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Abstract In this study, we investigated the effects of nonlinear thermal radiation and non-uniform

heat source/sink in unsteady three-dimensional flow of Carreau and Casson fluids past a stretching

surface in the presence of homogeneous–heterogeneous reactions. The transformed governing equa-

tions are solved numerically using Runge–Kutta based shooting technique. We obtained good accu-

racy of the present results by comparing with the already published literature. The influence of

dimensionless governing parameters on velocity, temperature and concentration profiles along with

the friction factors, local Nusselt and Sherwood numbers is discussed and presented graphically. We

presented dual solutions for flow, heat and mass transfer in Carreau and Casson fluids. It is found

that the heat and mass transfer rate in Casson fluid is significantly high while compared with the

Carreau fluid.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Convection boundary layer flow over a stretching sheet has rel-

evance in many engineering processes such as drawing of plas-
tic films, tinning and annealing of copper wires and electrolyte
paper production. Due to these applications Sakiadis [1]

started an analysis on the flow past a stretching sheet. There-
after, the researchers [2–6] continued their research on the flow
over a stretching sheet under various interesting aspects. On

the other hand flow of non-Newtonian fluids encountered in
several large-scale industrial applications including blood flows
in micro-circulatory system, food and polymer processing,
magma and ice flows. Due to flow diversity in the environment
a single mathematical model does not overcome all the rheo-

logical fluid properties associated with non-Newtonian fluids.
Thus various constitutive equations for such fluids are avail-
able in already existing literature [7,8]. Additionally, the

power-law Carreau fluid is also one of the non-Newtonian flu-
ids. Carreau fluid model is valid for viscous, high and low
shear rates. Because of this advancement, it has benefitted in
many technological and manufacturing flows. Keeping this

into view, Zhu [9] discussed the mass transfer characteristics
of Carreau fluid over a swarm of Newtonian drops. The time
dependent Poiseuille flow of a Carreau fluid in the presence

of slip effect was investigated by Georgiou [10] and concluded
that the wavelength and amplitude of oscillations in radial
direction are decreased with an increase in the slip effect.

Abd El Naby et al. [11] considered the peristaltic flow charac-
teristics of Carreau fluid in uniform tube and discussed the
heat transfer characteristics of Carreau fluid.
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Nomenclature

u; v; w velocity components in X; Y and Z directions

respectively (m=s)
x distance along the surface (m)
y distance normal to the surface (m)
cp specific heat capacity at constant pressure

(J=Kg K)
f; g dimensionless velocities
T Temperature of the fluid (K)

C concentration of the fluid (kg=m3)
q000 non uniform heat source/sink (k=s)
g acceleration due to gravity (m=s2)
k thermal conductivity (W=m K)
a diffusion coefficient (m2=s)
P pressure (Paor N=m)
g similarity variable

r electrical conductivity (S=m)
r� Stefan–Boltzmann constant (W=m2 K4)
k� mean absorption coefficient (m�1)

bT volumetric thermal expansion (K�1)
bC concentration expansion coefficient (K�1)
h dimensionless temperature

q density (kg=m3)
m kinematic viscosity (m2=s)
l dynamic viscosity (N s=m2)

a; b rate constants
n power-law index parameter
A�; B� non-uniform heat generation/absorption

coefficients

Cfx skin friction coefficient in x-direction

Cfy skin friction coefficient in y-direction
Nux local Nusselt number
Shx local Sherwood number
Rex local Reynolds number

Pr Prandtl number
Sc Schmidt number
A unsteadiness parameter

hw the ratio of temperatures
We Weissenberg number
a0 positive constant

DA; DB diffusion coefficients
a1; b1 concentration of chemical species
kc; ks rate constants
d ratio of diffusion coefficients

b Casson fluid parameter
B0 magnetic induction parameter
M magnetic field parameter

k stretching ratio parameter
Ks strength of heterogeneous reaction parameter
K strength of homogeneous reaction parameter

