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The converging mechanism discussed in Damour and Nordtvedt (1993) [10] for scalar-tensor theories has 
been applied to dilaton-like theories in several subsequent papers. In the present communication, we 
show that an unfortunate assumption in those studies led to a scalar-field equation unsuitable for the 
study of the dilaton field. The corrected scalar-field equation turns to change the numerical outcome of 
those studies in general, but even sometimes their qualitative aftermath. Therefore, the present result 
call for new investigations of the subject. On the other hand, our result shows that the string-inspired 
theory presented in Minazzoli and Hees (2013) [13] is naturally solution to the problem of the effective 
constancy of the fundamental coupling constants at late cosmic times, while it requires less fine-tuning 
than other massless dilaton or usual scalar-tensor theories.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
Introduction. In perturbative string theory, the effective action 
of gravitation is not general relativity but a scalar-tensor theory 
with non-minimal coupling between the scalar-field (called dila-
ton) and both the Ricci scalar and the material part of the La-
grangian [1–9]. While the former coupling is roughly speaking 
mainly constrained by solar system observations of the gravita-
tional post-Newtonian phenomenology, the latter is much more 
severely restricted by the present tight constraints on equivalence 
principle violations. Hence, in order to reconcile perturbative string 
theory with the present strong constraints on the equivalence prin-
ciple, it has been postulated that the dilaton field would acquire a 
mass term through non-perturbative effects (see for instance [4]
and references therein). Indeed, such a mass term would freeze 
the dilaton dynamic at macroscopic scales, hence leading to an 
effective satisfaction of the various properties following from the 
equivalence principle (e.g. constancy of the coupling constants). 
However, a decoupling mechanism has also been found [5,6], that 
does not need any dilaton self-interacting potential. The mecha-
nism turned out to be almost the same as in usual scalar-tensor 
theories [10,11].

In the present communication we demonstrate that the field 
equations used by [5,6] are incomplete. The omission can be 
explained by an unfortunate assumption they used, that we 
already noticed in [12] while studying the massless dilaton 
post-Newtonian phenomenology. Talking about their assumption, 
Damour and Polyakov say: “We believe that our main qualitative 
conclusions do not depend strongly on the specific form of the 
assumption (2.11)”. In the following, we show that their assump-
tion actually fails to predict the correct scalar-field equations. It 
http://dx.doi.org/10.1016/j.physletb.2014.06.027
0370-2693/© 2014 The Author. Published by Elsevier B.V. This is an open access article 
SCOAP3.
has to be noted that not considering Damour and Polyakov’s as-
sumption also allowed the authors of [13] to find a string-inspired 
theory that passes solar-system tests with flying colors, even for a 
massless scalar-field. The theory phenomenologically proposed in 
[13] is therefore an alternative to the usual non-perturbative mass 
assumption.

Derivation of the result. In order to simplify the discussion, we 
shall consider that the dilaton couples universally to the matter 
Lagrangian.1 This assumption does not impact the outcome of the 
study. Hence, let us start with the action of a class of scalar-tensor 
theory with universal coupling between the scalar field and the 
material Lagrangian, directly given in 4 dimensions such as in [4–9,
14]:

S = 1

c

∫
d4x

√−g
1

2μ

×
[
ΦR − ω(Φ)

Φ
(∂σ Φ)2 + 2μ f (Φ)Lm(gμν,Ψ )

]
, (1)

where g is the metric determinant, R is the Ricci scalar con-
structed from the metric gαβ , μ is a coupling constant with the di-
mensions L−1 M−1T 2, f (Φ) is an arbitrary non-dimensional differ-
entiable and real function of Φ , Lm is the material Lagrangian and 
Ψ represents the non-gravitational fields. It has to be noted that 
such an action encompasses the effective string theory low energy 

1 Such a condition seems to be necessary for the driving mechanism to oc-
cur [5,6].
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action considered in [5,6] (for which f (Φ) ∝ Φ), as well as the 
string-inspired theory proposed in [13] (for which f (Φ) ∝ √

Φ ).2

Indeed, although the form is slightly different from the one given 
for instance in [5,6], the differences reduce to a rescaling of the 
scalar-field and to a total derivative term that does not contribute 
to the field equations. We prefer our present notation because it is 
similar to the one found usually in scalar-tensor literature.

