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This work verifies the potential of support vector machine (SVM) algorithm applied to near infrared

(NIR) spectroscopy data to develop multivariate calibration models for determination of biodiesel

content in diesel fuel blends that are more effective and appropriate for analytical determinations of

this type of fuel nowadays, providing the usual extended analytical range with required accuracy.

Considering the difficulty to develop suitable models for this type of determination in an extended

analytical range and that, in practice, biodiesel/diesel fuel blends are nowadays most often used

between 0 and 30% (v/v) of biodiesel content, a calibration model is suggested for the range 0–35% (v/v)

of biodiesel in diesel blends. The possibility of using a calibration model for the range 0–100% (v/v) of

biodiesel in diesel fuel blends was also investigated and the difficulty in obtaining adequate results for

this full analytical range is discussed. The SVM models are compared with those obtained with PLS

models. The best result was obtained by the SVM model using the spectral region 4400–4600 cm�1

providing the RMSEP value of 0.11% in 0–35% biodiesel content calibration model. This model provides

the determination of biodiesel content in agreement with the accuracy required by ABNT NBR and

ASTM reference methods and without interference due to the presence of vegetable oil in the mixture.

The best SVM model fit performance for the relationship studied is also verified by providing similar

prediction results with the use of 4400–6200 cm�1 spectral range while the PLS results are much worse

over this spectral region.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The use of renewable energy resources for production of fuels
such as ethanol and biodiesel, the so-called alternative fuels or
biofuels obtained from biomass, has been increasing in Brazil and
in many countries in recent years due to attractive environmental
[1–4], economic and social [5–7] issues.

Economic issues such as reducing importations of diesel oil,
social issues such as encouraging family farms or small producers
and the growing attention to the environmental impact caused by
the use of fossil energy resources and the effort to decrease
atmospheric pollutant gases led the Brazilian government, in
2005, to introduce biodiesel as an energy resource with manda-
tory use of 2% (v/v) in diesel fuel in 2008, increasing the
mandatory use to 5% (v/v) in 2010.

The environmentally friendly characteristic of biodiesel is mainly
related to decrease of pollutant gases put into the atmosphere of
large cities and metropolitan areas. Due to the raw material origin of
soybean biodiesel, the carbon dioxide issued during its production
ll rights reserved.

.
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and consumption is recycled in the growing process. In this manner,
replacing petroleum diesel by soybean biodiesel decreases the total
amount of this greenhouse gas put into atmosphere by means of
combustion emissions. Moreover the use of biodiesel can decrease
carbon oxide, sulfur oxide and particulate matter emissions into the
atmosphere [1–4].

In 2010 Brazil produced 2.4 billion liters of biodiesel, becoming
the second largest producer in the world. In 2011 Brazil produced
2.6 billion liters of biodiesel of which 81% were produced using
soybean oil. Studies show that in 2020 the consumption of diesel oil
in Brazil will be around 70 billion liters per year [8] and now there is
a government study to make mandatory the use of 10% of biodiesel
content in diesel fuel blend by that year.

Biodiesel is currently the main substitute for petroleum diesel
fuel due to its similarities in physico-chemical properties, allowing
its use in diesel engines in blends up to 20% (v/v) in diesel oil (B20)
without any engine modification. Biodiesel blends up to 30% (v/v) in
diesel oil (B30) can also be used but may require some adjustments
in the injection system, fuel filters and elastomer materials, depend-
ing on the engine manufacturer. Vehicles with adequately adapted
engines can use pure biodiesel (B100) as fuel [4].

