAs at Q 2 = 1.69, 1.95 and 2.21 GeV2 and the fourth set
(in the box in Fig. 3) corresponds to the simultaneous fit of the
lTSA with the three BSAs. In this latter case, the underlying as-
sumption is that CFFs do not depend on Q 2. As could be expected,
the resulting uncertainties are smaller for the two CFFs in this lat-
ter configuration, as more statistics and constraints enter into play.
We observe that all four configurations yield compatible results
within error bars, which are between 25% and 50% on average. The
simultaneous fit of the three BSAs and of the lTSA yields an ap-
proximate average of the fits using only one BSA and the lTSA.
From the uncertainties on the CFFs that we obtain, it is clear that
no QCD evolution or twist effect can be discerned. It then seems
reasonable to fit simultaneously observables at the (approximately)
same (xB , −t) points and different Q 2 values.

In Fig. 3, we have also displayed, for each of the four fit ver-
sions, two results, aimed at illustrating the dependence of our
results on the boundaries of the domain of variation allowed for
the CFFs. The empty squares show our results when the CFFs are
limited to vary within ±5 times the VGG reference values while
the empty circles shows these results for boundaries equal to ±3
times these same VGG reference values. Of course, the smaller the
domain of variation, the smaller the uncertainties on the fitted
CFFs. This shows the overall stability and robustness of our fitting
process since the values of these boundaries do not affect strongly
the central values of the fitted CFFs. We also checked that the fit
results were not dependent on the precise starting values of the
CFFs when we begin our fit: irrespective of the starting values, the
minimization would essentially always converge to the same cen-
tral values and uncertainties for HIm and H̃Im .

We further show in Fig. 3 the result of our fit if we take as
fitting parameters only the H and H̃ GPDs (empty diamonds),
i.e. four CFFs (HRe , H̃Re , HIm and H̃Im), instead of seven. For this
configuration, we have fitted the three BSAs and the lTSA simul-
taneously. The central values for HIm and H̃Im are in very good
agreement with the ones previously determined when all CFFs
were taken into account (with some slight decrease of the central
value of HIm). The obvious difference is that, as could be expected,
the associated uncertainties are smaller, particularly for HIm . There
is not too much effect for H̃Im . This can probably be attributed to
the fact that when only two GPDs enter the fit, the main source
of uncertainty comes from the statistics of the observables to be
fitted and no longer from the correlations between the fitting pa-
rameters. Indeed, HIm is mostly sensitive to the three BSAs (which
are simultaneously fitted) with each having smaller errors than the
lTSA, while H̃Im is mostly sensitive to the lTSA which has a ≈ 25%
error bar. We do not display the comparison of these “2 CFFs”-fit
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Table 2
Selection of kinematic points measured by the CLAS collaboration which have ap-
proximatively the same (xB , −t) values, around xB = 0.35.

〈xB 〉 〈−t〉 〈Q 2〉
lTSA 0.40 0.31 1.82
BSA1 0.34 0.30 2.3
BSA2 0.34 0.28 2.63
BSA3 0.35 0.29 2.97

Table 3
Results of our fits for the HIm and H̃Im CFFs from the CLAS BSAs and lTSA data, at
fixed t ≈ 0.28 GeV2, for two different xB values.

〈xB 〉 HIm H̃Im

0.25 1.56+0.12
−0.71 0.690.27

−0.27

0.35 0.62+0.56
−0.18 0.63+0.60

−0.32

with the data in Fig. 2 in order not to overload the figure, but
the associated χ2 is equally good to the one associated to the fits
including all CFFs. In the latter case, the normalized χ2 is found
to be equal to 1.27 while in the former case the normalized χ2

is 1.16. These good results obtained when fitting with only H and
H̃ mean that it is indeed possible to correctly fit the data with
only these two GPDs instead of four. This however does not mean
that this is the true solution and that the other GPDs should con-
sequently be ignored or neglected. The large error bars that we
obtain when all GPDs are included precisely reflect this lack of
knowledge of the other GPDs: our uncertainties incorporate all our
ignorance about the other GPDs and all their full potential influ-
ence.

