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The formula of Clarke’s subdifferential for the sum of two real-valued locally
Lipschitz functions has been extended by Rockafellar to the case where one of the
two functions is directionally lipschitzian. We introduce in this paper a notion of
cone related to the epigraph of a function and with the aid of this cone we extend
the directionally lipschitzian behaviour to vector-valued functions and we study the
sum of two vector-valued functions.

INTRODUCTION

In the last few years, the study of optimization problems with constraints
defined by vector-valued functions has led many authors to introduce a
notion of subdifferential or generalized differential for nondifferentiable
vector-valued functions. The first ones to have considered such functions
seem to be Raffin [18] and Valadier [31] who have extended the definition
of convex subdifferential of Moreau and Rockafellar to convex vector-valued
functions. This theory of subdifferentiation of convex vector-valued functions
has been developed by Ioffe and Levin, Michel, Zowe, Kutateladze, Rubinov
and others.

In [15] Penot has introduced the notion of upper and lower directional
derivatives for nonconvex functions taking values in a Daniell topological
vector space and with the aid of assumptions of infinitesimal convexity he
has established a subdifferential calculus for tangentially convex vector-
valued functions. For functions from " into 5™ many authors have defined
a notion of ‘*generalized derivative” by using the famous theorem of
Rachemacher for Lipschitz mappings (Clarke [5], Pourciau [17]) or by
looking for a description of properties which secure the extension of implicit
function theorems (Halkin [6], Warga [32]).

As there is no almost everywhere differentiability for a Lipschitz mapping
defined on a nonseparable normed vector space E, we have introduced in
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[27. 28| the notion of strictly compactly lipschitzian vector-valued functions,
a notion which generalizes the one of strictly differentiable functions cof
Bourbaki [1| and Leach |12 and which coincides in finite dimension with
the one of Lipschitz functions (see |29| for the case where E is a separable
Banach space). In order to study Pareto optimization problems defined by
strictly compactly lipschitzian functions taking values in ordered topological
vector spaces we have constructed in [27] a theory of subdifferentiation for
such functions, a theory which generalizes the one introduced by Clarke
[3.4] for Lipschitz real-valued functions. Optimization problems defined by
Lipschitz vector-valued functions have been also considered by
Kusraev [10].

After recent works, for instance, those of Clarke |4]|. Hiriart-Urruty |7].
Pourciau |17}, and Thibault [26|. which have shown that the generalized
gradient of Clarke has many important applications, and after the two very
interesting papers 21,22} of Rockafellar which extends the known results
for real-valued Lipschitz functions to real-valued non-Lipschitz functions, it
is natural following the study of strictly compactly lipschitzian vector-valued
functions to try to extend the results of Rockafellar to functions taking
values in F"=F\U {+o0}, where F is an order complete topological vector
space and +oo is a supremum adjoined to F.

We begin by recalling in Section | the notion of Clarke tangent cone
which allows us to define in Section 2 the generalized directional derivative
and the subdifferential of a function taking values in F*. We also prove that
the subdifferential of a convex or strictly lipschitzian vector-valued function
coincides with its subdifferential in the sense of convex or lipschitzian
analysis.

If F=F (or more generally if int(F,)+ @) the notion of directionally
lipschitzian functions introduced by Rockafellar can be interpreted
geometrically (see [20, 21]) with the help of what he calls the hypertangent
cone. In order to deal with spaces F for which thc interior of the positive
cone F, may be empty. we define in Section 3 for a mapping f/: £ — F" and a
point X € E with f(¥)# + oo a cone Q(f:¥) which is directly connected
with the epigraph of f, a cone wich has the remarkable property to be convex
whenever f is lower semi-continuous at ¥ or whenever int(F )+ . Making
use of this cone we introduce a tangential condition (T,) which generalizes
the notion of directionally lipschitzian behaviour of Rockafellar. This allows
us to study the subdifferential of the sum of two vector-valued functions in
Section 3 and the subdifferential of the composition of a function with a
strictly differentiable mapping in Section 4.
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1. TANGENT CONES

All topological vector spaces that we shall consider in this paper will be
assumed to be Hausdorff.