Many countries now use biodiesel/diesel fuel blends. In the
United States the most common use of this fuel is with 20% (v/v)
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or less biodiesel content [9] and the American Society for Testing
and Materials (ASTM) standard D7467 [10] provides the reference
specifications for blends containing 6–20% of biodiesel. In Europe
the most common use of this blend is between 5 and 7% (v/v) of
biodiesel although there are experiments that use 30% (v/v) of
biodiesel in the diesel fuel used in some buses and in light
vehicles [11]. In Brazil the experiences in the cities of S~ao Paulo
and Curitiba stand out. S~ao Paulo has been using blends with up
to 30% (v/v) of biodiesel in its bus fleet. A municipal ordinance
from 2009 determines that the entire urban transport bus fleet
will gradually be replaced and by 2018 will use renewable fuels
instead of fossil fuels. In Curitiba buses that use pure biodiesel are
part of the urban transport fleet.

The biodiesel is produced by a transesterification reaction of a
triglyceride, an ester from vegetable oils or animal fats, with a
short chain alcohol such as methanol or ethanol in the presence of
a catalyst, yielding a mixture of fatty acid alkyl esters and glycerol
[12,13].

The use of biodiesel does not imply changes in the distribution
and storage structure related to petroleum diesel fuel, although
operational care similar to the use of petroleum diesel fuel in
storage and in operation and maintenance of engines must be
carefully controlled due to some distinct biodiesel properties in
relation to petroleum diesel fuel, such as greater hygroscopicity
and solvency, lower oxidative stability and physico-chemical
characteristics at low temperatures such as higher pour point
and cold filter plugging point [4,14–16].

1.1. Biodiesel content determination in diesel fuel blends

Traditional methods for biodiesel content determination in
diesel fuel blends use mid-infrared spectroscopy, through mea-
surements of transmittance or attenuated total reflectance (ATR)
and partial least squares (PLS) calibration models, as described by
ASTM D 7371 [17] and the Associac- ~ao Brasileira de Normas
Técnicas (ABNT) NBR 15568 [18] reference methods. Due to the
difficulty in obtaining the required accuracy the use of two or
three models and narrow analytical ranges are recommended.
The ASTM method suggests the development of models for
analytical ranges of 0–10% (v/v), 10–30% (v/v) and 30–100% (v/
v) biodiesel content in diesel fuel. The reproducibility is specified
according to the biodiesel content in the sample and varies from
0.76 to 1.66% (v/v) for samples with 1% and 20% (v/v) of biodiesel,
respectively. The ABNT NBR method suggests the development of
models for analytical ranges of 0–8% (v/v) and 8–30% (v/v)
biodiesel content in diesel fuel and these models must have root
mean square errors of prediction (RMSEP) which cannot be
greater than 0.1% (v/v) and 1% (v/v), respectively.

However, analytical methods based on near infrared (NIR)
spectroscopy combined with chemometric methods have also
been developed for analysis of petroleum products, such as
lubricant oil [19,20], gasoline [21,22], diesel [23–25] and biodie-
sel/diesel fuel blends [26–34], providing efficient determinations.
Concerning the analysis of biodiesel/diesel fuel blends some
papers report quality parameter determinations [31,32], the
identification of the vegetable oil in the biodiesel/diesel fuel
blends [29,33,34] and the quantification of biodiesel in mixtures
with petroleum diesel using linear chemometric methods [27–30]
such as PLS [35] or nonlinear chemometric methods [26] such as
artificial neural networks (ANN) [36]. These studies report bio-
diesel determination in narrow analytical ranges of 0–5% [27] and
0–10% [29], providing RMSEP values close to 0.1%. Other studies
present biodiesel determination in comprehensive analytical
ranges but with the exclusion of lower and upper extreme values
of the full analytical range and report obtained RMSEP values of
0.6% for determination in the range of 5–50% [28] and up to 0.05%
for determination in the range of 2–90% [30]. Only one study has
reported results for biodiesel determination over the full analy-
tical range. With the use of variable selection and PLS an RMSEP
value of 0.06% was obtained [26] for determining the analytical
range of 0–100%. These results demonstrate the importance of
considering the analytical range, data pre-treatment and the
chemometric method used when comparing the obtained accu-
racy by these methods. For convenience it is adequate to know
some statistical evidence of a good model fit such as the absence
of prediction bias.