Following [5,6], the action can be reformulated in the so-called 
Einstein representation.3 The action can be written as

S = 1

2

∫
d4x

√
−g̃

(
R̃ − g̃αβ∂αϕ∂βϕ

) + Sm, (2)

where we have set μ = c = 1 for simplicity, with

Sm = 1

2

∫
d4x

√−g2 f (Φ)Lm(gμν,Ψ ), (3)

= 1

2

∫
d4x

√
−g̃2 f

(
Φ(ϕ)

)
L̃m

(
g̃νν,Φ(ϕ),Ψ

)
, (4)

where gαβ ≡ Φ g̃αβ , L̃m = Φ−2Lm , 
√−g = Φ−2

√−g̃ , ϕ ≡ ln Φ

and dϕ = ±√
ω + 3/2 dϕ .4 The variation of the material sector 

through relevant fields therefore writes5

δSm = 1

2

∫
d4x

√
−g̃

(− f T̃αβδ g̃αβ + 2[α f T̃ + f,ϕL̃m]δϕ)
, (5)

where

α(ϕ) ≡ −1

2

∂ lnΦ

∂ϕ
= −1

2

∂ϕ

∂ϕ
= ∓ 1

2
√

ω(ϕ) + 3/2
, (6)

and

Tαβ ≡ − 2√−g

δ(
√−gLm)

δgαβ
, (7)

with ω(ϕ) ≡ ω(Φ(ϕ)), T̃αβ = Φ−1Tαβ and T̃ = Φ−2T (T̃ αβ =
Φ−3T αβ ). Eq. (5) is particularly important because it gives the 
source of the field equations. In particular the source σ of the 
scalar-field, such that σ = (−g̃)−1/2δSm/δϕ , is given by the sec-
ond term in the right hand side of Eq. (5). Instead of deriving σ
from the string representation to the Einstein representation as we 
just did, [5,6] directly work with a non-interactive point particle 
action written in the Einstein representation

SDamPoly
m = −

∑
A

∫
m̃A(ϕ)ds̃, (8)

where ds̃2 = g̃αβdxαdxβ . Then, they assume a dilaton functional 
dependency of the masses in the Einstein representation m̃A(ϕ)

[5,6] and subsequently deduce the sought-after σ . By doing so, as 
explained in [12], Damour and Polyakov [5,6] miss the fact that 
the scalar-field coupling is no longer simply related to the confor-
mal factor Φ through the function α (6), but also depends on the 
gradient of the coupling function (ln f ),ϕ , as well as the material 

2 Though unlikely, it has to be noted that such a coupling function could re-
sult from the non-perturbative effective action of string theory. The corresponding 
scalar-field has been dubbed “pressuron” in [15], because it decouples in pressure-
less regimes.

3 Also know as Einstein frame.
4 It is important to note that since the redefinition of the scalar field is not dif-

ferentiable at the general relativity limit (i.e. ω → ∞), the equivalence between the 
Einstein representation action defined by Eq. (2) and the string representation ac-
tion (1) is lost at this limit [16]. Therefore, a better choice would be to work with 
a non-rescaled scalar field such as the one defined by the action (B.2) in [12] or (5) 
in [16].

5 See Appendix B in [12] for a derivation of this result.
Lagrangian L̃m , in a non-trivial way (5). The equations resulting 
from the action in the Einstein representation (2) are

R̃αβ − 1

2
g̃αβ R̃ = f T̃αβ + ∂αϕ∂βϕ − 1

2
g̃αβ g̃σε∂σ ϕ∂εϕ, (9)

and

�̃ϕ = −α f T̃ − f,ϕL̃m, (10)

where the tilde on the operator refers to the fact that it is con-
structed with the metric g̃αβ . One can notice that the last term of 
Eq. (10) is missing in [5–9,17]. This oversight can be directly im-
puted to the assumption they used on the functional dependency 
of the masses in the Einstein representation. At the same time, the 
invariance of the action (2) under diffeomorphism induces the fol-
lowing conservation equation

∇̃σ T̃ ασ = α T̃ ∇̃αϕ + (
g̃ασ L̃m − T̃ ασ

)
∂σ ln f . (11)

It has to be noted this equation differs from the usual scalar-tensor 
case for f 	= Cste. Moreover, it has to be pointed out that the last 
term of the right hand side in Eq. (11) is missing in [5,6] as well. 
However, in the specific case of a perfect fluid in a matter dom-
inated Friedmann universe, it turns out that this term vanishes 
due to an exact cancellation [15]. Therefore in matter dominated 
Friedmann universes, the conservation equation is remarkably the 
same as in usual scalar-tensor theories. On the contrary, in post-
Newtonian developments, such a term is non-null and plays an 
important role (see e.g. [13]).