Subscripts

f fluid
w condition at the wall
1 condition at the free stream
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Magnetohydrodynamic (MHD) is the mechanical property
of fluids, which describes the motion of highly conducting fluid

with existing magnetic field. The conducting fluids generate an
electric current due to fluid flow and this force boosts up the
mechanical properties of fluid. The peristaltic flow with

induced magnetic field also has major applications in the psy-
chological fluids: like peristaltic MHD compressor, blood
pumping machines and the blood flows, and these were analyt-

ically studied by [12,13]. MHD convection flow of an unsteady
EG-Nimonic nano fluid past a vertical plate was examined by
Sandeep et al. [14]. Further, Raju et al. [15] extended this work
for ferrofluids by considering the non-uniform heat source/

sink and aligned magnetic field effects. The flow of peristaltic
Carreau nanofluid past an asymmetric channel was numeri-
cally investigated by Akbar et al. [16] and found that increas-

ing values of magnetic field parameter encourages the velocity
profiles. Later on, the researchers [17–20] reported experimen-
tal and theoretical studies on non-Newtonian fluid flows with

different flow configurations by considering different bound-
ary conditions. Casson fluid is also a non-Newtonian fluid,
which is a shear thinning liquid and exhibits the yield shear
stresses. If yield stress is greater than the shear stress then it

acts as a solid, whereas if yield stress lesser than the shear stress
is applied then the fluid would start to move, for example
honey, tomato sauce, fruit juices and human blood. It has var-

ious applications in fibrinogen, cancer homeo-therapy, protein
and red blood cells form a chain type structure. Due to these
applications many researchers are concentrating characteristics

of Casson fluid, which are given in Refs. [21–23].
The heat and mass transfer in the flows over a stretching
sheet with homogeneous–heterogeneous reaction has a major

role in metallurgy and chemical engineering industries, such
as polymer production and food processing. Moreover, cou-
pled heat and mass transfer problems in the presence of homo

geneous–heterogeneous reaction are of importance in many
processes, and therefore it is a considerable amount of atten-
tion in recent days. Therefore some of the possible applications

can be found in the processes such as drying, damage of crops
due to freezing, distribution of temperature and moisture over
agricultural fields and groves of fruit trees, evaporation at the
surface of a water body and energy transfer in a wet cooling

tower. Hayat et al. [24] discussed Carreau fluid flow past a con-
vectively heated stretching surface and concluded that the
velocity profiles are improved with the material parameter.

Convection flow of non-Newtonian MHD flow past a perme-
able exponentially stretching sheet was numerically investi-
gated by Raju et al. [25]. The flow through stretching sheet

has great attention due to its importance in various fields such
as MHD accelerators, generators, pumps and flow meters, and
design of cooling systems and these are given by Akbar et al.
[26]. Jenny et al. [27] studied the Rayleigh–Benard flow for

convection rolls in Carreau fluids and analyzed the momentum
and heat transfer behavior of Carreau fluid. Jasmine Benazir
et al. [31] examined an unsteady magnetohydrodynamic flow

due to vertical cone with non-uniform heat generation/absorp-
tion. The variable conductivity effect on hydrodynamic con-
vection flow due to cone in the presence of chemical reaction

was investigated numerically by Rushikumar et al. [32].
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Shehzad et al. [33] discussed the analytical solutions of slip
effect on peristalsis flow over a curved channel in the presence
of radial magnetic field. Dufour effect on radiative unsteady

magnetohydrodynamic flow past a vertically accelerated wavy
plate with variation of double diffusion effects was illustrated
by Prakash et al. [34]. Recently, the researchers [35–39] dis-

cussed the non-Newtonian fluid flow of stretching sheet with
various effects and various boundary conditions. In these stud-
ies they found very interesting solutions as the non-uniform

heat source/sink parameter has tendency to control the tem-
perature profiles and also the non-Newtonian fluids are regu-
lating the temperature profiles of the flow.