For biodiesel/diesel fuel blend determinations good results are
obtained with the use of linear or nonlinear methods, depending on
the spectral range used, data pre-treatment and, mainly, the
analytical range. Furthermore the performance of different methods
may be associated with several factors involving the nonlinearity of
the relationship in this type of determination, such as instrumental
factors (nonlinearity of the detection system), or sample related
factors, such as changes in hydrogen bonding patterns as the
concentrations of the various species undergo relative concentration
changes [37,38], for example by changing the raw material of
biodiesel and/or the type of petroleum in the diesel production.
Thus, the use of a chemometric method able to properly model
linear and nonlinear relationships and with a high generalization
performance can provide more efficient and effective models.

Support vector machines (SVM) [39] involve learning algorithms
based on statistical learning theory [40] and have been introduced in
chemometrics recently with success in applications using near
infrared (NIR) spectroscopy data for regression problems with
superior performance related to reference algorithms such as PLS
[23,24,41,42]. One of the major features of SVM models is that they
can operate in a kernel-induced feature space allowing nonlinear
modeling and good generalization performance can be obtained
even with relatively small data sets. These characteristics can
provide a better performance for SVM in relation to linear regression
algorithms like PLS.

This work is a study to evaluate if the performance of the SVM
algorithm applied to near infrared (NIR) spectroscopy data for the
development of calibration models for the determination of bio-
diesel content in diesel fuel blends is simpler and more effective
for analytical purposes, avoiding the construction of two or three
calibration models for determination over an extended analytical
range and using minimal data pre-treatment.

Nowadays the use of biodiesel/diesel fuel blends occurs most
often between 0% and 30% (v/v). Thus a calibration model for
biodiesel content determination in the range 0–35% (v/v) in diesel
fuel is suggested. A study of the use of only one calibration model
for biodiesel content determination in the range 0–100% (v/v) in
diesel fuel is also presented. The SVM model results are compared
with the results obtained with PLS models.

1.2. Support vector machines

Support vector machines were initially developed to treat
classification problems and then extended to treat regression
problems. Support vector regression (SVR) [43–46] estimation
seeks to estimate the function:

fðxÞ ¼ w xð Þþb ð1Þ

based on data (x1,y1),y,(xn,yn), by minimizing the regularized risk
functional:

1

2
99w992

þC Remp ð2Þ

where C is a constant determining the trade-off between minimizing
the training error, or empirical risk Remp, and the model complexity
term 99w992.
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The main insight of statistical learning theory is that, in order
to obtain a small risk, both training error and model complexity
need to be controlled. The minimization of Eq. (2) is equivalent to
the following constrained optimization problem.

minimize:

t w, x nð Þ,e
� �

¼
1

2
99w992

þC neþ 1

n

Xn

i ¼ 1

xiþx
n

i

� � !
ð3Þ

subject to the following constraints:

w xiþbð Þ�yireþxi, ð4Þ

yi� w xiþbð Þreþxn

i , ð5Þ

x nð Þ

i Z0, eZ0: ð6Þ

Each point xi is associated to an error of magnitude e. Errors
above e are captured by the slack variables x nð Þ and they are
penalized in the objective function via the regularization para-
meter C, chosen a priori. Here the so-called e-insensitive loss
function [43] is used, which tends to limit the calibration errors.

In n-SVR [45,46] the size of e is not defined a priori but is a
variable to be optimized via the adequate choice of parameter n
which has to be chosen in accordance with the noise that is in the
y-values.

In order to solve nonlinear functions the following general-
ization can be done: input vectors xi, are mapped into a high-
dimensional feature space Z through some nonlinear mapping,
f:xi-zi, chosen a priori. The optimization problem is solved in
the feature space Z. The calculation of the inner product in a high-
dimensional space is performed by a suitable linear or nonlinear
function k, leading to a regression function. The linear or non-
linear function k is called a kernel [23,47]. A suitable kernel
function makes it possible to map the input space to a high-
dimensional feature space where some nonlinear relationships
can be performed as a linear problem.

