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The formula of Clarke’s subdifferential for the sum of two real-valued locally 
Lipschitz functions has been extended by Rockafellar to the case where one of the 
two functions is directionally lipschitzian. We introduce in this paper a notion of 
cone related to the epigraph of a function and with the aid of this cone we extend 
the directionally lipschitzian behaviour to vector-valued functions and we study the 
sum of two vector-valued functions. 

INTRODUCTION 

In the last few years, the study of optimization problems with constraints 
defined by vector-valued functions has led many authors to introduce a 
notion of subdifferential or generalized differential for nondifferentiable 
vector-valued functions. The first ones to have considered such functions 
seem to be Raflin [ 181 and Valadier [ 3 I] who have extended the definition 
of convex subdifferential of Moreau and Rockafellar to convex vector-valued 
functions. This theory of subdifferentiation of convex vector-valued functions 
has been developed by Ioffe and Levin, Michel. Zowe, Kutateladze, Rubinov 
and others. 

In [ 151 Penot has introduced the notion of upper and lower directional 
derivatives for nonconvex functions taking values in a Daniel1 topological 
vector space and with the aid of assumptions of infinitesimal convexity he 
has established a subdifferential calculus for tangentially convex vector- 
valued functions. For functions from Ipi’ into IFi ” many authors have defined 
a notion of “generalized derivative” by using the famous theorem of 
Rachemacher for Lipschitz mappings (Clarke [5], Pourciau [ 171) or by 
looking for a description of properties which secure the extension of implicit 
function theorems (Halkin [6], Warga [ 321). 

As there is no almost everywhere differentiability for a Lipschitz mapping 
defined on a nonseparable normed vector space E. we have introduced in 
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127. 28 1 the notion of strictly compactly lipschitzian vector-valued functions, 
a notion which generalizes the one of strictly differentiable functions of 
Bourbaki [ I 1 and Leach [ 12 ) and which coincides in finite dimension with 
the one of Lipschitz functions (see I29 1 for the case where E is a separable 
Banach space). In order to study Pareto optimization problems defined by 
strictly compactly lipschitzian functions taking values in ordered topological 
vector spaces we have constructed in 1271 a theory of subdifferentiation for 
such functions. a theory which generalizes the one introduced by, Clarke 
[ 3,4 1 for Lipschitz real-valued functions. Optimization problems defined by 
Lipschitz vector-valued functions have been also considered by 
Kusraev I10 I. 

.4fter recent works, for instance, those of Clarke 14 I. Hiriart-Urruty 17 I. 
Pourciau I 17 1, and Thibault 126 I. which have shown that the generalized 
gradient of Clarke has many important applications, and after the two very 
interesting papers 121, 221 of Rockafellar which extends the known results 
for real-valued Lipschitz functions to real-valued non-Lipschitz functions, it 
is natural following the study of strictly compactly lipschitzian vectorvalued 
functions to try to extend the results of Rockafellar to functions taking 
values in F’ = F U (+a~ }, where F is an order complete topological vector 
space and +co is a supremum adjoined to F. 

We begin by recalling in Section 1 the notion of Clarke tangent cone 
which allows us to define in Section 2 the generalized directional derivative 
and the subdifferential of a function taking values in F’. We also prove that 
the subdifferential of a convex or strictly lipschitzian vector-valued function 
coincides with its subdifferential in the sense of convex or lipschitzian 
analysis. 

If F = IF (or more generally if int(F+) # 0) the notion of directionally 
lipschitzian functions introduced by Rockafellar can be interpreted 
geometrically (see 120. 2 11) with the help of what he calls the hypertangent 
cone. In order to deal with spaces F for which the interior of the positive 
cone F, may be empty. we define in Section 3 for a mapping) E + F’ and a 
point .U E E with f(s) # + co a cone c(f: S) which is directly connected 
with the epigraph off, a cone with has the remarkable property to be convex 
whenever f is lower semi-continuous at .U or whenever int(F, ) # 0. Making 
use of this cone we introduce a tangential condition (T:) which generalizes 
the notion of directionally lipschitzian behaviour of Rockafellar. This allows 
us to study the subdifferential of the sum of two vector-valued functions in 
Section 3 and the subdifferential of the composition of a function with a 
strictly differentiable mapping in Section 4. 
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1. TANGENT CONES 

All topological vector spaces that we shall consider in this paper will be 
assumed to be Hausdorff. 

Let E be a topological vector space, M a nonempty subset of E and Z a 
point belonging to the closure ofM. 

The notion of tangent cone introduced by Clarke for normed vector spaces 
can be defined for topological vector spaces in terms of neighbourhoods (see 
121 ]) or in terms of nets (see [ZS]). Here we shall adopt as definition the 
formulation given in [ 2 11. 

1.1. DEFINITION (Rockafellar [ 21 I). We shall call tangent cone to M at 
the point .U E cl M and we shall denote by T(M; X) the set of all points u E E 
such that for every neighbourhood V of L’ in E there exist a neighbourhood X 
of -7 in E and a real number E > 0 such that 

for all x E Xn M and t E 10, e[. 
T(M; if) is a closed convex cone (see [21] or 1281). 

This tangent cone has also a characterization in terms of nets. 

1.2. PROPOSITION (Thibault 128 1). The following two assertions are 
equivalent: 

(i) ~1 E T(M:x); 

(ii) for ever!! net (+K~)~,, in M converging to .5 and every net (t,i),iCJ of 
positive real numbers converging to zero, there exist tbllo subnets (.x,,~,);~, 
and (tn,i,)iE, and a net (~1~)~~~ in E converging to v such that 

X,(i) + t,(i) l’i E lM 

for each i E I. 

Remarks. (1) If E is normed. we know (see Hiriart-Urruty (71) that 
L’ E T(M: Y) if and only if for every sequence (x,),~~, in M converging to S 
and every sequence (I,),,,, in 10, +co[ converging to zero there exist a 
sequence (c,),,,~~~ in E converging to L’ such that 

x, + t, v, E A4 for each n E l\J. 