In most of the studies the radiation can be treated as a con-

stant in the flow region. In real time it is very difficult to main-
tain the constant temperature entire flow region. But, in this
study, we proposed a mathematical model for analyzing the

effects of nonlinear thermal radiation on three-dimensional
flow of Carreau and Casson fluids past a stretching surface
with homogeneous–heterogeneous reactions and non-uniform

heat source/sink. The nonlinear thermal radiation has impor-
tance in various industrial as well as science and technological
applications. The transformed governing equations are solved

numerically using Runge–Kutta based shooting technique. We
presented dual solutions for the flow of Carreau and Casson
fluids over a stretching sheet.

2. Formulation of the problem

Consider an unsteady three dimensional flow of Carreau and
Casson fluids past a stretching sheet in the presence of nonlin-

ear thermal radiation and non-uniform heat source/sink. For
improving mass transfer we also considered the homoge
neous–heterogeneous reactions. The flow is restricted to z-

direction as displayed in Fig. 1. In this study we skip the
induced magnetic field and viscous dissipation effects. The flow
is due to stretching surface. The rheological model for an iso-

tropic flow of Casson fluid is [23] given as follows:

s1=n ¼ s1=n0 þ l _c1=n ð1Þ

si;j ¼
2ðlB þ py=

ffiffiffiffiffiffi
2p

p Þeij; p � pc

2ðlB þ py=
ffiffiffiffiffiffi
2p

p Þeij; p � pc

(
ð2Þ
Figure 1 Schematic representation of physical model.
In the above equation p ¼ eijeij and eij is the ði; jÞ th compo-

nent of the deformation rate, p the product of the component
of deformation rate with itself, pc is a critical value of this pro-
duct based on the non-Newtonian model, pB is the plastic

dynamic viscosity of non-Newtonian fluid, and py is the yield

stress of the fluid. The anonymous researchers have suggested
the value of n= 1. However, in many applications this value is
n> 1.

The flow is generated due to the linear stretching sheet. The
extra stress tensor for Carreau fluid is given by [26]

sij ¼ g0 1þ ðn� 1Þ
2

ðC_cÞ2 _cij
� �

ð3Þ

Here sij is the extra stress tensor, g0 is the zero shear rate

viscosity, C is the time constant, n is the power-law index

and _c is defined as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i

X
j
_cij _cji

r
¼

ffiffiffi
1

2

r
P ð4Þ

where P is the second invariant strain tensor. According to
above assumptions the flow analysis of Carreau and Casson
fluids equations is given by

2.1. Flow analysis
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where u; v and w are the velocity components along the
x; y and z directions respectively. m is the kinematic viscosity
coefficient, b is the Casson fluid parameter, C is the time con-

stant, q is the density of the fluid and r is the electric conduc-
tivity with the boundary conditions

u ¼ uwðxÞ ¼ ax
ð1�ctÞ ; v ¼ vwðxÞ ¼ ax

ð1�ctÞ ; w ¼ 0; at z ¼ 0;

u ¼ v ¼ 0; as z ! 1;

�
ð8Þ

here uw and vw are the stretching velocities near the surface. To
convert the nonlinear partial differential equations for veloci-
ties, we are now introducing the similarity transformations
as follows:

u ¼ bx

ð1� ctÞ f
0ðgÞ; v ¼ by

ð1� ctÞ g
0ðgÞ;

w ¼ � bm
1� ct

ð fðgÞ þ gðgÞÞ; g ¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b

tfð1� ctÞ

s
; ð9Þ

Here in Eq. (9) u; v and w automatically satisfy the conti-
nuity equation, and by using Eqs. (9), and (5)–(7) are given by
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1þ 1

b

� �
f 000 þ ðfþ gÞf 00 � f 02 � A f 0 þ g

1

2
f 00

� �

þ 3ðn� 1Þ
2

Wef 002f 000 �Mf 0 ¼ 0; ð10Þ

1þ 1

b

� �
g000 þ ðfþ gÞg00 � g02 � A g0 þ g

1

2
g00

� �

þ 3ðn� 1Þ
2

Weg002g000 �Mg0 ¼ 0; ð11Þ

The transformed boundary conditions are as follows:

f ¼ 0; g ¼ 0; f 0 ¼ k; g0 ¼ k; at g ¼ 0;

f 0 ! 0; g0 ! 0; as g ! 1;

