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Abstract

We study the relation between generalized metric spaces and their resolutions. Here, we consider
the class of spaces witfis-diagonals M3-, M1-spacesM3—u-spaces and developable spaces.
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1. Introduction

All spaces are assumed to be regutarand all mappings to be continuous. The letter
N denotes all positive numbers. For a spaer(X) denotes the topology oX. The
concept of resolutions of spacess originally given by Fed@uk [2] and Watson [8]
brought it in the limelight. He showed homice properties of topological spaces can be
destroyed by taking resolutions. In this paper, we study what kind of generalized metric
spaces can be preserved to the resolutions. Especially, we consider the classes of spaces
with Gs-diagonalsM3-spacesM;-spacesMs—u-spaces and developable (Moore) spaces.
These spaces have the position indicated by the implicatifari-space—~ Mi-space—
Ms3-space— Gs-diagonal<— developable space. As the study with the same direction, we
have the results of Richardson and Watson [7], where they consider the metrizability of
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resolutions. We give the definition of the resolution of a spaceX.endY,, x € X, be
spaces and for eaah f,: X \ {x} — Y, a mapping. We endow the set

Z=|J{{tx} x Yx | x e X}
with a topology whose base consists of
UV IUet(X), Ver(Yy), xeX},
where
UV={}x VU J{tx} x Yo X eUn V)] Uet(X), Ver(Yo.

We call Z theresolution of a spaceX (at each poink € X into Y, by the mappingfy). It

is easy to see that the projectian Z — X defined byr ((x, y)) = x for each(x, y) € Z

is continuous. Itis to be noted that the operatio® B is defined similarly for any subsets
A, B of X, Y., x € X, respectively. Finally, we point out that any resolution of regular
spaces is also regular [1].

2. Theresolutions of generalized metric spaces

We call a subsett of a spaceX F,-discretein X if A =J{A, | n € N}, where each
A, is discrete and closed iK. In general, let

A={xeX||¥c|>1}.

We call that the projection : Z — X is closed at x in X if for each open neighborhood
0 of 77 1(x) = {x} x Y in Z, there exists an open neighborhaddf x in X such that
7~Y(U) C 0. ltis easy to see that is a closed mapping if and onlyif is closed at each
pointx € X. Let

2 ={x e X |misclosed at each in X}.

Obviously, if Y is a singleton, them € £2, thatis,X \ A C §2. More generally, it is easily
checked that, is compact, them € £2. For a subset of a spaceX, let A% be the derived
set ofA in X, that is, the set of all accumulation pointsAin X.

Proposition 1. If theresolution Z hasa Gs-diagonal, then A isrepresented asa countable
union | J{A(n) | n € N}, where for eachn, A(n)¢ N 2 =¢.

Proof. Suppose thak has aGs-diagonal sequend@/(n) | n € N}. For eachx € A, take
distinct pointsp(x), g (x) € Y. There exista(x) € N such that

(x. () ¢ S((x, p(0)), U(n(x))).
Let

An) = {x eX|n(x):n}, neN.

Then A = [ J{A(n) | n € N}. Assume that for some € N, AN +£0P. Takex €
Am)? N 2. Sincer is closed ak andx € A(n)?, there exists € Y, such that

(x,a) e {(x', p(x")) | x" € A(n)}d.



T. Mizokami, F. Suwada / Topology and its Applications 146147 (2005) 539-545 541

Sinceld (n) coversZ, there existd/ € U(n) with (x,a) € U. This implies thaty contains
both(x’, p(x")) and(x’, g (x")) for somex’ € A(n). This is a contradiction to the definition
of A(n). O

Proposition 2. If X and all Y, x € X, havea Gs-diagonal and A is F;,; -discretein X, then
theresolution Z hasa Gs-diagonal.

Proof. Let {/(n) | n € N}, {U(x,n) | n € N} be Gs-diagonal sequences of, Yy,
respectively. LetA = | J{A(n) | n € N}, where eachi(n) is discrete and closed iX.
Let n,m € N. There exists a familf{V(p) | p € A(n)} of open subsets ok such that
peV(p)andV(p)N (A(n) \ {p}) = () for eachp € A(n). Define open cover¥(n, m)
andV(n) as follows:

V,m)={Vx)@U | U elU(x,m), x e Am)} U{xr (X \ A@m))},
V) = {z71U) | U eUm)}.