(2) If M is convex, then (see ]21]) the cone r(lci; -V) is the closure of 
the set of all elements ~1 E E for which there exist real numbers E,. > 0 
verifying X + 10, e,.(v c M. 



322 LIONEL THIBAULT 

2. SUBDIFFERENTIAL 

Let F be an ordered topological vector space, i.e., F is an ordered vector 
space and its positive cone F, = (x E F 1 x > O} is closed in F. We shall 
assume that F is an order complete uector lattice. i.e., sup(x. )) exists for all 
X, J E F and every upper bounded nonempty subset of F has a supremum, 
and that the topology of F is normal, i.e., there exists a neighbourhood basis 
( IV),, of the origin in F such that 

W=(WfF+)n(W-F,). 

By F’ = F U (+a, 1 we shall mean the order space F with the adjunction 
of a supremum +a~ and by F=FU (-co. +co) the space F with the 
adjunction of an infimum -co and a supremum fco. Addition and 
multiplication by real numbers are extended in standard way to F’ and F 
with (+co) + (-co) = + co. 

Letfbe a mapping from E into F’ and let ?c be a point in E withf(.C) E F. 
We shall denote by epi f the epigraph off. 

epi f = ((x, .r) E E x F 1 .v > f(s) ). 

and by L(E, F) the space of all continuous linear mappings from E into F. 
In the sequel we shall put (for f(Y) E F) 

T(f; ?c) = T(epi f; (X: f(f)). 

2.1. DEFINITIONS. We shall call directional subderitlatiue off at S and 
we shall denote, as in [2 11. byfT(-Y; a) the mapping from E into F defined by 

fT(C L’) = inf{l E F) (1’. I) E 7’(fi .f)\ 

with the convention inf 0 = fco. 
So we can define the subdifferential %f(.U) offat ?c by 

r?f(F) = { 7’E L(E, F) 1 T(u) < fT(Y; ~7). Vtl E E 1. 

In the sequel we shall be led to consider for mappings f the following 
tangential condition which excludes pathological situations. 

fT(.Y: .) takes values in F’. U-1) 

For a mapping f verifying condition (T,) at .U we shall put 

dom f T(wt .) = (r E E ( fT(f; ~1) E F}. 

Remark. If f is a mapping from E into F with f (3) E F, one easily sees 
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that either fT(f; 0) = -co or fT(Z; 0) = 0, since (0,O) E Tdf, 2). So if f 
verifies condition (T,) at X, one hasfT(Z; 0) = 0. 

As a direct consequence of the convexity of the tangent cone and of the 
definition of the directional subderivative we have the following proposition. 

2.2. PROPOSITION. If f is a mapping from E into F’ and if X is a point in 
E with f (2) E-F, the directional subderivative f r(.zi7; .) is a sublinear mapping 
from E into F, that is, 

f T(<u; L’, + Z!*) < f y,r; 0,) + f T(,-; c,), 

f T(2; h,) = If T(X; L’,) 

for all positive real numbers 1 and all v, , c2 E E, with the convention 
(+co) + (-co) = +co. 

Now let us recall (Thibault [27, 281) the following definition. 

2.3. DEFINITION. A mapping f from E into F is said to be strictljv 
compactly lipschitzian at a point 2 E E if there exist a mapping K from E 
into the set Camp(F) of nonempty compact subsets of F, a mapping r of 
10, l] X E x E into F and neighbourhoods X of .f and I/ of zero in E 
verifying 

= 0; (a) ” 
lmllO,x+wFr(tr x; U) = 0 for each L’ E E and limtlo.l+x,r+, r(t, x; v) 

(b) for all x E X, ~1 E V and t E IO, 1 ] 

t-‘[f(x+ tv)- f(x)] E K(v)+r(t,x;v); 

(c) K(0) = {O) and the set-valued mapping K is upper semi-continuous 
at the origin (that is, for every neighbourhood W of K(0) in F there is a 
neighbourhood U of zero in E verifying K(v) c W for every c E Or). 

We recall (see Thibault [28]) that if f is strictly compactly lipschitzian at 
X, then 

lji t-‘[f(x+tW-f(x+tu)]=O 
x4.r 
W-L 

for every v E E, that for all nets (xj)jpJ converging to X in E, (tj)j,, of 
positive real numbers converging to zero, there exists a subnet 

which converges and that f is continuous at 5. 

409/86!2-2 
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2.4. DEFINITIONS (see [27]). If f is a mapping which is strictly 
compactly lipschitzian at X, we shall put for every u E E 

DJX; v) = n cl(qAlO, 4 x K d), 
r>O cc’EYI1.i? 

where q,-(t, x; V) = I-’ [f(x + tn) - f(x)], ‘$I@) is the neighbourhood basis of 
1 in E, E is a positive real number and cl denotes the closure in F. We also 
have 

This allows us to define the generalized directional derivativefO(Y; .) by 

f”(f; a) = sup D,(X; v) 

for every u E E and the lipschitzian subdifferential 6,f(Y) off at k by 

r3,f(F) = (Z-E L(E, F) 1 Z-(v) < f”(T; L’), Vv E E}. 

The following proposition shows that for strictly compactly lipschitzian 
mappings fT(Y; .) =f”(* . j and hence generalizes Proposition 2.8 of 
Thibault [ 28 ]. 

2.5. PROPOSITION. Let f be a mapping which is strictly’ compactl]? 
lipschitzian at 2. We have 

f’(f; c) = f”(.f; L’) 

for every v E E, and 

iy-(f) = 2/j-(-s). 