�
ð12Þ

here A is the unsteadiness parameter, We is the Weissenberg

number, M is the magnetic field parameter and k is the stretch-
ing ratio parameter.

M ¼ rB2
0

qfc
; We ¼ C2x2b3

mð1� ctÞ3 ; k ¼ a

b
; A ¼ c

b

)
ð13Þ
2.2. Heat transfer analysis

The boundary layer thermal energy equation with nonlinear
thermal radiation and non-uniform heat source/sink is given

by

@T

@t
þ u

@T

@x
þ v

@T

@y
þ w

@T

@z
¼ a

@2T

@z2
þ 16r�

3kqcp

@T

@z
T3 @T

@z

� �
þ q000;

ð14Þ
with the boundary conditions

T ¼ Tw; at z ¼ 0; T ! T1; as z ! 1; ð15Þ
The non-dimensional temperature parameters are given by

T ¼ T1 þ ðTw � T1Þh; T ¼ T1ð1þ ðhw � 1ÞhÞ ð16Þ
where T is the fluid temperature, Tw; T1 are near the fluid tem-

perature and the far away from the fluid temperature, k is the
thermal conductivity of the fluid, cp is the specific heat capac-

itance at constant pressure, cs is the concentration susceptibil-
ity and r� is the Stefan–Boltzmann constant.

The time dependent non-uniform heat source/sink q000 is

defined as follows:

q000 ¼ kfuwðxÞ
xm

A�ðTw � T1Þf 0 þ B�ðT� T1Þð Þ; ð17Þ

The positive values of A�; B� of above equation correspond
to heat generation and negative values corresponds to heat

absorption.
Using Eqs. (16) and (17), (14) and (15) are reduced to

h00 þPrðfþ gÞh0 � ðA=2Þgh0 þA�f 0 þB�h

þR ð1þ ðhw � 1ÞhÞ3h00 þ 3ðhw � 1Þh02ð1þ ðhw � 1ÞhÞ2
� 	

¼ 0;

ð18Þ
With the transformed boundary conditions

hð0Þ ¼ 1; hð1Þ ¼ 0; ð19Þ
where Pr is the Prandtl number, A is the unsteadiness param-
eter, R is the thermal radiation parameter, and hw is the ratio
of temperatures which are given by
Pr ¼ k

lCp

; R ¼ 16r�T3
1

3kk� ; hw ¼ T1
Tw

;

2.3. Mass transfer analysis

The boundary layer equation for conservation of mass in the
presence homogeneous–heterogeneous reactions is given by

@a1
@t

þ u
@a1
@x

þ v
@a1
@y

þ w
@a1
@z

¼ DA

@2a1
@z2

� kca1b
2
1; ð20Þ
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þ u
@b1
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þ v
@b1
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þ w
@b1
@z

¼ DB

@2b1
@z2

þ kca1b
2
1; ð21Þ

The corresponding boundary conditions are

DA

@a1
@z

¼ ksa1; DB

@b1
@z

¼ �ksa1; at z ¼ 0; a1 ! a0; b1 ! 0;

as z ! 1; ð22Þ
The non-dimensional are given by

/ðgÞ ¼ a1
a0

; HðgÞ ¼ b1
a0

; ð23Þ

where DA and DB are the diffusion coefficient of the species
A and B, a0 is the positive constant, a1; b1 are the concentra-

tions of the chemical species, kc and ks are the rate constants,
and we assume that both the chemical reactions are isothermal.
Using similarity transforms (23), Eqs. (20) and (21) reduce to