In this work the adequate choice of the n-SVR parameters, m
and C were optimized and the specific kernel parameters were
kept constant.
2. Experimental

Near infrared spectra were obtained in the range of 4400–
6200 cm�1 for the 81 samples in the analytical range 0–100% (v/v)
of soybean biodiesel in ultra low sulfur diesel (ULSD) oil, both
supplied by Petrobras Distribuidora S.A. from its Barueri, SP, Brazil
facilities. This local distributor has in its facilities a very large diesel
storage tank which continuously receives diesel oil contributions
from different Petrobras refineries in S~ao Paulo state, making a blend
of different refinery productions which process different petroleum
feedstocks. The same distributor has a biodiesel storage tank which
receives contributions of different biodiesel manufacturers making a
blend of different production batches. The main soybean biodiesel
manufacturer is Camera S.A. from Ijuı́, RS, Brazil but there are also
contributions from BSBios S.A. from Passo Fundo, RS, Brazil.
The soybean biodiesel has 97% (w/w) of fatty acid methyl ester
(FAME). Thus each tank provides representative samples of the fuels
used.

The transflectance spectra in the near infrared region were
obtained by a Perkin–Elmer Spectrum 100 MID/NIR spectrometer
with a halogen source and a deuterated triglycine sulfate (DTGS)
detector. A Petri dish combined with an aluminum reflector with
0.5 mm path length was used as the transflectance cell. Each
spectrum was obtained as an average of 32 scans with 4 cm�1

resolution.
For development of calibration models for 0–35% (v/v) of
biodiesel in diesel fuel 41 calibration samples and 25 validation
samples were used. For development of calibration models for
0–100% (v/v) of biodiesel in diesel fuel 50 calibration samples and 31
validation samples were used. The validation set was used only after
model development for checking its prediction accuracy.

The samples were prepared by mixing a total volume of 20 ml
placed in dark glass bottles of 100 ml. The calibration and
validation sample sets are determined by means of experimental
design as follows: in the calibration set the biodiesel content in
each sample increases by 0.5% up to 5% and then increases by 1%
up to 35%. For samples with biodiesel content above 40% the
biodiesel content increases by 10% up to 100%. There are no
replicates. For the validation sample set were prepared samples
with biodiesel contents that are not in the calibration set. In this
work all sample analyses were run on the same day and a week
after sample preparation. Many Petri dishes and aluminum
reflectors with identical characteristics were used and for clean-
ing purposes just water and detergent were used.

Different data preprocessings were carried out to verify which
provides the best model using n-SVR and PLS. The tested pre-
processings were baseline correction and mean centering; stan-
dard normal variate (SNV); SNV and mean centering; first
derivative and first derivative and mean centering. A blocked
cross-validation of the calibration set was used for model devel-
opment. The LIBSVM package [48] was employed in this study to
develop n-SVR models and the genetic algorithm (GA) [49] was
applied for parametric optimizing. All routines were for Matlab
version 7.7 [50] and computational work was run on a HP Pavilion
dv6000 [51] equipment with Windows Vista System [52].

For the n-SVR model development, different kernel functions
[23,47], such as radial basis function (RBF), polynomial, sigmoid
and linear, were tested and the data set was previously scaled
between 0 and 1. The LIBSVM default value of g parameter for the
RBF kernel (g¼1/k, where k means the number of variables in the
calibration data set) was used and the polynomial degree in the
polynomial kernel function was three. The parameters C and n
were selected by GA with parametric optimizing ranges from 0 to
104 and 10�4 to 1, respectively. For parametric optimization with
GA, the following parameters were used: number of 20 indivi-
duals and maximum of 15 generations, since it was observed that
with these settings the value of the cross-validation error was
stabilized not being improved by increasing the number of
generations. The fitness function assigned a fitness for each
individual according to their rank in the population and the
objective function to be optimized by GA was the minimum error
obtained by cross-validation with three subsets of the training
set. Each individual or chromosome has a string 30 bits long
based on a binary code using 15 bits for each parameter or gene.
As the minimizing error of cross-validation in the training set
does not guarantee obtaining the best parameters, a manual grid
search was further performed from the values previously selected
by the GA.
3. Results and discussion