Proof. Let F be a point in E. Let us begin by showing that f O(.f; F) < 
f’(R Ls). We may assume that fT(,V; Li) # fco. Let r be any point in F such 
that (t’, t) E r(f, X). Let us consider a net (tj, x~)~,, in 10. +co[ x E 
converging to (0, ,U) and such that 

l/ii r/T ’ [f(Xj + fj IT) - f(Xj, 1 

exists. Then as the net (xj, f(~~))~~~ converges to (2, f(Z)) there exist two 
subnets 
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and a net (Ui, li)iEI converging to (V; 7) such that 

Cxa(i) 3 flxa(i))) + fa(i)(tli, li> E 4 f 

for every i E I. Therefore we have 

r,(:)[f(Xo(i) + In(i) ui) - f(xdi,)l G li 
and hence (see the remark following Definition 2.3) 

yz ty ’ [f(Xj t fj fi) - f(Xj)] 

= l,$T la(i) [fCxa(i) + fa(i) Oil - f(xafi)>l G r: 

So we haveJ”(R V) < fT(% 17). 
To show the reverse inequality we may assume that f”(-f; t’) E F. 

Therefore it suffices to show that 

(t: j-y% a)) E 7-g f). 

Let (.xj, yj)jEJ be a net in epi f converging to (A?, f(F)) and (fj)jeJ be a net in 
10, fco[ converging to zero. Since f is strictly compactly lipschitzian at Y, 
there exists a subnet 

which converges. So there exist a point k E F with k < p(-U; t’) and a net 

(ri)icl in F converging to zero in F such that 

tLt:,if(Xa(i, + tn(i) 4 - f(-ra,i,)l = k + ri 

for each i E Z and hence 

f(-y,(i) + la,;, fl)= f(xa<i,) + t,,;,(k + ri) 
< )'a([, t f,(i)(f"(% fi) + ri). 

Therefore, there exists (F, f”(.F; 6) + ri)iE, converging to (LT, f”(,?; fi)) and 
verifying 

tXaii)r ?‘aci)) + t,,i,(F, f”(f; LT) t ri) E epi f 

and hence (F, f”(F; Li)) E r(f; A?) and the proof of the proposition is 
finished. m 

Remark. If E is normed and iff is strictly differentiable at I in the sense 
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of Bourbaki [ 1 ] and Leach [ 121, that is, if there exists a continuous linear 
mapping Vf(X) from E into F such that 

f(x) - f( .1’) = Vf(-U)(x - y) + II-~ - ??I1 E(X. y) 

with lim X+xSY+F E(X, y) = 0, it is not difficult to verify that 

j-y* . ) = Vf(?c) = fT(F: . ) 

and hence that 

2lf(Ti) = V./-(f) = 2f(f). I 

If we consider Hadamard differentiability instead of strict differentiability. 
then, as in Thibault [26], we have the following result. 

2.6. PROPOSITION. Let us assume that E and F are normed Llector 
spaces. If f is a mapping from E into F’ taking values in F on a 
neighborhood of X in E and iff is Hadamard dtflerentiable at 2, that is, there 
exists a continuous linear mapping Of (2) from E into F such that for each 
compact subset K of E the relation 

f (X + tc) - f (2) = t Vf (f)c + te(t, 0) 

holds for t sufficiently small in E, c E K with lim,_, s(t, r) = 0 unSform1~ 
with respect to L’ E K, then we haue 

Vf (F)(L!) < f ‘(2; L’) 

for all L’ E E and 

Vf (2) E g(x). 

Proof Consider (L), I) E T(f; X) and a sequence (t,),,,, of positive real 
numbers converging to zero. According to the remark which follows 
Proposition 1.2 there exists a sequence (u,,, I,),,,, converging to (fq,/) such 
that 

or 

(X. f(3) + tn(v,, I,) E epi f 

f (X + t, 0”) - ./XT) < t, I,, . 

Let K be the compact subset K = (0) U (u, 1 n E hl}. We have 

v-(-q(~~,) + 4t,, Lj,) < 4 
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and hence 

for lim,+, ~(f,, cln) = 0 since lim,,, e(t, rtl) = 0 uniformly with respect to 
II’ E K. Therefore it follows that 

for each L’ E E, and the proof is finished. m 

Remark. If, as Rockafellar has made for read-valued functions in 1211. 
we suppose that f is strictly Hadamard differentiable at X, that is, for every 
compact subset K of E the relation 

j-(x + rcy) -f(x) = f Vf(.U)(Ll) + re(t, x; P) 

holds for x in a neighbourhood of X, t sufficiently small. with 

uniformly with respect to L! E K, then it is not difficult to verify that 

(C!, Vf(ig(Cl)) E Tdf; f) 

for every cl E E. Therefore, in this case one has 

f’(,f; v) = Vf(ig(L’) and 

Before closing this section, let us consider the case of a convex mapping 
from E into F’, withf(@ E F. 

For such a mapping, one defines (see Valadier 13 I]) the directional 
derioafiae f ‘(-Vu; .) by 

f’(f; c!) = fif f ’ [S(X + fV) - f(x) J 

and the subdifferential in the sense of convex analysis off at X by 

r3,f(f) = {T E L(E, F) 1 T(o) < f’(q c), Vtl E E}. 

We are going to study relationship between directional derivative and 
directional subderivative for such a mapping f and to show that the subdif- 
ferential off at ~7 coincides with its convex subdifferential. 
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2.7. PROPOSITION. Let f be a convex mupping from E into F’ brith 
f(F) E F. Then 

for all L’ E E, with the convention sup 0 = --co. and 

Proof Since epi f is a convex set, according to Remark 2 .which follows 
proposition 1.2, T(f; ?c) is the closure in E x F of the set of all elements (c, 1) 
for which there exists E > 0 with 

(2, f(f)) + 10, E[(L~, l) c epi f. 

Thus consider any point (v, I) of this set. There exists a positive real number 
E such that for every t E 10, E[ 

t-‘[f(x+tc)- f(Y)]<1 

and hence f’(x, U) < 1. Therefore. if (6, t) E 7’(f; X), there exists a net 
(t;? lj)iEJ in the above set such that (L: r) = limiEJ (ri, lj) and hence for every 
A E 8, f (2) we have 

A(P) = g A(Lj,j) < ‘,‘E”3 fj = I 

and the first inequality of the proposition is proved. Now to show that 
jyfq)< f/(-e 1) X, L , we may assume that there exist a real number /I > 0 such 
that f (.C + pa) E F and hence that f (Z + tti) E F for all t E 10, /I]. Therefore, 
for every a E 10. p] and every t E 10, a] we have 

f (2 + tL’) < a ‘g-(X + CfL’) + ( 1 - CI ‘t) f (3). 

that is, 

(2, f(T)) + IO, u[(t’. a -‘[f (X + ai;) - f(Z)l) c epi f. 