1

Sc
/00 þ ðfþ gÞ/0 � K/H2 ¼ 0; ð24Þ

d
Sc

H00 þ ðfþ gÞH0 þ K/H2 ¼ 0; ð25Þ

The corresponding boundary conditions are

/0ð0Þ ¼ Ks/ð0Þ; dH0ð0Þ ¼ �Ks/ð0Þ at g ¼ 0; / ¼ 1;

H ¼ 0 as g ! 1; ð26Þ
where Sc is the Schmidt number, Ks is the strength of the
heterogeneous-reaction parameter, d is the ratio of diffusion
coefficient, and K is the strength of the homogeneous reaction

parameter, which are given by

Sc ¼ m
DA

; d ¼ DB

DA

; K ¼ kca
2
0

ð1� tcÞ ;

Ks ¼ ks
DA

m
ð1� tcÞ
� �1=2

; ð27Þ

For the most of real time practical applications we assume
that chemical diffusion coefficients are almost same size. So
diffusion coefficients are equal. Then d ¼ 1 and in this case

we get

/ðgÞ þHðgÞ ¼ 1; ð28Þ
Then by substituting Eq. (25) in (21) and (22), we get

1

Sc
/00 þ ðfþ gÞ/0 � K/ð1� /Þ2 ¼ 0; ð29Þ

Subject to the boundary conditions:

/0ð0Þ ¼ Ks/ð0Þ; /ð1Þ ¼ 1; ð30Þ
For physical quantities of interest the friction factor coeffi-

cients along x; y directions, local Nusselt and Sherwood num-

bers are given by
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number.
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CfxRe
1=2 ¼ sw

quwðxÞ2
; Re1=2Cfy ¼ sw

quwðyÞ2
; ð31Þ

CfxRe
1=2 ¼ 1þ 1

b

� �
f00ð0Þ þ ðn� 1ÞWe

2
ðf00ð0ÞÞ3

� �
;

Re1=2Cfy ¼ 1þ 1

b

� �
g00ð0Þ þ ðn� 1ÞWe

2
ðg00ð0ÞÞ3

� �
; ð32Þ

Re�1=2Nux ¼ �h0ð0Þ; Re�1=2Shx ¼ �/0ð0Þ: ð33Þ
where Re ¼ xuwðxÞ

m is the Reynolds number.

3. Results and discussion

The set of nonlinear ordinary differential Eqs. (10), (11), (18)
and (29) corresponding to the boundary conditions (12), (19)
and (30) are solved numerically using Runge–Kutta based

shooting technique (Sandeep and Sulochana [30]). Results dis-
play the influence of non-dimensional governing parameters
on velocity, temperature and concentration profiles along with

the friction factors, local Nusselt and Sherwood numbers. For
numerical results we considered the non-dimensional parame-
ter values as A ¼ 0:2; M ¼ 2; g ¼ 5; n ¼ 3; b ¼ 0:2; We ¼ 0:3,
A� ¼ 0:1; B� ¼ 0:2; R ¼ 0:3; hw ¼ 1:1; Sc ¼ 0:6; K ¼ Ks ¼ 1;
Sc ¼ 0:5; Pr ¼ 6:2: These values are kept as common in entire
study except the variations in respective figures and tables. In

graphical results red color profiles indicate the flow of Carreau
fluid and green color profiles indicate the flow of Casson fluid.

Figs. 2–5 depict the influence of Weissenberg number on
velocity, temperature and concentration fields for both Car-

reau and Casson fluids. It is found that increasing values of
the Weissenberg number enhances the thermal boundary layer
and decreases the momentum concentration boundary layers.