As in [5,6], let us now consider the perfect fluid approximation, 
such that L̃m = −ε̃ [18,19] and T̃ = −ε̃ + 3 P̃ , where ε̃ and P̃ are 
respectively the total energy density and the pressure of the fluid 
in the Einstein representation. Let us note, however, that there is 
no reason to assume that the effective macroscopic perfect fluid 
Lagrangian L̃m = −ε̃ is also valid for the various imperfect flu-
ids that drive the radiation period. Otherwise, let us restrict our 
attention to the simple case f (Φ) ∝ Φn , with n ∈ R, such that 
n = 1 corresponds to the theory treated in [5], and n = 1/2 to 
the string-inspired theory treated by [13]. The scalar-field equa-
tion then reduces to

�̃ϕ = α f
[
(1 − 2n)ε̃ − 3 P̃

]
. (12)

Assuming a flat Friedmann universe, one can find a specific evolu-
tion parameter p such that the scalar-field equation is independent 
of the cosmic scale factor [10,11].6 Indeed, defining p = ln a + Cste, 
one gets the decoupled scalar-field equation

ϕ′′

3 − ϕ′ 2/2
+ 1

2

(
1 − P̃

ε̃

)
ϕ′ = −

(
1 − 2n − 3

P̃

ε̃

)
α(ϕ), (13)

where X ′ ≡ dX/dp.7

From the last term of (10), one can see that the dilaton has a 
source even when T = 0, for L̃m 	= 0. However, the whole con-
verging mechanism described in [5,6] — and then subsequently 
used in [7–11,17] — lies on the no-source property of the scalar-
field during the radiation era, because it allows to damp away 
any preradiation-era dynamic. Without this property, one can ex-
pect a stronger dependence on initial conditions and on the actual 

6 One should note that this property is not an exclusive feature of the Einstein 
representation [20].

7 It is remarkable that the function f appears through the ratio Φ f,Φ/ f = n only. 
Otherwise, for n = 0, our equation differs slightly from (3.15) in [11] because of 
the sightly different choice of scalar-field rescaling. Indeed, conversely to them, we 
chose not to have a factor 2 in front of the scalar-field kinetic term in Eq. (2). But 
the two results are of course equivalent in the limit n = 0.
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shape of α. Therefore one should expect a different behavior of 
the scalar-field. Even if there is still convergence, one should not 
expect that the so-called attracting power of the radiation era (Fr in 
[6]) has the same magnitude as in a no-source case. Now regarding 
the matter era, let us note that the sign of the source term changes 
in (13), whether one considers theories with n > 1/2 or n ∈
]0; 1/2[. Such a sign can be directly related to the sign of the post-
Newtonian parameter γ [12]. Therefore, solutions will be quali-
tatively different whether one considers theories with n > 1/2 or 
n ∈ ]0; 1/2[, and more generally depending on (ln f ),ϕ . In particu-
lar, for n ∈ ]0; 1/2[ — implying γ < 18 — if the dilaton converges 
towards |α|min for ε ∼ 3P , it diverges for P ∼ 0, because the at-
tracting force (i.e. rhs of Eq. (13)) becomes repulsive (and the other 
way around). However, one has to keep in mind that one cannot 
simply use the approximation ε ∼ 3P in order to describe the ra-
diation period because one doesn’t know the effective macroscopic 
Lagrangian L̃m of the imperfect fluids that drive this era.

Conclusion. We do not say that the converging mechanism de-
scribed by Damour and Polyakov can no longer occur, but we argue 
that it depends more firmly than previously thought on initial con-
ditions and on the specificity of the theory considered (through the 
functions α and n = Φ(ln f ),Φ ). In any case, the whole problem 
of the massless dilaton cosmology, its convergence toward general 
relativity, and the magnitude of the expected equivalence princi-
ple violations should be worked anew with the correct scalar-field 
equations given by (10)–(11).

Otherwise, one should notice that the exponential damping that 
may no-longer occur during the radiation era, occurs during the 
matter era for all α (thus ω) if n = 1/2 — corresponding to the 
theory recently proposed in [13]. Therefore, the theory presented 
in [13] is naturally solution to the problem of the effective con-
stancy of the fundamental coupling constants at late cosmic times, 
while it also passes solar system post-Newtonian tests with fly-
ing colors for all ω not too close of the singular value −3/2 [13]
(resp. α → ±∞ (6)). Hence, conversely to other massless dila-
ton theories and to usual scalar-tensor theories, the theory treated 
in [13] may not need the fine-tuned requirement that the “late 
times” local minimum of the function α is zero. Indeed, in order 
to satisfy current solar-system tests, theories with n = 1/2 don’t 
need to converge towards αmin = 0 because they decouple in the 
matter era anyway. Nevertheless, they are still able to converge 

8 While n > 1/2 and n = 1/2, imply γ > 1 and γ = 1 respectively [12].
towards |α|min — whether it is zero or not — during the radiation 
era. The decoupling then comes by mass threshold: each time the 
universe passes a threshold kTi ∼ mic2 when it cools down, the 
quantity P/ε declines up to a value of order (mi/kT )2, where mi is 
the mass of the species of particle/antiparticle ‘i’ [10,11]. In some 
sense, theories with n = 1/2 have a reversed cosmology compared 
to usual scalar-tensor theories studied in [10,11]. Testing the the-
ory in strong regimes should give more constraints on the value of 
α at present time by constraining ω more tightly than it is with 
solar-system tests [13].

The details of the scalar-field cosmic evolution shall be pre-
sented in dedicated communications.
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