So we derive that 

(a a - ’ [f (2 + au) - f (2) 1) E T(fi 2) 

for every a E 10, /I] and hence that 

f’(f: 0) < f ‘(2; Ll), 

and the proof of the proposition is finished, for the equality concerning the 
subdifferentials is a direct consequence of the two preceding inequalities. 1 

Remarks. (1) If int(F+) # 0, then according to the results of Penot 
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and Thera [25], the two inequalities of the proposition shows that fT(Z; .) 
lies betweenf’(x; .) and its lower semi-continuous hull. 

(2) Iff’(F, .) is continuous, then fT(?; .) = f’(x; .), since in this case 
one has 

f’(x; Y) = sup{At1 1 A E l?,f(.F)} 

for all t’ E E. 

3. FINITE SUM 

In order to study the sum of two mappings, we shall introduce the 
following tangential condition (T,). 

Letfbe a mapping from E into F’ and let 5 be a point in E withf(2) E F. 
We define the cone Q(f; X) of E x F (the term of cone is justified by the first 
part of the proof of Proposition 3.2) to be the set of all (V; I) in E X F such 
that for each neighbourhood L of Tin F, there exists a neighbourhood X of .U 
in E, a neighbourhood Y of f(Z) in F, a real number E > 0 and a 
neighbourhood V of V in E such that 

[(~,~)+f((~}XL)lneepif#PI 

for all (x, u) E (X x Y) n epi f, r E 10, E[ and t’ E V. 
Iff(f) E F, we shall say thatfverifies the tangential condition (T,) at .U if 

W-i-f) = cl,,,(Q(f; f)). (Tz) 

Remarks. (1) The following inclusion is always true: 
Qtf; f) = 7l.h -3 

(2) If Z(f; X) denotes the inferior pseudo-tangent cone (see Thibault 
[28] and Rockafellar [ 211 where the terminology “hypertangent” is used), 
that is, the set of all (0, I) E E x F for which there exist a neighbourhood R 
of (-C, f(x)), a real number E > 0 and a neighbourhood U of (0, /) such that 

finepif+]O,e[Ucepif, 

then the following relation holds 

I(f; X) c Q(f; 2) c T(f; 2). 

Therefore, if F = iFi and if f is directionally lipschitzian at .? in the sense of 
Rockafellar [21] (T(f;X) = clEYF(Z(f; X)]), thenfverifies at X the tangential 
condition (T:). 

The reader will note that the preceding inclusions can be strict. A simple 
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example is given by f: II + IL’ with f(s) = 0 if s > 0 and f(.u) = +a, 
otherwise and .U= 0. Indeed one has 

I(fiO)= lO,+co[ x ]O.+co[. Q(f;O,= lO.+oo[ x lO,+ml 

and 
T(f;O)= [O.+col x (O,+ool. 

(3) It is easy to verify that for each L’ E E the set 

L = (IEFI (r,l)EQ(f;.u)) 

is closed in F and operator-convex in the following sense: 

aL + (Id, - a)L c L 

for every a E L(F, F) with 0 < a < Id,, i.e., 0 < a)‘< y for all 4’ E F, . 

(4) If F is a Daniel1 topological lattice. i.e.. the application J++ 
inf(1: 0) is continuous and for every decreasing net (J~)~,, which is bounded 
below one has limj, yj = infj,, _ ,, I’., then Q(f; X) is the epigraph of a 
mapping from E into F. Indeed. let L’ be a point in E such that the set 

is nonempty and bounded below. Using the continuity of the mapping 
(Y,, ~1~) ++ infb,, y2) one easily sees that inf(/, , 1:) E L whenever I, and I, 
are in L. Therefore, considering the decreasing net of infimums of finite 
subsets of L we derive from what precedes that inf(L) E L since L is closed. 

(5) If f is continuous at ?r, then 

(-F, i, E Q(f; 2) e (ts, i) E Q(-f; 2). 

Indeed, let (-~7, r) be a point in Q(fi 2) and let L be a neighbourhood of i 
in F. There exists a neighbourhood X, of .U in E, a neighbourhood Y, ofJ(.?) 
in F, a neighbourhood V, of -F in E and a real number E, > 0 such that 

or 
((x, J’) + f ( { tt’ 1 x L )) n epi f f 0 

for all (x. 4’) E (X, x Y,)n epi f. f E 10. E[, 11’ E V,. By arguments of 
continuity, there exist a neighbourhood X of X in E with XC X, , a 
neighbourhood V of 6 in E with --V c V, , and a real number E > 0 with 
F < E, such that 

x+ )O,E[VcX, and j-(X + IO, 4 v = y, . 
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If we put Y= -Y,, we obtain for all (x, .v) E (Xx Y) n epi(-f), t E IO, E 
and u E V that 

r-I[(-f)(x + to) - 4’1 

=t-I[(-V)-f(x+tr)l 

it-‘[j-(x)-j-(x+tv)]-F, 

= t-‘[f((x + ru) + t(-c)) -j-(x + tu)J -F, 

CL-F, 

or 

((x, .v) + t(iu) X L)) n epi(-f) f 0 

and hence (6, I) E Q(-f; X). So, the assertion is proved for the reverse 
implication derives from arguments of symmetry. 1 

In order to give a condition under which the set Q(f; X) is convex, we 
recall the extension of Penot and Thera of the notion of lower semi- 
continuity to functions taking values in ordered topological vector spaces 
(see [25]). 

3.1. DEFINITION. Let f be a mapping from E into F’ and let X be a point 
in E withS(x) E F. One says that f is lower semi-continuous at X if for each 
neighbourhood Y off@) in F there is a neighbourhood X of X in E such that 

j-(X)c YfF;. 

where F; = F, U {+a}. 