We finally display in Fig. 3 the predicted values of the corre-
sponding VGG CFFs (empty crosses), which are Q 2 independent.
It is noted that the VGG HIm tends to lie above the fitted HIm

while the VGG H̃Im tends to lie below the fitted H̃Im . This is a
straightforward reflection of what was observed in Fig. 2 where
the VGG BSAs curves were overestimating the data while the VGG
lTSA point was underestimating the data. The overestimation of
the VGG HIm , with respect to the fitted central value, was also ob-
served in our study of the HERMES data [17].

We have so far focused on the particular lTSA measured at
xB = 0.29 in order to establish and understand the basic features
and results of our approach. We now turn to the lTSA measured at
another xB value, i.e. xB = 0.40, for which there are several BSAs
which have neighboring (xB , −t) values. These data points are in-
dicated in Table 2. This time, none of the Q 2 values match each
other and there is also a more significant difference between the
xB values. Supported by our previous study which showed that
the simultaneous fits of several observables at different Q 2’s ap-
peared to converge to some average of individual Q 2 fits, we at-
tempted to fit simultaneously the four data points (i.e. 3 BSAs and
1 lTSA) of Table 2. We note the VGG predictions: 13% change for
HIm between xB = 0.34 and xB = 0.40 (for −t = 0.30 GeV2) and
7% change for H̃Im for the same kinematical variation. Given the
anticipated ≈ 30% error bars to be issued from our fits, it is not
unreasonable to neglect, in a first approach, this small xB varia-
tion. As previously, we will thus take the kinematics of the BSAs of
Table 2 as the “central” one, basing our choice on their statistical
dominance.

Within this approximation, we are again able to extract values
for the two CFFs HIm and H̃Im which therefore approximately cor-
respond to the kinematics (xB , −t) = (0.35,0.29). We show the
resulting values of HIm and H̃Im in Table 3, along with the values
we obtained previously for these two CFFs at xB = 0.25 when we
fitted simultaneously all points of Table 1 (i.e. values of the data
points in the “box” of Fig. 3). We observe, although error bars are
Fig. 4. xB dependence, at fixed −t ≈ 0.28 GeV2, of the fitted HIm (empty squares)
according to our analyzes of the JLab Hall A data [16] (〈xB 〉 ≈ 0.36), of the HERMES
data [17] (〈xB 〉 ≈ 0.09) and of the present analysis (〈xB 〉 ≈ 0.25 and 〈xB 〉 ≈ 0.35),
using the seven CFFs as free parameters. The open diamond, slightly shifted left
(for visibility) of the open square point at xB ≈ 0.35 is the result of the fit of the
CLAS BSAs and lTSA at xB ≈ 0.35 using only the H and H̃ GPDs. The open triangle,
slightly shifted right (for visibility) of the open square point at xB ≈ 0.36 is the
result of the JLab Hall A unpolarized and beam-polarized cross sections at xB ≈ 0.36
using only the H GPD. The open diamond, slightly shifted right (for visibility) of
the open square point at xB ≈ 0.36 is the result of the JLab Hall A unpolarized and
beam-polarized cross sections at xB ≈ 0.36 using only the H GPD and H̃ GPDs. The
empty crosses indicate the VGG predictions.

not small, the general trend that, at fixed t (≈ 0.28 GeV2), HIm

tends to increase, as xB goes from 0.35 to 0.25, while H̃Im remains
rather constant.