Then itis easy to see th@¥(n, m), V(n) | n,m € N} is aGs-diagonal sequence &f. O

Theorem 3. Let 7:Z — X be a closed projection and let X, Y., x € X, have a Gs-
diagonal. Then the resolution Z hasa Gs-diagonal if and only A is F,, -discretein X.

Proof. If part follows from Proposition 2. Only if part: Leti(r), n € N, be the same as

in the proof of Proposition 1. Suppose th&tn) is not discrete or not closed iki. Then
A(n)? # @. Note thatX = £2 by the assumption. By the same discussion as there, we can
reach a contradiction to the definition df(n). Hence eachi (n) is discrete and closed
inX. O

Remark. The closedness of is necessary. Indeed, |€t be the resolution of a real line
R at each poink e Rinto Y, =R\ {x} by an identity mapping; :R\ {x} > R\ {x}. In
this caseZ = (Y, | x € R} is metrizable, butA =R is not F,, -discrete.

Corollary 4. Let Yy, x € X, be compact metrizable spaces and X a space with a G-
diagonal. Then theresolution Z hasa Gs-diagonal if and only if A is F,-discretein X.

A spaceX is developableif there exists a sequené# (n) | n € N} of open covers ok
such that for each € X, {S(x,U(n)) | n € N} forms a local base atin X. This sequence
is called the development fot. Note that the concept of developments is stronger than
that of Gs-diagonal sequences. But the treatment for resolutions are similar. Thus as the
corollary to the above theorem we have the following:

Theorem 5. Let X be a developable space and Y, x € X, compact metrizable spaces.
Then the resolution Z is developableif and only if A is F,,-discretein X.

For brevity, let CP stand for the term “closure-preserving”. As for the definitions of
M1-, M3-spaces, refer to [3, Definition 5.1, 5.24].
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Proposition 6. Let X, Y,, x € X be M3-spaces and let A be F,-discrete in X. Then the
resolution Z is an Mz-space.

Proof. Let A = [J{A®) | n € N}, where eachA(n) is discrete and closed iX. For
eachn e N, let {U(p) | p € A(n)} be a discrete open expansion afn) in X. For
eachp € A(n), there exists a CP closed neighborhood b&gg) of p in X such that
UB(p) C U(p). Let | J{B(n) | n € N} be a quasi-base fax, where eact3(n) is a CP
family of closed subsets df . For eachx € A, there exists a quasi-basf{B(x, n) | n € N}
for Y., where eaclB(x,n) is a CP family of closed subsets &f. Note that for each
n,kelN,

P(n,k)={B®B'| B'€ B(x,n), B €B(x), x € Ak)}

is a CP family of closed subsets &f. It is easy to check that J{P(n,k) | n,k €
N}u{z~Y(B) | B € B(n), n € N} is a quasi-base fof, proving thatZ is anMz-space. O

As for the M1-ness of resolutions, we know thae@er notes that Saalfrank line, that is
the resolution of0, 1] at each element into a copy [, 1] by the constant zero mapping,
[8, Example 3.1.77], is aM;-space. With respect to the3 vs. M1 problem, Heath and
Junnila [4] showed that eveM3-space is a perfect retraction of afy-space. We can use
resolutions for the same purpose.

Proposition 7. Every M3-space X is a perfect retraction of an M1-resolution of X.

Proof. Let X be anM3-space. Le3 = J{B(n) | n € N} be a quasi-base fof, where each
B(n) is a CP family of closed subsets &f There exists a subsét= | J{D, | n € N} with
eachD,, discrete and closed ik such thatB N D = B for eachB € B. For each: € N, let
{U(x) | x € D, } be a discrete open expansion®f in X. For eachx € D,, there exists a
mappingg, of X onto[0, 1] such thatf(X \ U(x))) ={l}andf(x)=0.

ResolveX at eachx € D into Y, = [0, 1] by a mappingf, = g« | (X \ {x}). Let

z=|J{tx} x ¥x | x e X},

whereY, = {0} if x € X \ D.
By [7, Lemma 6]x is a perfect mapping. Sinck¥ is homeomorphic to the subspace
{(x,0) | x € X} of Z, it suffice to show thak is anM;-space. Let
P:{{x} x[a,b]|0<a<b<l a,beQ, xeD},

whereQ is the set of all rationals if0, 1]. Then obviouslyP is ac-CP family of regular
closed subsets & and forms a neighborhood base of each poirujnﬂx} x (Y \ {O}) |
xeD}inZ.