3.2. PRo~osmo~. Let f be a mapping from E into F’ rvithj‘(.T) E F. uj’ 
is lower semi-continuous at 2, then Q(f, X) is a convex cone in E x F. 

Proof: Let us begin by proving that Q(f; a) is a cone. Let A be a positive 
real number, let (U; i) be a point in Q(f; X) and let L be a neighbourhood of 
Akin F. The set L, = A-‘L is a neighbourhood of i and hence there exist a 
neighbourhood X of X in E, a neighbourhood Y off(a) in Y, a real number 
E,, > 0, and a neighbourhood V, of Ls in E such that 

((x,Y)+t((u}XL,))nepiffIZr 

for all (x, ~1) E (X x Y) n epi f, t E IO, E,,[ and u E V,, . Therefore, if we put 
V= AV, and E = A-‘&,, we obtain 

((x, .Y) + t({o) xL))nepif f0 
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for all (x, J) E (XX Y) n epi f, I E 10, E[. LJE V and hence A(F, f) E Q(f; f), 
that is, Q(f, .U) is a cone. Now let (F,. I,) and (C,, 1:) be two points in 
Q(f, .U) and let L be a neighbourhood of r, + I2 in F. There exist a 
neighbourhood L, of r, in F and a neighbourhood Ls of 12 in F such that 
L, + Li c L. So there are a neighbourhood X, of .U in E, a normal 
neighbourhood 

Y,=(Y,+F+)n(Y,-F,) 

of f(x) in F, a real numer E > 0, and a neighbourhood V, of L’, in E such 
that 

that is, 

((x,y)+l(lu,} xL,))nepiffIZI, 

for all (x, v) E (X, x Y,) n epi f, t E IO, E,[ and u, E I’, . Consider a 
neighbourhood L, of 7, in F, a real number cr > 0 and a neighbourhood Yz 
off(x) in F verifying 

LZCL; and Yz$ ]O,E?[ L,c Y,. (1) 

Then, since f is lower semi-continuous at i and (cl, c) E Q(f; ?c), there exist 
a neighbourhood X off in E, a neighbourhood Y off@) in F, a positive real 
number E < inf(e,, sZ) and a neighbourhood Vz of 17 in E such that 

x+ (O,E[ v>cx,. Yc Yz. 

f(X + 10, E[ I’?) c Y, + F; 
(2) 

and 

t-‘]f(-u+~t!~)--]EL~-F+ (3) 

for all (x. y) E (X x Y) n epi f, I E 10, E[ and ~7~ E V,. Therefore, for every 
(x, y) E (X x Y) n epi f, every ~1~ E V, and every t E IO, E[ relations (I). (2), 
and (3) imply that 

f (x + tc2) E Y, + F; 

and 

f(x+fo,)Ey+tL,-F+cY,-F,, 

which implies that f (x + tuz) E Y, and hence 

(x + fuz, f(x -+ ru,)) E (X, x Y,) n epi J 
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Therefore, for all (x, v) E (X X u) n epi f, t E 10, E[ and t’, + v2 E I’, + V, 
with v, E V, and vz E V,, we derive from the relation 

t-‘[f(x+tv,+tv~)-~Y]=t-‘[f((x+tv,)+tv,)-ff(x+tt~z)] 

+ t -’ [j-(x + tv,) - )‘I 

that 

t-‘[f(X+tv,+tvZ)-y]EL,+Lz-F+cL-F+ 

and hence (fi, + t’*, 6 + &) E Q(f; X) and the proof of the proposition is 
finished. I 

Remark. If F = IR and iffis directionally lipschitzian at 2 in the sense of 
Rockafellar (see Remark 2 following the definition of Q(f; Z)), then even iff 
is not lower semi-continuous at X the cone Q(f; X) lies between the tangent 
cone 7’(f; f) and its interior for in this case (see Rockafellar [21]) 

and 

More generally we can establish that if int(F+) # 0, then the cone Q(f; X) 
is convex and it can be derived from Z(f; X). 

3.3. PROPOSITION. If int(F+) # 0, then for every ~1 E E we have 

f,.(f; X) = int [ Q,.(f; -U) 1, 

where 

and 

Q,(fi 2) = {E E F I (v. l) E Q(f; X)}. 

Proof: First of all let us note that the set Z,(f, 2) is open since 1(f; X) is 
open. Therefore, since I(f; f) c Q(fi 2), we have 

Z,;df; 2) c int [ Qdf; X)] for every ts E E. 

Now let ibe a point in int[Qr(f; ?r)] and let W be a circled neighbourhood of 
zero in F verifying W = (W + F, ) n (W - F,) and such that (&I) E Q(f, a) 
for every 1 E If W, Choose two points 

a E (i+ w) n (T- int(F+ )) and b E (i+ W) n (i+ int(F+)). 
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Ifweputc=2-‘(a+r)andd=2-‘(a+c).thenwehavedE ]a,c[c~+ W, 
where la. c[ denotes 

la, c[ = (a + int(F+)) f7 (c - int(F’+)). 

So (~7, d) E Q(f; Z) and h ence, since ]a, cl is a neighbourhood of d in F. 
there exists a neighbourhood V of F in E and a real number E > 0 such that 

t-‘[f(x + tc) - y] E ]a, c[ -F+ 

for all (x, ~7) E (X x Y) n epi 5 c E Y and t E 10, a[. Therefore we have 

tr’[f(x + tc) - y] E 1 -F+ 

or 
(.x9 y) + t(u. 1) E epi f 

for all (x, J) E (X x Y) n epi f, t E 10, E [ and (tl, /) E V x jc, b[ and hence 
(6, r) E I(f; -F), which proves the proposition. 1 

3.4. COROLLARY. Let f be a mapping from E into F’ and let .U be a point 
in E with f (3) E F. If int(F+) # 0. then )ye haLIe 

(i) Z,,(ft ?c) # 0 fund on!,, if Q&f: 2) # 0; 

(ii) Q,.(f; -U) = cl,.(Z,,(fi -U)) for each L’ E E; 

(iii) Q(f; .U) is a conwv cone. 