The spectral range of 4400–6200 cm�1 allows the calibration
of biodiesel content in diesel fuel due to the occurrence of
combination bands, first and second overtones of vibrational
modes of C–H bond in methyl and methylene groups and C¼C
bond of unsaturated compounds [37]. There is also a combination
band of C–H bond stretching and C¼O bond stretching near
4650 cm�1 [37]. Moreover the difference in NIR spectra in the
regions of 4425 cm�1 and 6005 cm�1, probably related to
stretching of terminal methyl groups [37], where methyl esters
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have peaks while triglycerides exhibit only shoulders, provides
the biodiesel quantification in a selective manner, as demon-
strated in an earlier study [53], without the interference of the
possible presence of vegetable oil in the mixture. Fig. 1 illustrates
the difference between the spectrum of petroleum diesel, soybean
biodiesel and soybean oil using spectra with SNV preprocessing.
The development of calibration models using the regions
(i) 4400–6200 cm�1 and (ii) 4400–4600 cm�1 was tested.
The spectra of the 81 samples used, with SNV preprocessing are
shown in Fig. 2.
3.1. Calibration models for 0–35% (v/v) of biodiesel in diesel fuel

The best result obtained with PLS used spectral region (ii) and
SNV as data preprocessing. Three latent variables were used that
explain 99.9% of data variance. The results are shown in Table 1.

The best result obtained with n-SVR used spectral region
(ii), the linear kernel function and SNV preprocessed data. The results
are also shown in Table 1. Using nonlinear kernel functions the results
obtained were very poor, being worse than the PLS results. For the
best n-SVR model the selected parameters were C¼20 and
n¼0.007 and in this model 12 support vectors were used. It was
considered that the lower the number of support vectors used, the
lower the possibility of model overfit. The ideal is that this
number be at most two thirds of the calibration samples. In this
model the appropriate number of support vectors used demon-
strates the good fit of the model. Fig. 3 illustrates the prepared
concentration values versus predicted concentration values
obtained with the n-SVR model.

It is possible to see the better fit of the n-SVR model compared
to the PLS model through the absolute residual distribution for
the calibration and validation sample sets of models using PLS
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Fig. 2. NIR spectra of the 81 samples used.
and n-SVR, shown in Fig. 4(a) and (b), respectively. It appears that
the n-SVR model provides a better fit throughout the analytical
range, with a better residual distribution and smaller residues,
mainly for the validation sample set.

The n-SVR model obtained provides an RMSEP value which is
approximately 13% better compared with the value obtained with
the PLS model. The obtained RMSEP values for PLS and n-SVR
models match the value required by the ABNT NBR reference
method for biodiesel determination from 0% (v/v) in diesel fuel
and the RMSEP values are smaller than the minimum reproduci-
bility required by the ASTM method for biodiesel determination.

Related to previously cited studies concerning the quantifica-
tion of biodiesel in diesel fuel and papers that include this
analytical range [27–30] a model was obtained that provides an
RMSEP value quite similar to or better than the cited results, but
with minimal data preprocessing and with the advantage of
providing determinations for a larger analytical range and/or
including the lower extreme values of the analytical range, which
is suitable for today’s practical needs. This model is also selective
for biodiesel determination due to use of the spectral region
without the presence of a band related to the stretching of the
carbonyl group.