We recall that in earlier work we were able to also extract
values for HIm at different xB values and at almost the t value
considered here (≈ −0.28 GeV2). In Ref. [16], we fitted the JLab
Hall A data which have 〈xB〉 ≈ 0.36 and in Ref. [17], we fitted the
HERMES data which have 〈xB〉 ≈ 0.09. While the JLab Hall A data
were taken precisely at 〈−t〉 = 0.28 GeV2, the HERMES data were
given for 〈−t〉 = 0.20 GeV2 and 〈−t〉 = 0.42 GeV2. In a very sim-
plistic way, we decide to interpolate between these two −t values
by simply averaging our fitted HIm CFFs at these two −t values.
We also average quadratically the positive and negative error bars
(error bars were asymmetric). We thus end up with some average
HERMES HIm CFF at 〈−t〉 ≈ 0.30 GeV2 and 〈xB〉 ≈ 0.09. We can
then obtain a xB dependence, at fixed −t , of our fitted HIm CFFs
using the JLab and HERMES analysis results. Fig. 4 shows this xB

dependence, compiling our results from the independent analysis
of the JLab Hall A, HERMES and CLAS data.

It turns out that around xB = 0.35, both JLab Hall A and CLAS
data are available. Note the decent agreement, within error bars, of
the two extracted values for HIm when all CFFs enter the fit (empty
squares). The error bars are not small and it might appear not so
challenging to have an agreement with such uncertainties. Never-
theless, we take this aspect as support for our realistic evaluation
of the error bars on our fitted CFFs.

In order to illustrate this point, we also plot in Fig. 4 (open di-
amond for xB slightly below 0.35) our fit results of the CLAS BSAs
and lTSA at xB = 0.35 with only H and H̃ as fitting parameters, i.e.
four CFFs instead of seven. It is seen that the central value result
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which as could be expected has a quite smaller error bar, is slightly
shifted (upwards) with respect to the central value result when the
seven CFFs are taken into account. However, both results remains
well compatible within error bars. We did the same exercise with
the JLab Hall A data at xB ≈ 0.36. In Fig. 4, on the one hand, the
open triangle shows the result of the fit to the JLab Hall A unpo-
larized and beam-polarized cross sections (at 〈−t〉 ≈ 0.28 GeV2),
using only the H GPD, i.e. two CFFs. On the other hand, the open
diamond at xB slightly above 0.36 shows the result of the same
fit using this time H and H̃ , i.e. four CFFs. These two fits give χ2

values close to one and describe well the data points. Since these
two fits use only a few CFFs, the error bars on the resulting HIm ’s
are quite small compared to the error bar resulting from the fit
with seven CFFs (open square). However, it is striking to see how
the central value of HIm can shift. With only H entering the JLab
Hall A data fit, HIm (open triangle at xB slightly above 0.36) is
around two, at the top of the error bar of the seven CFFs fit result
(open square at xB = 0.36). This value of H Im is consistent with
the result of Ref. [23] which used the same assumption of H dom-
inance. However, this result is now clearly inconsistent with the
result for HIm issued from our fit using the BSAs and lTSA data
from CLAS (open square at xB slightly below 0.35). In the case
where both H and H̃ enter the fit of these JLab Hall A data, HIm

has now dramatically reduced by a factor more than two (open
diamond at xB slightly above 0.36). In simple words, some of the
“strength” that was uniquely in H went now into H̃ as well. In this
process, HIm has now become weaker and thus compatible with
the result from the CLAS data fit, either the open square or the di-
amond at xB slightly below 0.35. Indeed, note that both CLAS HIm

results, i.e. obtained from the fit with only H and H̃ on the one
hand and with the seven CFFs on the other hand, are compatible
within error bars.

What all this shows is that having small errors on the fitted
GPDs (and of course a decent χ2 fit of the data) does not warrant
that one has the right solution. It is indeed possible to obtain a rel-
atively good fit (χ2 between 1 and 2) of the Hall A data with either
only H (i.e. 2 CFFs), or only H and H̃ (i.e. 4 CFFs) or all GPDs (i.e.
7 CFFs). However, the resulting values of HIm (central value and
errors) will be quite different from each other, and even inconsis-
tent, for these three cases. Regarding the errors on the fitted CFFs,
fitting with only H will result in a small error on HIm , which will
essentially reflect the statistical error of the data themselves. Fit-
ting with H and H̃ , the error becomes larger because the problem
is then underconstrained, fitting four parameters (i.e. CFFs) to only
two observables. Then the error does not reflect anymore the “sta-
tistical” accuracy of the data but rather the correlations between
the fitting parameters. With seven GPDs, obviously the correlation
effect is maximum and the error is then the largest. When fitting
with only H , the minimum that should be done is to associate a
“theoretical” error due to the neglecting of the other GPDs (which
is actually rather difficult to do). In our current approach, all CFFs
have been taken into account and therefore our error takes into
account all the possible influences of the other CFFs on the deter-
mination of HIm . The resulting error might be large but is certainly
robust and reliable.