Proof. Since Z(f; ?c) c Q(fi ,U). Z,(f; ,?u) # 0 implies that QV(fi ,U) # 0. 
Now let us suppose that Q&f: -U) # 0. As 

Q,.(fi ?c) + int(F+) c Q,.(f; -U). 

we obtain that int(Q,(f; -U)) # 0 and hence according to Proposition 3.3 the 
cone I,(f, .C) is nonempty, and assertion (i) is verified. 

Since Q,(f, X) is convex and closed for each c E E (see Remark 3 
following the definition of Q(f; F)) assertion (ii) is a direct consequence of 
(i) and of Proposition 3.3. 

To show (iii) we may suppose that Q(f, 2) is nonempty. Let (pi’, k) and 
(w, I) be two points in Q(f; X) and let a and /? be two non-negative real 
numbers with a +/I = 1. According to (ii) there exist two nets (/c~)~,, and 

<lj)jH in F such that 

(0, kj) E Z(f; 2) and ( bv* lj) E r(.,fi x, for every j E J 

and 

lim kj = k 
.ieJ 

and lim 1. = 1. 
iEJ .’ 
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Moreover it is not difficult to see that Z(f; 2) is convex. So we obtain 

(at’ + Pw, akj + BZj) E Z(f; ?c) for every jE.Z 

and hence according to (ii) 

(au + pw, ak + pl) E Q(S; -T) 

which finishes the proof. 1 

Taking Proposition 3.2 and Corollary 3.4 into account we are naturally 
led to define the directional pseudo-subderivative in the following way. 

3.5. DEFINITION. If f is a mapping from E into F’ with f(x) E F, we 
shall call directional pseudo-subderivative off at X the mappingf’(x; .) from 
E into F defined by 

f’(-f; a) = inf(f E F ( (v, I) E Q(f; ?r)}. 

Remarks. (1) The relation fT(z7; v) < f’(x; v) always holds and hence 
iffverifies tangential condition (T2),fo(X; .) takes its values in F’. 

(2) Iffis lower semi-continuous at X or if int(F+) # 0, then according 
to Proposition 3.2 and Corollary 3.4,fn(.?: .) is a sublinear mapping from E 
intoE I 

3.6. LEMMA. Let f and g be th’o mappings from E into F’. Zff and g are 
semi-continuous at X E domf n dom g or if f or g is continuous at 2 with 
respect to domf n dom g, then for all (L’, i,) E Q(f; 2) and (6, &) E T(f, X) 
we have (6 i, + iJ) E T(f + g: 2). 

Proof: Let V be a neighbourhood of U in E and let L be a neighbourhood 
of 6 + c in F. There exist neighbourhoods Li of <, i= 1, 2, in F verifying 
L, + L, c L. Then, according to the definition of Q(f; 2) there exist a 
neighbourhood X, of X in E. a neighbourhood Y, off(X) in F, a real number 
E, > 0 and a neighbourhood V, of L’ in E with V, c 11 such that 

((x,.v,)+t({v) XL,))nepif f0 (4) 

for all (x,J,)E(XX Y,)nepi f, ZE ]O,E,[ and r?E V,. Taking now the 
definition of T( g; ?c) into account we can find a neighbourhood X, of X with 
X, c X,. a neighbourhood Y, of g(X), and a positive real number E with 
E < E, such that 

(t-r, 4rJ + t(V, X L,)) n epi f f 0 (5) 

for all (x, ~7~) E (XX Yz) n epi g and t E 10, E[: With the help of the 
assumptions it is not difficult to see there exist a neighbourhood X of X with 
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X c X, n X,, a neighbourhood Y of f(2) + g(X) such that for each (x, y) E 
(X x Y) n epi(f+ g) we can write y =y, +y2 with (x,y,) E (XX Y,) r’7 epif 
and (x, yz) E (X x Yz) r‘l epi g. So for each (x, y) E (X x Y) n epi(f+ g) and 
f E 10, E[, according to relation (5), there exist u E V, c V and 1, E L, such 
that 

g(x + tv) < J-2 + tlz. 

But relation (4) implies that there exists I, E L, such that 

f(x + tv) < y, + tl, 

and hence 

(f + gm + tv) < 4’ + a, + 4) 

with 1, + I, E L, + L2 c L. Thus it follows that 

((x, y) + t(V x L)) n epi(f + g) f 0 

and the lemma is proved. 1 

Let us also establish another lemma which will be used in the sequel. 

3.7. LEMMA. Let f be a mapping from E into F’ with f (2) E F and 
verifying tangential condition (T2) at .T. We have 

sup(Av~AEL(E,F).A(~)~f~(~;~)}~fT(~;~~)~fo(~~;c) 

for all v E E. 

Proof. Let A be an element in L(E. F) verifying A(W) < f ‘(,C w) for all 
w E E and let (6, T) be any point in 7(f, 2). There exists a net (rj. li),iEJ in 
Q(fi X) converging to (6, T) in E x F. Also for each j E J we have 

A(v,J < f q (-Y; “,i) < !j 

and hence 

‘4(C) = Fi A(Vj) < ye: l; = 1. 

Thus it follows that 

sup(AfilAEL(E,F),A(.)< f’(.T; a)}< fT(Z;O) 

and the lemma is proved. 1 

Let us recall now the following result of Zowe [33 1. 

3.8. PROPOSITION. Let f and g be two convex mappings from E into F’. 
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Zf there is a point z E dom f n dom g such that f is continuous at z, then for 
each x,, E dom f n dom g we have 

a(f + g)(-%) = af (x0) + ag(x,)Y 

with the convention q4 + B = 0 for every subset B of L(E, F). 

We can now establish our result concerning the subdifferential of the sum 
of two mappings. 

3.9. PROPOSITION. Let f and g be two mappings from E into F’ such that 
f and g are semi-continuous at f E dom f n dom g or such that f or g is 
continuous at X with respect to domf n dom g. 

