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Abstract

We study the relation between generalized metric spaces and their resolutions. Here, we c
the class of spaces withGδ-diagonals,M3-,M1-spaces,M3–µ-spaces and developable spaces.
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1. Introduction

All spaces are assumed to be regularT1 and all mappings to be continuous. The let
N denotes all positive numbers. For a spaceX, τ (X) denotes the topology ofX. The
concept of resolutions of spaceswas originally given by Fedorčuk [2] and Watson [8]
brought it in the limelight. He showed hownice properties of topological spaces can
destroyed by taking resolutions. In this paper, we study what kind of generalized m
spaces can be preserved to the resolutions. Especially, we consider the classes o
with Gδ-diagonals,M3-spaces,M1-spaces,M3–µ-spaces and developable (Moore) spac
These spaces have the position indicated by the implication:M3–µ-space→ M1-space→
M3-space→ Gδ-diagonal← developable space. As the study with the same direction
have the results of Richardson and Watson [7], where they consider the metrizab
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resolutions. We give the definition of the resolution of a space. LetX andYx , x ∈ X, be

ts
lar

d

spaces and for eachx,fx :X \ {x} → Yx a mapping. We endow the set

Z =
⋃{{x} × Yx | x ∈ X

}

with a topology whose base consists of{
U ⊗ V | U ∈ τ (X), V ∈ τ (Yx), x ∈ X

}
,

where

U ⊗ V = {x} × V ∪
⋃{{x ′} × Yx ′ | x ′ ∈ U ∩ f −1

x (V )
}
, U ∈ τ (X), V ∈ τ (Yx).

We callZ theresolution of a spaceX (at each pointx ∈ X into Yx by the mappingfx ). It
is easy to see that the projectionπ :Z → X defined byπ((x, y)) = x for each(x, y) ∈ Z

is continuous. It is to be noted that the operationA⊗B is defined similarly for any subse
A, B of X, Yx, x ∈ X, respectively. Finally, we point out that any resolution of regu
spaces is also regular [1].

2. The resolutions of generalized metric spaces

We call a subsetΛ of a spaceX Fσ -discrete in X if Λ = ⋃{Λn | n ∈ N}, where each
Λn is discrete and closed inX. In general, let

Λ = {
x ∈ X | |Yx | > 1

}
.

We call that the projectionπ :Z → X is closed at x in X if for each open neighborhoo
O of π−1(x) = {x} × Yx in Z, there exists an open neighborhoodU of x in X such that
π−1(U) ⊂ O . It is easy to see thatπ is a closed mapping if and only ifπ is closed at each
pointx ∈ X. Let

Ω = {x ∈ X | π is closed at eachx in X}.
Obviously, ifYx is a singleton, thenx ∈ Ω , that is,X \ Λ ⊂ Ω . More generally, it is easily
checked thatYx is compact, thenx ∈ Ω . For a subsetA of a spaceX, let Ad be the derived
set ofA in X, that is, the set of all accumulation points ofA in X.

Proposition 1. If the resolution Z has a Gδ-diagonal, then Λ is represented as a countable
union

⋃{Λ(n) | n ∈ N}, where for each n, Λ(n)d ∩ Ω = ∅.

Proof. Suppose thatZ has aGδ-diagonal sequence{U(n) | n ∈ N}. For eachx ∈ Λ, take
distinct pointsp(x), q(x) ∈ Yx . There existsn(x) ∈ N such that(

x, q(x)
)

/∈ S
((

x,p(x)
)
, U

(
n(x)

))
.

Let

Λ(n) = {
x ∈ X | n(x) = n

}
, n ∈ N.