Physically, Weissenberg number is directly proportional to
the time constant and inversely proportional to the viscosity.
The time constant to viscosity ratio is higher for larger values

of Weissenberg number. Hence, higher Weissenberg number
causes to enhance the thermal boundary thickness.
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The dimensionless temperature distribution for different
values of radiation parameter R is shown in Fig. 6 for both
Carreau and Casson fluids. It reveals that the greater values

of radiation parameter enhance the temperature boundary
layer thickness. Generally, for higher values of radiation
parameter produces more heat to working fluid that shows

an enhancement in the temperature field. We have noticed
an enhancement in the temperature profiles of both Carreau
and Casson fluids due to increase in the radiation parameter.

The ratio of temperature on temperature profiles is shown in
Fig. 6. It is clear that increasing values of temperature ratio
parameter improves the temperature profiles of the flow. This
may happen due to increasing thermal conductivity of the flow

(see Fig. 7).
The effects of the magnetic field on velocity, temperature

and concentration fields are displayed in Figs. 8–11. We

observed depreciation in the velocity, concentration fields
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Figure 8 Velocity field for different values of magnetic field

parameter.
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Figure 13 Velocity field for different values of an unsteadiness

parameter.
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Figure 11 Concentration field for different values of magnetic

field parameter.
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Figure 14 Temperature field for different values of an unsteadi-

ness parameter.
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Figure 15 Concentration field for different values of an

unsteadiness parameter.
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and enhancement in the temperature field for increasing values
of magnetic field parameter. This proves the general physical

behavior of M that improved values of M depreciate the veloc-
ity fields. Physically, the drag force increases with an increase
in the magnetic field and as a result depreciation occurs in

the velocity field. The influence of unsteadiness parameter on
velocity, temperature and concentration fields is exhibited in
Figs. 12–15 for both Carreau and Casson fluids. We detect

from the figure that the velocity and concentration fields are
enhanced and declined the temperature field with increasing
values of unsteadiness parameter. Physically, increasing values
of unsteadiness parameter causes the less heat to transfer to the

sheet. This may be the reason for decreasing sense in the tem-
perature filed.

Figs. 16–19 present the effect of stretching ratio parameter

on velocity, temperature and concentration fields for both Car-
reau and Casson fluid cases. The temperature field is sup-
pressed and velocity and concentration fields are improved
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Figure 16 Velocity field for different values of stretching ratio

parameter.
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Figure 17 Velocity field for different values of stretching ratio

parameter.
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Figure 18 Temperature field for different values of stretching

ratio parameter.
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Figure 19 Concentration field for different values of stretching

ratio parameter.
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Figure 20 Temperature field for different values of non-uniform

heat source/sink parameter.
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Figure 21 Temperature field for different values of non-uniform

heat source/sink parameter.
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Table 1 Validation of the present results by comparing with

We ¼ g ¼ R ¼ A ¼ A� ¼ B� ¼ hw ¼ K ¼ Ks ¼ Sc ¼ Pr ¼ 0; n ¼ 1.

b M k ¼ 0 k ¼ 0:5

Nadeem et al. [29] Present results Nadeem et a

Cfx Cfx Cfx

1 0 �1.4142 �1.4142 �1.5459

5 �1.0954 �1.0952 �1.1974

1 �1.0049 �1.0049 �1.0932

1 10 �4.6904 �4.6904 �4.7263

5 �3.6331 �3.6331 �3.6610

1 �3.3165 �3.3165 �3.3420

1 100 �14.2127 �14.212 �14.2244

5 �11.0091 �11.009 �11.0182

1 �10.0490 �10.049 �10.058
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Figure 22 Concentration field for different values of strength of

homogeneous reaction parameter.
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Figure 23 Concentration field for different values of strength of

heterogeneous reaction parameter.
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with increasing values of stretching ratio parameter. Generally,
the stretching keeps more pressure on the sheet. Due to this
reason we have seen a fall in temperature field and hike in

velocity field. Figs. 20 and 21 demonstrate the effect of non-
uniform heat source/sink parameter on temperature distribu-
tion of the flow for both Carreau and Casson fluid cases. It

is clear that increasing values of space and temperature depen-
dent heat source/sink parameters enhances the thermal bound-
ary layer thickness of the flow over a stretching sheet for both

Carreau fluid and Casson fluid cases. Physically, positive val-
ues of the non-uniform heat source/sink parameters act like
a heat generator, which releases the heat energy to the flow
and enhances the temperature profiles.