Let E be a topological vector space, M a nonempty subset of £ and ¥ a
point belonging to the closure of M.

The notion of tangent cone introduced by Clarke for normed vector spaces
can be defined for topological vector spaces in terms of neighbourhoods (see
[21]) or in terms of nets (see |28]). Here we shall adopt as definition the
formulation given in [21].

1.1. DEFINITION (Rockafellar [21]). We shall call tangent cone to M at
the point ¥ € cl M and we shall denote by T(M; x) the set of all points v € E
such that for every neighbourhood V of v in E there exist a neighbourhood X
of ¥ in £ and a real number ¢ > 0 such that

x+tMHNOM+Q

for all xE XM M and 1 € |0, ¢|.
T(M; x) is a closed convex cone (see [21] or [28]).

This tangent cone has also a characterization in terms of nets.

1.2. ProposITION (Thibault [28]). The following two assertions are
equivalent:
(i) veTM:x).

(ii) for every net (x;);c, in M converging to X and every net (1,);c, of
positive real numbers converging to zero, there exist two subnets (x,;);ies
and (t,)ie; and a net (v;);, in E converging to v such that

Yo Tlan Vi EM
foreach i€ I

Remarks. (1) If E is normed. we know (see Hiriart—Urruty [7]) that
v € T(M: x) if and only if for every sequence (x,),., in M converging to ¥
and every sequence (f,),en in |0, +oo[ converging to zero there exist a
sequence (v',),en in E converging to v such that

X, +1,v, EM for each n € N,

(2) If M is convex, then (see [21]) the cone T(M; %) is the closure of
the set of all elements v € E for which there exist real numbers ¢, > 0
verifying X + 10, ¢,|v < M.
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2. SUBDIFFERENTIAL

Let F be an ordered topological vector space, i.e., F is an ordered vector
space and its positive cone F, = {x € F|x >0} is closed in F. We shall
assume that F is an order complete vector lattice, i.e., sup(x. y) exists for all
X, ¥ € F and every upper bounded nonempty subset of F has a supremum,
and that the topology of F is normal, i.e., there exists a neighbourhood basis
|Wh, of the origin in F such that

W=(W+F )N(W-F,)

By F'=F\U {+oo} we shall mean the order space F with the adjunction

of a supremum +oo0 and by F=F\U|{—00.+00} the space F with the
adjunction of an infimum —oo0 and a supremum +oo. Addition and
multiplication by real numbers are extended in standard way to F* and F
with (+0) 4 (—©) = + o0.
Let fbe a mapping from E into F* and let ¥ be a point in £ with f(¥) € F.
We shall denote by epi f the epigraph of f,

epi f={(x. VVEEXF|y> f(x)}

and by L(F, F) the space of all continuous linear mappings from E into F.
In the sequel we shall put (for f(¥) € F)

T(f; X)= T(epi [ (%: f(X)).

2.1. DerINITIONS.  We shall call directional subderivative of f at X and
we shall denote, as in {21]. by £1(x; +) the mapping from E into F defined by

f& o) =infll € F|(v. 1) € T(f: %)}

with the convention inf @ = +oo.
So we can define the subdifferential gf (¥) of f at x by

& (%)= 1TE L(E. F)| T)< f(F:v). Vv € E}.

In the sequel we shall be led to consider for mappings f the following
tangential condition which excludes pathological situations.

S1(%: +) takes values in F". (T)
For a mapping f verifying condition (T,) at ¥ we shall put
dom f1(%: )= {r € E| f(%;v) € FY.

Remark. If fis a mapping from E into F with f(X) € F, one easily sees
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that either fT()?; 0)=—o0 or fT(f; 0)=0, since (0,0)€ T(f;x). So if f
verifies condition (T,) at X, one has f T(f; 0)=0.

As a direct consequence of the convexity of the tangent cone and of the
definition of the directional subderivative we have the following proposition.