Then Λ = ⋃{Λ(n) | n ∈ N}. Assume that for somen ∈ N, Λ(n)d ∩ Ω �= ∅. Takex ∈
Λ(n)d ∩ Ω . Sinceπ is closed atx andx ∈ Λ(n)d , there existsa ∈ Yx such that

(x, a) ∈ {(
x ′,p(x ′)

) | x ′ ∈ Λ(n)
}d

.
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SinceU(n) coversZ, there existsU ∈ U(n) with (x, a) ∈ U . This implies thatU contains
n

s

can
d

e

than
as the

s of
both(x ′,p(x ′)) and(x ′, q(x ′)) for somex ′ ∈ Λ(n). This is a contradiction to the definitio
of Λ(n). �
Proposition 2. If X and all Yx, x ∈ X, have a Gδ-diagonal and Λ is Fσ -discrete in X, then
the resolution Z has a Gδ-diagonal.

Proof. Let {U(n) | n ∈ N}, {U(x,n) | n ∈ N} be Gδ-diagonal sequences ofX,Yx ,
respectively. LetΛ = ⋃{Λ(n) | n ∈ N}, where eachΛ(n) is discrete and closed inX.
Let n,m ∈ N. There exists a family{V (p) | p ∈ Λ(n)} of open subsets ofX such that
p ∈ V (p) andV (p) ∩ (

Λ(n) \ {p}) = ∅ for eachp ∈ Λ(n). Define open coversV(n,m)

andV(n) as follows:

V(n,m) = {
V (x) ⊗ U | U ∈ U(x,m), x ∈ Λ(n)

} ∪ {
π−1(X \ Λ(n)

)}
,

V(n) = {
π−1(U) | U ∈ U(n)

}
.

Then it is easy to see that{V(n,m),V(n) | n,m ∈ N} is aGδ-diagonal sequence ofZ. �
Theorem 3. Let π :Z → X be a closed projection and let X, Yx , x ∈ X, have a Gδ-
diagonal. Then the resolution Z has a Gδ-diagonal if and only Λ is Fσ -discrete in X.

Proof. If part follows from Proposition 2. Only if part: LetΛ(n), n ∈ N, be the same a
in the proof of Proposition 1. Suppose thatΛ(n) is not discrete or not closed inX. Then
Λ(n)d �= ∅. Note thatX = Ω by the assumption. By the same discussion as there, we
reach a contradiction to the definition ofΛ(n). Hence eachΛ(n) is discrete and close
in X. �
Remark. The closedness ofπ is necessary. Indeed, letZ be the resolution of a real lin
R at each pointx ∈ R into Yx = R \ {x} by an identity mappingfx :R \ {x} → R \ {x}. In
this case,Z = ⊕{Yx | x ∈ R} is metrizable, butΛ = R is notFσ -discrete.

Corollary 4. Let Yx , x ∈ X, be compact metrizable spaces and X a space with a Gδ-
diagonal. Then the resolution Z has a Gδ-diagonal if and only if Λ is Fσ -discrete in X.

A spaceX is developable if there exists a sequence{U(n) | n ∈ N} of open covers ofX
such that for eachx ∈ X, {S(x,U(n)) | n ∈ N} forms a local base atx in X. This sequence
is called the development forX. Note that the concept of developments is stronger
that ofGδ-diagonal sequences. But the treatment for resolutions are similar. Thus
corollary to the above theorem we have the following:

Theorem 5. Let X be a developable space and Yx , x ∈ X, compact metrizable spaces.
Then the resolution Z is developable if and only if Λ is Fσ -discrete in X.

For brevity, let CP stand for the term “closure-preserving”. As for the definition
M1-, M3-spaces, refer to [3, Definition 5.1, 5.24].
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Proposition 6. Let X,Yx , x ∈ X be M3-spaces and let Λ be Fσ -discrete in X. Then the

is
g,

e

ce
resolution Z is an M3-space.