(i) For every v E E we have 

(f + g)T(f; v) < fO(2; v) + gT(.U; v). 

(ii) Zf in addition f and g verrfy (T,) at 2, tff verifies (T,) at .U and is 
lower semi-continuous at X and if there is a point ts(G dom f ‘(X; .) n 
dom gT(X; .) such that f’(% 0) or gT(Y; a) is continuous at 5, then 

a(f + g)(X) C af (2) + ag’g(.q. 

Proof: Part (i) is an immediate consequence of Lemma 3.6. To show (ii) 
we may suppose that (f + g)T(X; .) takes its values in F’, for otherwise 
a(f + g)(X) = 0. If for every mapping s from E into I;’ we denote by s0 the 
mapping from E into F’ defined by s,(O) = 0 and so(v) = s(v) if c # 0, then 
the mapping s, is sublinear whenever s is sublinear. Therefore, it follows 
that the mappings df + g)&X; .), f :(E .) and g&X; .) are sublinear. Thus 
using assertion (i), Propositions 3.2 and 3.8 and Lemma 3.7, one obtains the 
result of (ii). 1 

Remarks. (1) The result of (ii) is still true if, instead of assuming f is 
lower semi-continuous at 2, we assume the cone Q(f, X) is convex. 

(2) If int(F+) # 0, then according to Corollary 3.4 the assumption 
that f is lower semi-continuous at ?c is superfluous. So iff is a function taking 
values in iR’ and if f is directionally lipschitzian at .U, we find the inclusion 
formula about the subdifferential of a sum of two extented real-valued 
functions of Theorem 2 of Rockafellar [ 22 J. 1 

Consider now the case where f is strictly compactly lipschitzian at X. 

3.10. PROPOSITION. Let f be a mapping from E into F which is strictly 
compactly lipschitzian at 2. Then f vertjies tangential conditions (T,) and 
(T,) at .U and 

fT(n; v) = f”(n; v) for all v E E. 
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Proof: Condition (T,) is a direct consequence of equality f”(~; .) = 
f(?c; .) in Proposition 2.5. To show that condition (Tz) and the equality of 
the proposition are verified it sufftces to show r(f, 2) c Q(f, x). for the 
reverse inclusion is always true. Suppose there exists a point (6, T) in T(f; X) 
which does not belong to Q(f, X). According to the definition of Q(f; X) 
there are an open neighbourhood L of Tin F, nets (-uj, ~3~)~~~ in epi f. (tj)jEJ 
in 10, co [ and (~7~)~~~ in E converging respectively to (.F. f(Y)), zero and t’ 
such that 

(Xj + fj Cj , Jij + tj I) 67i epi f 

for every 1 E L and every j E J. So we have 

t~~‘[f(.~j+tj~~j)--j] AL-F+ 

for every j E .I and hence 

t,’ ’ [f(*~j + tj~jj) - f(Xj)] @ L - F+ 

for every j E J since J> > f(xj) and tj > 0. Since f is strictly compactly 
lipschitzian at ,V, there exists a subnet 

which converges to some point z E F. So using the remark following 
Definition 2.3 we obtain that 

and hence that z&L-F,. But since (F, r) E T(f: X), according to 
Proposition 2.5 we havef”(2; Li) < l So it follows that 

which is in contradiction with the definition off”(.V; t’). 1 

Let us study the case where f is convex. 

3.11. PROPOSITION. If f is a come-x mapping from E into F’ which is 
continuous on a neighbourhood of 2 in E, then f verifies tangential conditions 
(T,) and (T,) at P. 

Proof. Denote by Rdf; X) the set of all (v, I) E E x F for which there 
exists a real number E > 0 verifying (2, f(2)) + 10, E[(u, 1) E epi f. Since 
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condition (T,) is an immediate consequence of Proposition 2.7 and of the 
nonvacuity of the subdifferential a,.&?) (see Corollary 1 of Theorem 1 of 
Zowe [33] or Theorem 6 of Valadier [31]), then according to Remark 2 
following Proposition 1.2 it is enough to show 

R (f, f) c Q(f, f). 

Let (F, r) be a point in R(f; *U) and let L be a neighbourhood of fin F. There 
exists a real number E > 0 such that 

I ’ [f(f + tF) - f(Y)] E i- F, 

for every f E 10, E[. Since f is continuous on a neighbourhood of ,f, there is 
u E 10, E[ such that f is continuous at the point .U + aF. So, as 

(r-‘[f(,Y+at;)--(,~)JEL-F,, 

there exist a neighbourhood X of ?r in E and a neighbourhood I’ of F in E 
verifying 

for all x E X and v E V. Therefore, for every (x, y) E (XX Y) f? epi f. every 
r E 10, a[ and every ~1 E V we have 

t~‘[f(,~+t~)--])E-‘[f(.u+tz’)-f(x)]-F, 

ca~‘[f(x+u~)-f(?s)l-F, 

CL-F, 

and hence (5, I) E Q(fi F). 

Remark. If the order intervals of F are compact and if the lattice 
mapping of F defined by x N sup(x, 0) is continuous, then the preceding 
proposition can also be seen as a consequence of Proposition 3.10 above and 
of Proposition 1.9 of Thibault [27]. 

4. COMPOSITION WITH A STRICTLY DIFFERENTIABLE MAPPING 

We shall begin by studying the case f 0 A where f is a convex mapping 
and A is a continuous linear mapping. 

4.1. PROPOSITION. Let A be a continuous linear mapping from a 
topological vector space G into E and let f be cc convex mapping from E into 

409’86!2-3 
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F” with f (Af) E F. [f there is a poirlt 17 E E such that f is continuous at AI?. 
therz 

2(f ‘3 A) = ?f(.4X) 0 A = (To A 1 TE ;‘f(Aa)}, 

Proof. The proof follows an idea of Rockafellar [ 22 1 which consists to 
derive composition formula from sum formula. Define two convex mappings 
g, and gz from G x E into F’ by putting 

g,(x, y) = 0 if .r=A.u and g,(x, y) = +cc otherwise 

and 

&(X3 ?!I = f(Y) for all (x, .r) E G x E. 