Let

B(p)={BeB|peIlntBCBCU(p)}, peD.

ThenB(p) is ac-CP closed neighborhood basemwin X. For eachB € B(p), p € D and
eacha e Qwith0 < q, let

[B, p,al = J{{x} x Y« | x € B\ {p}} U {p} x [0, al,
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and let
Q={[B,p.al|BeB(p), peD, 0<a, acQ}.

Then obvioushQ is ac-CP family of closed subsets @f and forms a neighborhood base
of each point of((p,0) | p € D} in Z. Moreover, eachB, p, a] is regular closed irZ
because

(8. p.al = {Clz[ftx} < (¥ \ (0) [x € B (1} U p) x O.a)|}.
Similarly,
R={n"Y(B)|BeB)

is ao-CP family of regular closed subsets Bfand forms a neighborhood base of each
pointof( J{{x} x Y, | x € X\ D} in Z. Thus we can constructaCP quasi-basB UQUR
for Z consisting of regular closed subsetsbfHenceZ is anMj-space. O

An Mp-spaceX is a space which hase-CP base consisting of clopen subsetXofThen
the next follows from the same method as Proposition 6.

Proposition 8. Let Y, x € X, be Mp-spaces and let X be an Mp-space. Let A be F, -
discretein X. Then theresolution Z isan Mop-space.

We do not know what kind of additional conditions dh Y, or f, is needed for the
resolutionZ to be anMj-space. Finally, we consider the classM$—u-spaces. A space

X is called au-spacein [6] if X is embedded into the countable product of paracompact
F,-metrizable spaces. But here, we use the characterizatidfizef.-spaces in [5]. To
state it, we need the following term: L&t F be families of subsets of a spa&eand let

p € X. We call that/ is F-preserving in both sides at p if for any Uy C U, the following

two conditions are satisfied:

() If p e U, then there existg € F such thatp € F C (" Uo;
(i) if p e X\ UUo, then there existd € F such thatp € F C X \ |JUo.

We call thatl/ is F-preserving in both sides X if U/ is so at each point ok. The
characterization is as follows: AW3-spaceX is a u-space if and only if there is a pair
(U, F) of families of subsets oX satisfying the following:

(i) Fisao-discrete closed network fox;
(i) U =J{U, | n e N} is a base forX such that for each, U, is F-preserving in both
sides inX.

We call the pairi/, F) an M-structure of X.

Proposition 9. Let X, Y,, x € X be M3—u-spacesand let A be F,;-discretein X. Then the
resolution Z isan Mz—u-space.
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Proof. By Proposition 6,Z is an M3z-space. Thus it remains to show thathas an
M-structure. Let J{U(n) | n € N}, F) be theM-structure ofX such that for each, U (n)

is F-preserving in both sides ik. Assume thatF is closed under finite intersections. For
eachx € X, let (J{V(x,n) | n € N}, F(x)) be theM-structure ofY, such that for each,
V(x,n) is F(x)-preserving in both sides if,. Let A = J{A, | n € N}, where eacht,, is
discrete and closed iK. For eachs, let{U (x) | x € A,} be the discrete open expansion of
A, in X. For eachn, m, k € N, DefineW(n, m, k) as follows:

Un,m: x) = {U eld(n) |xelUC U(x)}, X € Ay,
W, mk: x)={U®V|Uel(m,m: x), VeVx,k)}, xeAy,
W, m, k)= J{Wm,m. k:x) | x € An}.
Then it is easy to see that
W= J{wa.mk)|n.m k eN}
is a local base at each point(of{{x} x Y, | x € A} in Z. For eachn € N, let
H(m) ={{x} x F| F € F(x), x € An}
U{r Y (i MF)NF) | FeFx), F eF, FFCU®X), x € An}.

ThenH(m) is ao-discrete family of closed subsets @f and obviouslyW@m, n, k) is
H(m)-preserving in both sides at each point{if{U (x) | x € A,,}. Note that for each
n, 7~ (U(n)) is 7 ~1(F)-preserving in both sides iAi. Hence we have th#f-structure

(WwulJlr @) 1n e N}, (J{mon 1meNjuz=im)

forZz. O

Combining this with Corollary 4, we have the following:
Theorem 10. Let Y,, x € X, be compact metrizable spacesand let X be an M3—u-space.
Then theresolution Z isan Ms—u-spaceif and only if A is F,-discretein X.
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