To summarize this discussion, in the framework of our analysis
(i.e. leading twist and leading order QCD and the few kinematic
approximations mentioned earlier), it doesn’t seem to us possible
to find a consistent value of HIm to fit both the JLab Hall A and
CLAS data if only H enters the fit. The minimum scenario seems
to be that H̃ be included and the ultimate one being of course
that all CFFs be included. It is interesting to observe that Ref. [24]
reached some similar conclusion in a model-dependent approach,
confirming the hint that GPDs other than H (and possibly H̃) do
play a significant role at the JLab kinematics.
Table 4
Selection, for our t-dependence study, of the three (xB , −t) kinematic points mea-
sured by the CLAS collaboration which have 1 lTSA and 3 BSAs at approximately the
same xB values (≈ 0.25).

〈xB 〉 〈−t〉 〈Q 2〉
lTSA 0.27 0.15 1.82
BSA1 0.24 0.15 1.65
BSA2 0.24 0.14 1.89
BSA3 0.25 0.14 2.16

lTSA 0.27 0.24 1.82
BSA1 0.25 0.28 1.69
BSA2 0.25 0.28 1.95
BSA3 0.25 0.28 2.21

lTSA 0.27 0.43 1.82
BSA1 0.25 0.49 1.70
BSA2 0.25 0.49 1.95
BSA3 0.25 0.49 2.20

We stress again that at this kinematic point, 〈xB〉 ≈ 0.35, our
values of HIm were determined by the fitting of independent DVCS
experiments, i.e. JLab Hall A and CLAS, and rather different observ-
ables: polarized and unpolarized cross sections for the JLab Hall A
analysis and BSA and lTSA for the present CLAS analysis. Although
beam polarized observables are common to the two experiments,
it is encouraging to observe that different paths (if they are cor-
rect!) can lead to consistent results, as required.

More generally, taking into account the HERMES data, we ob-
serve in Fig. 4 that the tendency is that, at fixed t , HIm increases
with decreasing xB . This is reminiscent of the xB dependence of
standard parton distributions. The VGG prediction is also shown
in Fig. 4 and, although it overestimates most of the fitted central
values, it displays the same behavior.

We finally turn our attention to the t dependence of the lT-
SAs. The CLAS collaboration has extracted the lTSAs at fixed xB

(≈ 0.25) for three different 〈−t〉 values: 0.15, 0.24 and 0.43 GeV2.
For each of these −t points, we can identify three BSAs which have
approximately the same xB and −t values but with different Q 2

values. We list those points in Table 4. Considering our reasonable
results presented in Fig. 3, we adopt the same approach and we fit,
with the seven CFFs as fitting parameters, simultaneously the three
BSAs and the lTSA at each of the three (xB , −t) points of Table 4,
which all have a common xB value (i.e. ≈ 0.25). Again, only the
HIm and H̃Im CFFs systematically come out from our fits with finite
error bars. Fig. 5 shows our results and reveals the t-dependence
(at fixed xB ≈ 0.25) of the HIm and H̃Im CFFs. We again display
for each t value two results corresponding to different boundary
values for the domain of variation allowed for the CFFs, i.e. ±5
(empty squares) and ±3 (empty circles) times the VGG reference
values.