Proof. Let Λ = ⋃{Λ(n) | n ∈ N}, where eachΛ(n) is discrete and closed inX. For
eachn ∈ N, let {U(p) | p ∈ Λ(n)} be a discrete open expansion ofΛ(n) in X. For
eachp ∈ Λ(n), there exists a CP closed neighborhood baseB(p) of p in X such that⋃

B(p) ⊂ U(p). Let
⋃{B(n) | n ∈ N} be a quasi-base forX, where eachB(n) is a CP

family of closed subsets ofX. For eachx ∈ Λ, there exists a quasi-base
⋃{B(x,n) | n ∈ N}

for Yx , where eachB(x,n) is a CP family of closed subsets ofYx . Note that for each
n, k ∈ N,

P(n, k) = {
B ⊗ B ′ | B ′ ∈ B(x,n), B ∈ B(x), x ∈ Λ(k)

}

is a CP family of closed subsets ofZ. It is easy to check that
⋃{P(n, k) | n, k ∈

N}∪{π−1(B) | B ∈ B(n), n ∈ N} is a quasi-base forZ, proving thatZ is anM3-space. �
As for theM1-ness of resolutions, we know that Ceder notes that Saalfrank line, that

the resolution of[0,1] at each element into a copy of[0,1] by the constant zero mappin
[8, Example 3.1.77], is anM1-space. With respect to theM3 vs. M1 problem, Heath and
Junnila [4] showed that everyM3-space is a perfect retraction of anM1-space. We can us
resolutions for the same purpose.

Proposition 7. Every M3-space X is a perfect retraction of an M1-resolution of X.

Proof. LetX be anM3-space. LetB = ⋃{B(n) | n ∈ N} be a quasi-base forX, where each
B(n) is a CP family of closed subsets ofX. There exists a subsetD = ⋃{Dn | n ∈ N} with
eachDn discrete and closed inX such thatB ∩ D = B for eachB ∈ B. For eachn ∈ N, let
{U(x) | x ∈ Dn} be a discrete open expansion ofDn in X. For eachx ∈ Dn, there exists a
mappinggx of X onto[0,1] such thatf

(
X \ U(x)

)
) = {1} andf (x) = 0.

ResolveX at eachx ∈ D into Yx = [0,1] by a mappingfx = gx | (X \ {x}). Let

Z =
⋃{{x} × Yx | x ∈ X

}
,

whereYx = {0} if x ∈ X \ D.
By [7, Lemma 6]π is a perfect mapping. SinceX is homeomorphic to the subspa

{(x,0) | x ∈ X} of Z, it suffice to show thatZ is anM1-space. Let

P = {{x} × [a, b] | 0 < a < b ≤ 1, a, b ∈ Q, x ∈ D
}
,

whereQ is the set of all rationals in[0,1]. Then obviouslyP is aσ -CP family of regular
closed subsets ofZ and forms a neighborhood base of each point of

⋃{{x} × (Yx \ {0}) |
x ∈ D

}
in Z.

Let

B(p) = {
B ∈ B | p ∈ IntB ⊂ B ⊂ U(p)

}
, p ∈ D.

ThenB(p) is aσ -CP closed neighborhood base ofp in X. For eachB ∈ B(p),p ∈ D and
eacha ∈ Q with 0 < a, let

[B,p,a] =
⋃{{x} × Yx | x ∈ B \ {p}} ∪ {p} × [0, a],
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and let

se

ch

e
pact
Q= {[B,p,a] | B ∈ B(p), p ∈ D, 0 < a, a ∈ Q
}
.

Then obviouslyQ is aσ -CP family of closed subsets ofZ and forms a neighborhood ba
of each point of{(p,0) | p ∈ D} in Z. Moreover, each[B,p,a] is regular closed inZ
because

[B,p,a] =
{
ClZ

[⋃{{x} × (
Yx \ {0}) | x ∈ B \ {p}} ∪ {p} × (0, a)

]}
.

Similarly,

R = {
π−1(B) | B ∈ B

}

is a σ -CP family of regular closed subsets ofZ and forms a neighborhood base of ea
point of

⋃{{x}×Yx | x ∈ X\D
}

in Z. Thus we can construct aσ -CP quasi-baseP∪Q∪R
for Z consisting of regular closed subsets ofZ. HenceZ is anM1-space. �
An M0-spaceX is a space which has aσ -CP base consisting of clopen subsets ofX. Then
the next follows from the same method as Proposition 6.