The strength of homogeneous and heterogeneous parame-
ters on the concentration field is depicted in Figs. 22 and 23
for both Carreau and Casson fluids. It is clear that increasing

values of homogeneous and heterogeneous parameters sup-
presses the concentration field for both cases. Physically, vari-
ation in the strength of homogeneous–heterogeneous reactions

fluctuates the diffusivity of the flow. This causes to reduce the
concentration profiles of the flow. Tables 1 and 2 depict the
validation of the present results by comparing with the existed

literature under some special limited cases. We found a better
agreement of the present results with the existed literature.
This proves the validity of the present results along with the
accuracy of the numerical technique we used in this study.

Tables 3 and 4 display the variations in the friction factors,
local Nusselt and Sherwood numbers for Carreau and Casson
fluids for various values of non-dimensional governing param-

eters. It is noticed from the tables that the hike in the values of
unsteadiness parameter enhances the friction factor coeffi-
cients and heat transfer rate of both Carreau and Casson flu-

ids. We have seen exactly opposite results for increasing
values of magnetic field parameter and Weissenberg number.
Rise in the values of non-uniform heat source/sink parameter

does not influence the friction factor and mass transfer rate but
it reduces the Nusselt number for both Carreau and Casson
fluid cases. We have observed a similar type of results for
increasing values of thermal radiation parameter. Rise in the

homogeneous–heterogeneous parameters shows a mixed
response in mass transfer rate. This concludes that the homoge
neous–heterogeneous reaction parameters help to control the

concentration profiles of the flow.
the published literature for skin friction coefficients when

l. [29] Nadeem et al. [29] Present results Present results

Cfy Cfx Cfy

�0.6579 �1.5459 �0.6579

�0.5096 �1.1980 �0.5096

�0.4653 �1.0932 �0.4653

�2.3276 �4.7263 �2.3276

�1.8030 �3.6610 �1.8030

�1.6459 �3.3420 �1.6459

�7.1004 �14.224 �7.1004

�5.5000 �11.017 �5.4998

�5.0208 �10.058 �5.02079



Table 2 Validation of the present results by comparing with the existed literature for local Nusselt number when

b ! 1; We ¼ g ¼ R ¼ A ¼ A� ¼ B� ¼ hw ¼ K ¼ Ks ¼ Sc ¼ 0; n ¼ 1.

k
#

Pr ¼ 0:7 Pr ¼ 1

Roy [28] Raju et al.[20] Present results Roy [28] Raju et al. [20] Present results

0 0.4305 0.4769 0.4305 0.557294 0.5180 0.5572

1 0.6127 0.6004 0.6004 0.721982 0.7005 0.7219

10 1.0175 1.0097 1.0172 1.170983 1.1494 1.1709

Table 3 Physical parameter values of f00ð0Þ; g00ð0Þ; �h0ð0Þ and � /0ð0Þ for Casson fluid.

M R K Ks A We k A� f00ð0Þ g00ð0Þ �h0ð0Þ �/0ð0Þ
1 �0.370542 �0.218615 0.806053 �0.018040