In Fig. 5, regarding HIm , we note a smooth and typical fall-off
with −t which was also observed in our previous JLab Hall A and
HERMES studies [16,17]. The figure also confirms that the standard
VGG parametrisation (empty crosses), in general, overestimates our
fitted values. This is particularly the case at low t (this was also
observed at HERMES energies [17]). Regarding H̃Im , although the
uncertainties are large, the t-slope appears to be much less pro-
nounced and it even seems that there is a drop towards 0 as t
goes to 0 (although a constant and flat t-dependence can also be
in order within error bars). We find that VGG underestimates this
CFF, in particular as |t| grows. The VGG t-slope seems also a bit
different from the one of the fitted H̃Im .

Finally, the diamonds in Fig. 5 show the results of our fit
when only the H and H̃ GPDs are taken as fitting parameters,
i.e. setting to 0 all other GPDs. We observe the same features as
previously (see Fig. 3). The central values are in very good agree-
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Fig. 5. t-dependence of our fitted HIm and H̃Im CFFs at the kinematic points of
Table 4. The empty squares (circles) show our results when the boundary values
of the domain over which the CFFs are allowed to vary is 5 (3) times the VGG
reference values. The empty diamonds indicate the results of our fits when only the
H and H̃ GPDs are taken as fitting parameters. The empty crosses indicate the VGG
prediction. At the lowest t value of H̃Im , the empty cross and diamond happen to
be superimposed.

ment with the ones determined from the fits in which all CFFs
were included (though with a systematic decrease by ≈ 15% of
the central value of HIm). The main effect is to reduce the uncer-
tainties on the fitted CFFs: very strongly for HIm and only slightly
for H̃Im .

To summarize this work, we have analyzed the beam spin
asymmetry and the longitudinally polarized target spin asymmetry
of the Deep Virtual Compton Scattering process recently measured
by the CLAS collaboration. We have used a fitter code, largely
model-independent, based on the DVCS + BH amplitude (BH be-
ing treated exactly and DVCS at the QCD leading-twist and leading
order), which takes as fitting parameters GPD CFFs. Even though
we fit only two asymmetry observables with seven CFFs, two
CFFs, HIm and H̃Im , appear to have systematically stable and well-
defined central values and uncertainties (on the order of 30% on
average). The reason is that the two observables we fit are well
known to be dominantly sensitive to these two CFFs. It is worth
noting that with only BSAs to fit, there is no convergence of our
fits, while with the addition of a single observable, i.e. the lTSA,
solutions become relatively well defined.

In this work, a few approximations have been made, mostly due
to the present lack of sufficiently precise and numerous data. We
recall that only six lTSAs were available to us: for three −t val-
ues at fixed xB and Q 2 and for three xB values at fixed −t and
Q 2 values. The approximations that we made were to simulta-
neously fit BSAs and lTSAs taken at slightly different xB and −t
values and also at different Q 2 values. This latter approximation
is, in any case, along the line of the main starting assumption of
this work: the dominance of the QCD leading twist and leading or-
der of the DVCS amplitude. In those conditions, we have been able
to determine the xB - and t-dependences of the HIm and H̃Im CFFs
(respectively at fixed t and fixed xB ). In particular, we obtained
a much flatter t-dependence for H̃Im than for HIm . We also illus-
trated, by comparing our fits of the independent JLab Hall A and
CLAS data, at roughly the same kinematics, the importance of tak-
ing into account several GPDs (i.e. not only H) in order to obtain
compatible results.
While there have recently been a couple of other works aim-
ing at fitting DVCS data and extracting HIm , this is the first one
providing access to H̃Im and, in a largely model-independent way,
determine some first numerical value for it. The “price” to pay
for our model-independence is that we obtain relatively large un-
certainties. Several DVCS experiments aiming at measuring more
precisely the observables analyzed in this work and also aimed at
measuring new observables, such as transversely polarized target
spin asymmetries and cross sections are under way or planned
in the near future. We expect our fitting techniques to be more
and more fruitful and efficient as these new precise and numer-
ous data become available, along with progress in theoretical GPD
modelling which can reduce the domain of variation of the fitted
CFFs or their number.
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