Proposition 8. Let Yx , x ∈ X, be M0-spaces and let X be an M0-space. Let Λ be Fσ -
discrete in X. Then the resolution Z is an M0-space.

We do not know what kind of additional conditions onX,Yx or fx is needed for the
resolutionZ to be anM1-space. Finally, we consider the class ofM3–µ-spaces. A spac
X is called aµ-space in [6] if X is embedded into the countable product of paracom
Fσ -metrizable spaces. But here, we use the characterization ofM3–µ-spaces in [5]. To
state it, we need the following term: LetU,F be families of subsets of a spaceX and let
p ∈ X. We call thatU is F -preserving in both sides at p if for any U0 ⊂ U , the following
two conditions are satisfied:

(i) If p ∈ ⋂
U0, then there existsF ∈ F such thatp ∈ F ⊂ ⋂

U0;
(ii) if p ∈ X \ ⋃

U0, then there existsF ∈F such thatp ∈ F ⊂ X \ ⋃
U0.

We call thatU is F -preserving in both sidesin X if U is so at each point ofX. The
characterization is as follows: AnM3-spaceX is a µ-space if and only if there is a pair
〈U,F〉 of families of subsets ofX satisfying the following:

(i) F is aσ -discrete closed network forX;
(ii) U = ⋃{Un | n ∈ N} is a base forX such that for eachn,Un is F -preserving in both

sides inX.

We call the pair〈U,F〉 anM-structure of X.

Proposition 9. Let X, Yx , x ∈ X be M3–µ-spaces and let Λ be Fσ -discrete in X. Then the
resolution Z is an M3–µ-space.
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Proof. By Proposition 6,Z is an M3-space. Thus it remains to show thatZ has an

or

of

rk

0.
d,
M-structure. Let〈⋃{U(n) | n ∈ N},F〉 be theM-structure ofX such that for eachn, U(n)

is F -preserving in both sides inX. Assume thatF is closed under finite intersections. F
eachx ∈ X, let 〈⋃{V(x,n) | n ∈ N},F(x)〉 be theM-structure ofYx such that for eachn,
V(x,n) isF(x)-preserving in both sides inYx . Let Λ = ⋃{Λn | n ∈ N}, where eachΛn is
discrete and closed inX. For eachn, let {U(x) | x ∈ Λn} be the discrete open expansion
Λn in X. For eachn,m,k ∈ N, DefineW(n,m, k) as follows:

U(n,m: x) = {
U ∈ U(n) | x ∈ U ⊂ U(x)

}
, x ∈ Λm,

W(n,m, k: x) = {
U ⊗ V | U ∈ U(n,m: x), V ∈ V(x, k)

}
, x ∈ Λm,

W(n,m, k) =
⋃{

W(n,m, k :x) | x ∈ Λm

}
.

Then it is easy to see that

W =
⋃{

W(n,m, k) | n,m,k ∈ N
}

is a local base at each point of
⋃{{x} × Yx | x ∈ Λ

}
in Z. For eachm ∈ N, let

H(m) = {{x} × F | F ∈F(x), x ∈ Λm

}

∪ {
π−1(f −1

x (F ) ∩ F ′) | F ∈F(x), F ′ ∈F , F ′ ⊂ U(x), x ∈ Λm

}
.

ThenH(m) is a σ -discrete family of closed subsets ofZ and obviouslyW(m,n, k) is
H(m)-preserving in both sides at each point in

⋃{U(x) | x ∈ Λm}. Note that for each
n,π−1

(
U(n)

)
is π−1(F)-preserving in both sides inZ. Hence we have theM-structure

〈
W ∪

⋃{
π−1(U(n)

) | n ∈ N
}
,

⋃{
H(m) | m ∈ N

} ∪ π−1(F)
〉

for Z. �
Combining this with Corollary 4, we have the following:

Theorem 10. Let Yx, x ∈ X, be compact metrizable spaces and let X be an M3–µ-space.
Then the resolution Z is an M3–µ-space if and only if Λ is Fσ -discrete in X.
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