On the other hand with the use of spectral region (i) the best
model obtained with PLS used first derivative preprocessed data
and provides poorer results with higher root mean square error of
calibration (RMSEC) and RMSEP. In this model two latent vari-
ables were used that explain 99.7% of data variance. Fig. 5 shows
the absolute residual distribution for calibration and validation
sample sets for PLS model using spectral region (i) and the results
are shown in Table 1. The use of n-SVR and spectral region
(i) provides very good results, similar to those obtained by the use
of spectral region (ii). In this model linear kernel function and
SNV preprocessed data were used. The selected parameters C¼2
and n¼0.005 and 25 support vectors were used. The results are
Table 1
n-SVR and PLS model results for 0–35% (v/v) of biodiesel in diesel fuel blends.

Model Spectral region (cm�1) RMSEC (%)

R2

RMSEP (%)

PLS (i) 4400–6200 0.58 0.76

0.997

(ii) 4400–4600 0.12 0.13

0.999

n-SVR (i) 4400–6200 0.05 0.12

0.999

(ii) 4400–4600 0.12 0.11

0.999
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shown in Table 1 and the absolute residual distribution for the
calibration and validation sets are shown in Fig. 5.

In order to get further insight into the accuracy of the
developed methods, linear regression analyses of prepared con-
centration values versus PLS and n-SVR predicted concentration
values for the validation set were applied. The estimated intercept
(b) and slope (a) were compared with their ideal values of 0 and 1,
respectively, using the elliptical joint confidence region (EJCR)
test, in this case by using an ordinary least squares fitting of the
prepared concentration values versus predicted concentration
values for each model.

The boundary of the ellipse is determined by the magnitude of
experimental errors and by the degrees of confidence chosen, and
is described by the following equation:

n b�bð Þ
2
þ2

X
yi

� �
b�bð Þ a�að Þþ

X
y2

i

� �
a�að Þ

2
¼ 2s2F2,d ð7Þ

where n is the number of data points, yi are the prepared
concentration values, s2 the regression variance and F2,d is the
critical F value with 2 and d¼n�2 degrees of freedom at a given
confidence level. In this work 95% confidence level was used.

The center of ellipse is (b,a) and any point (b,a) that lies inside
the EJCR is compatible with the data at the chosen confidence
level. In order to check constant (translational) or proportional
(rotational) bias, the values b¼0 and a¼1 are compared with
the estimates b and a using EJCR. If the point (0,1) lies inside the
EJCR, then biases are not present. This can be done from easy
calculations [54–59].

Fig. 6 shows the EJCR for PLS and n-SVR results for the best
models for 0–35% of biodiesel content using region (ii) and Fig. 7
shows the EJCR for PLS and n-SVR results for the best models for
0–35% of biodiesel content using region (i). There are no sig-
nificant differences between prepared concentration values and
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Fig. 4. Absolute residual distribution of predictions for PLS (a) and n-SVR

(b) models using the spectral region (ii) for the calibration (J) and validation
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predicted concentration values by PLS and n-SVR models in the
validation set and there is no evidence of bias with the 95%
confidence level. For region (i) the ellipse for the n-SVR results
presents a smaller size, showing that the n-SVR results are in
better agreement than the PLS results.

The better performance of linear kernel function in n-SVR
models shows that the nonlinear mapping of data input space in a
higher dimensional feature space does not provide the best
results in this case. However the optimization of two n-SVR
parameters and the use of e-insensitive loss function, limiting
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calibration errors, provided the better model fit in relation to PLS.
When using a large number of variables (] variables b ] samples)
it can be expected that nonlinear mapping cannot improve the
model performance and that the linear kernel provides similar
results related to RBF or polynomial kernel functions [60] but it is
interesting to see that even with the use of a reduced number of
variables (spectral region (ii)¼200 variables) instead of a larger
number of variables (spectral region (i)¼1800 variables) the RBF,
polynomial or sigmoid kernel functions do not provide better
performance in relation to the linear kernel function, suggesting
that nonlinear mapping is not necessary. The good results
provided by the linear kernel function are not surprising, since
studies presented and discussed in a recent paper [42] have
obtained better results using n-SVR and the linear kernel function
compared to PLS results, although the RBF and polynomial kernel
provided better results than the linear kernel due to the relation-
ship particularities of the studied problem that suggested some
degree of nonlinearity.
3.2. Calibration models for 0–100% (v/v) of biodiesel in diesel fuel