Set g = g, + g,. Since f is continuous at AL;. then gz is continuous at (t’. Ai;) 
and (t’, AC) E dom g, ~7 dom g?. So as (5. Ax) E dom g, n dom gz, 
according to Proposition 3.6 we have 

&$f, Af) = ?g,(S. Af) + iig?(S, Af). (6) 

Now let us characterize the three sets that appear in relation (6). For each 
continuous linear mapping T from G x E into F we shall denote by T’ and 
T” the continuous linear mappings from G into F and from E into F defined 
by T(x, JP) = T’(x) + T”(y) for all (x, .v) E G x E and we shall write T = 
(T’. T”). We claim 

;Ig(X, Af) = (T E L(G x E. F) 1 T’ + T” 0 A E &(J 0 A)(f)). 

Indeed, we have T E %g(X. AZ) if and only if 

T(x, J) - T(s. A-u) < g(x. yj - g(Y. Af) 

for all (x, ~1) E G X E. hence if and only if 

T’(x)+T”oA(,y)-T’(.r)-T”oA(x)<foA(x)--f oA(:u) 

and hence if and only if 

T’+T”aAEa(f oA)(x). 

One shows in a similar way 

~g,(f,AI)=(TEL(GxE,F)(T’+T”oA=Ot 

and 

agz(zc, AZ) = (T E L(G x E, F) ( T’ = 0 and T” E Ljj(A-Y) 1. 
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Let T’ be an element in adf 0 A)(f). According to relation (6) and the above 
characterizations of the subdifferentials appearing in relation (6), there exist 
T; E L(G. F), T; E L(E, F) with T; + T; o A = 0 and Tr E iif verifying 

(T’, 0) = (T; , T:’ + Ti’). 

It follows T’ = T; o A and hence 

a(f 0 A)(f) c %f(Af) 0 A. 

As the reverse inclusion is obvious, we obtain the desired equality. 1 

Now let us extend the definition in the remark following Proposition 2.5 of 
a strictly differentiable mapping to the case where the space of definition is 
not necessarily normed (see 1221). 

4.2. DEFINITION. A mapping g from a topological vector space G into E 
is said to be strictly differentiable at a point IE G if there are a continuous 
linear mapping Vg(X) E L(G, E) and a mapping r from 10. +co 1 x G x G 
into E such that 

g(x + tv) = g(x) + tVg(X)c + tr(t, x; c) 

for all (t, x; c) E 10, co [ x G x G and 

Remark. It is not difftcult to see that a mapping g is strictly differen- 
tiable at a point ?r if and only if it is strictly compactly lipschitzian at ,U with 
a mapping K (see Definition 2.3) taking values in the set of singletons of E. 

4.3. LEMMA. Let g be a mapping from a topological vector space G into 
E which is strictly differentiable at X with derivative Vg(X) = A and let f be a 
mapping from E into F’ with f (g(X)) E F. For every (L’, i) E G X F such that 
(At7 i)E Q(f, g(x)) we have (6, i)E Q(f o g;x). 

Proof: Suppose (AI?, f) E Q(f; g(2)) and let L be a neighbourhood of i 
in F. There exist a neighbourhood Z x Y of (g(f), f o g(?c)) in E x F, a real 
number E, > 0 and a neighbourhood II of At’ in E such that 

that is, 

((4 v> + t({ui X L)) f-7 epi f f 0, 

t-‘[f(z+tu)-y]EL-F, (7) 
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for all (z, J) E (Z x Y) f? epi f, t E 10. E[ and u E U. As (see Definition 4.2) 

l/i; r(t, .u; w) = 0 
r-i 
I, +r 

and that g is continuous at X. there exist a neighbourhood X of .U in G. a 
positive real number E < E, and a neighbourhood V of z! in G such that 

g(X) = z and A(V)+r(jo,F[ xxx V)cU. (8) 

So for all (x, 1’) E (X x Y) n epi(f 0 g). t E 10. E[ and c E K, since 
(g(.u), ~1) E (Z X Y) n epi J we have according to relations (7) and (8) 

f-‘If” g(.u+tr~)-~~]=t-‘[f(g(x)+t(A~+r(t..~:~)))-~~~EL-F+ 

and hence (0, I) E Q(f o g; -?). I 

We can now state the following result. 

4.4. PROPOSITION. Let g be a mapping from a topological L’ector space G 
into E which is strictly differentiable at ?c with derivative Vg(.V) = A and let f 
be a mapping from E into F’ ivith f (g(.U)) E F. Then 

(i) for ecery L’ E G 

(f 0 g)‘(.Y: tl) < (f 0 g)“(.U: zj) < f O( g(U): Aa). 

(ii) If in addition f verifies (T-,) at g(Y), iff is lower semi-continuous 
at g(X) and if there is a point ts E G such thatf’( g(S); . ) is continuous at 
AL; then 

2(f 0 g)(.U) c ?f( g(Y)) 0 A. 

Proof: Part (i) is a direct consequence of the preceding lemma and of 
Definition 3.5. For (ii) it suflices to repeat the arguments of the proof of 
Proposition 3.9 and to apply Proposition 4.1 to the mapping p o A at zero 
where ~1 is defined by ~(4’) = f”( g(X); I’) if J’ # 0 and ~(0) = 0 by using 
Proposition 3.2 and Lemma 3.7. 1 

Remarks. (1) Assertion (ii) still holds if instead of assuming f is lower 
semi-continuous at g(?c) we suppose the cone Q(S; g($) is convex. 

(2) If int(F,) # 0, then (as in Remark 2 following Proposition 3.7) 
the assumption that f is lower semi-continuous at g@) is superfluous. 
Moreover in this case condition (T?) at g(f) is according to Corollary 3.4 
equivalent to 

cl, .&(f; g(f))) = TCf; g(f)). 
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So ifftakes values in IR’ and if it is directionally lipschitzian at ?s, we find 
inclusion formula of Theorem 3 of Rockafellar [ 22 1. 
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