2 �0.626189 �0.324276 0.708147 �0.014499

3 �0.914227 �0.427845 0.630938 �0.012885

1 �0.914227 �0.427845 0.563670 �0.012885

2 �0.914227 �0.427845 0.464686 �0.012885

3 �0.914227 �0.427845 0.395295 �0.012885

1 �0.914227 �0.427845 0.630938 �0.012885

2 �0.914227 �0.427845 0.630933 �0.004016

3 �0.914227 �0.427845 0.630933 �0.001458

1 �0.914227 �0.427845 0.636191 �0.079147

2 �0.914227 �0.427845 0.636191 �0.094637

3 �0.914227 �0.427845 0.636191 �0.101582

1 �0.353005 �0.268963 0.790376 �0.017153

2 �0.218155 �0.194198 0.867563 �0.022772

3 �0.172077 �0.160872 0.901181 �0.027919

1 �5.929220 �0.799438 0.401890 �0.010760

3 �8.094415 �1.335176 0.363705 �0.010528

5 �10.63697 �2.366287 0.328190 �0.010329

0.2 �1.356482 �0.323332 0.638757 �0.013330

0.4 �8.613557 �1.097922 1.079688 �0.022118

0.6 �32.08378 �2.980574 1.402644 �0.036072

1 �0.368418 �0.331556 0.647340 �0.088065

2 �0.368418 �0.331556 0.546861 �0.088065

3 �0.368418 �0.331556 0.446312 �0.088065

Table 4 Physical parameter values of f00ð0Þ; g00ð0Þ; �h0ð0Þ and � /0ð0Þ for Carreau fluid.

M R K Ks A We k A� f00ð0Þ g00ð0Þ �h0ð0Þ �/0ð0Þ
1 �0.234429 �0.221416 0.848403 �0.020765

2 �0.354917 �0.331612 0.767788 �0.016204

3 �0.478409 �0.443038 0.701860 �0.014134

1 �0.478409 �0.443038 0.630469 �0.014134

2 �0.478409 �0.443038 0.525606 �0.014134

3 �0.478409 �0.443038 0.452131 �0.014134

1 �0.478409 �0.443038 0.701860 �0.014134

2 �0.478409 �0.443038 0.701861 �0.004388

3 �0.478409 �0.443038 0.701861 �0.001587

1 �0.499159 �0.442978 0.699096 �0.082839

2 �0.499159 �0.442978 0.699096 �0.098872

3 �0.499159 �0.442978 0.699096 �0.106066

1 �0.281248 �0.271720 0.812987 �0.018332

2 �0.198141 �0.194860 0.875240 �0.023661

3 �0.162777 �0.161132 0.904927 �0.028765

1 �0.880536 �0.802796 0.580387 �0.012285

3 �1.473479 �1.342562 0.536358 �0.011855

5 �2.595351 �2.380762 0.494735 �0.011495

0.2 �0.354917 �0.331612 0.767788 �0.016204

0.4 �1.409036 �1.273276 1.216572 �0.032431

0.6 �5.205586 �4.614127 1.535326 �0.062058

1 �1.356482 �0.323332 0.545206 �0.079966

2 �1.356482 �0.323332 0.494005 �0.079966

3 �1.356482 �0.323332 0.442794 �0.079966
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4. Conclusions

In this study, we proposed a mathematical model for analyzing
the effects of nonlinear thermal radiation on three-dimensional

flow of Carreau and Casson fluids past a stretching surface
with homogeneous–heterogeneous reactions and non-uniform
heat source/sink. The nonlinear thermal radiation has impor-

tance in various industrial as well as science and technological
applications. The transformed governing equations are solved
numerically using Runge–Kutta based shooting technique. We
presented dual solutions for the flow of Carreau and Casson

fluids over a stretching sheet. The numerical findings are as
follows:

� Heat and mass transfer rate in Casson fluid is significantly
high while compared with the Carreau fluid

� Homogeneous–heterogeneous reaction parameters help to

control the concentration boundary layer.
� Positive values of non-uniform heat source/sink parameter
and nonlinear thermal radiation parameter help to reduce

the Nusselt number for both Carreau Casson fluids.
� The Weissenberg number and magnetic field parameters
have tendency to increase the mass transfer rate.

� Rise in unsteadiness parameter improves the friction factor

coefficients and heat transfer rate.
� Momentum boundary layer of Carreau fluid is highly effec-
tive while compared with the momentum boundary layer of

Casson fluid.
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