The best result obtained with PLS used spectral region (ii) and
SNV as data preprocessing. Three latent variables were used that
explain 99.9% of data variance. The results are shown in Table 2.
The best result with n-SVR used spectral region (ii), the linear
kernel function and SNV preprocessed data. The results are also
shown in Table 2. The selected parameters were C¼2 and
n¼0.1463 and in this model 14 support vectors were used.

The n-SVR model provides an RMSEP value which is approxi-
mately 10% better compared with the RMSEP value obtained with
the PLS model. The RMSEP values obtained for both the n-SVR
and PLS models are smaller than required by the ABNT NBR
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Table 2
n-SVR and PLS model results for 0–100% (v/v) of biodiesel in diesel fuel blends.

Model Spectral region (cm�1) RMSEC (%)

R2

RMSEP (%)

PLS (i) 4400–6200 0.61 0.83

0.999

(ii) 4400–4600 0.18 0.32

0.999

n-SVR (i) 4400–6200 0.05 0.30

0.999

(ii) 4400–4600 0.17 0.28

0.999
reference method for biodiesel determination in the analytical
range of 8–30% (v/v) and are also smaller than the minimum
reproducibility required by the ASTM reference method. However
there is a nonconstant variance of the residual values of the validation
set throughout the analytical range and a tendency to negative errors
in the predicted values of the validation sample set for lower biodiesel
contents with both models. The use of spectral region (i) cannot solve
the heteroscedasticity problem of the validation sample set residuals
and did not provide better models.

Fig. 8 shows the EJCR for PLS and n-SVR models for 0–100%
content of biodiesel using spectral region (ii). The results shows
that there are statistical differences between the prepared con-
centration values and predicted concentration values with both
models in the validation sample set with 95% confidence level.
The large distance between the theoretical point (0,1) and the
boundary of the joint confidence region indicates that results
from both the PLS and n-SVR models have important bias.
4. Conclusion

The use of near infrared spectral region (ii) that includes the
absorption band at 4425 cm�1 related to the vibrational mode of
the terminal methyl group in fatty acid methyl esters provides
similar prediction results with n-SVR and PLS; however, the n-
SVR model, due to a better fit throughout the analytical range
provides an improvement of 13% in RMSEP value for the 0–35%
biodiesel/diesel fuel blend calibration model. The near infrared
spectral region (i) provides very similar results related to those
obtained with the spectral region (ii) in terms of RMSEP using the
n-SVR but, on the other hand, PLS does not provide a good model
fit using spectral region (i), showing that n-SVR gives better
performance, adequately fitting the relationship. The absence of
bias in the validation sample set prediction results was demon-
strated by the EJCR test.

The RMSEP value obtained is suitable for this type of determi-
nation, as compared to the ABNT NBR reference method, and is
smaller than the reproducibility of the ASTM reference method.
Furthermore the method developed is suitable for determining
biodiesel/diesel fuel blends in the extended analytical ranges of
biodiesel content used nowadays, requires minimal data prepro-
cessing and is selective for biodiesel, not being affected by a
possible mixture with vegetable oil.
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The development of a model for the determination of biodiesel
content in the full analytical range of 0–100% in diesel fuel blends
proved to be quite difficult using either linear or nonlinear
models. Although it is possible to obtain good RMSEP values a
bias was found by the EJCR test that suggests further studies are
needed to improve the performance of this type of model.
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