2.2. ProposITION. If fis a mapping from E into F' and if X is a point in
E with f(X) € F, the directional subderivative f '(%; -) is a sublinear mapping
from E into F, that is,

S1& v+ 0) S 0) + 1),
L@ w) =40

Sfor all positive real numbers 1 and all v,,v, € E, with the convention
(+0) + (—®) = +c0.

Now let us recall (Thibault [27, 28]) the following definition.

2.3. DEFINITION. A mapping f from E into F is said to be strictly
compactly lipschitzian at a point X € E if there exist a mapping K from E
into the set Comp(F) of nonempty compact subsets of F, a mapping r of
|0,1] X EX E into F and neighbourhoods X of ¥ and V of zero in E
verifying

(@) lim,y ,zr(t,x;v)=0 for each v €E and lim, |y .5 ..o r(t, x;0)

(b) forallx€EX,vE€ Vand t€ )0, 1]
U (x+ )= f(x)]) €EKQE) +r(t x5 0);

(c) K(0)=1{0} and the set-valued mapping K is upper semi-continuous
at the origin (that is, for every neighbourhood W of K(0) in F there is a
neighbourhood U of zero in E verifying K(v) < W for every v € U).

We recall (see Thibault [28]) that if fis strictly compactly lipschitzian at
X, then

ltilng e+ w)— fx+10)] =0

wop

for every v € E, that for all nets (x;);., converging to X in E, (¢;);c; of
positive real numbers converging to zero, there exists a subnet

(el S oy + Loy ) — f Xai)) Dies

which converges and that f is continuous at X.

409/86/2-2
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2.4. DEFINITIONS (see [27]). If f is a mapping which is strictly
compactly lipschitzian at X, we shall put for every v € E

Dx;v)= () cl(gl0, e[ X W:v)),
weno

where g{t, x; v) =t~ '[f(x + tv) — f(x)], R(X) is the neighbourhood basis of
X in E, ¢ is a positive real number and cl denotes the closure in F. We also
have

DAx;v)= {ljlgl qdt;, x;5v) ;> 0, 11151 t;=0 and l]lgll X; =X}

This allows us to define the generalized directional derivative f°(x; -) by
So(E v) = sup DAX; v)
for every v € E and the lipschitzian subdifferential ¢, f(X) of f at £ by
8./(%) = {TE L(E, F)| T(v) < f°(%: v), Vv E E}.

The following proposition shows that for strictly compactly lipschitzian
mappings f'(F;-)=f°(%:-) and hence generalizes Proposition 2.8 of
Thibault [28].

2.5. PROPOSITION. Let f be a mapping which is strictly compactly
lipschitzian at x. We have

fHF )= fof )
Sfor every v € E, and
& () = &,/ ().
Proof. Let © be a point in E. Let us begin by showing that f°(£: T) <
S1(%; §). We may assume that f1(%; 7) # +o0. Let [ be any point in F such

that (&,1)E€ T(f; %). Let us consider a net (1;,x;),c, in |0, +o0| X E
converging to (0, X) and such that

ljig} G+ 650) — f(x)]

exists. Then as the net (x;, f(x;));., converges to (X, f(X)) there exist two
subnets

(Xaiirs S ainy Dier and (Lain)ier
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and a net (v;, /;);c, converging to (7, 7) such that

Faqys S Ko@) + taw (@i ;) Eepi f
for every i € I. Therefore we have

tai[f oy + tay ) — f(xa)] £ Ui
and hence (see the remark following Definition 2.3)

lji;l} i O+ 0) — fx))]

= ll‘g} L [ Cay + a0 — [ (o)) <L

So we have f°(%; 7) < /1 (%; §).

To show the reverse inequality we may assume that f°(%; 7)€ F.
Therefore it suffices to show that

(@, fo(x; 0)) € T(Sf3 X).

Let (x;, ¥;);c, be a net in epi f converging to (X, /(X)) and ();, be a net in
]0, +00| converging to zero. Since f is strictly compactly lipschitzian at ¥,
there exists a subnet

(il Cainy + tain ©) — L) Dies

which converges. So there exist a point k € F with k  f°(X;7) and a net
(r;))ie; In F converging to zero in F such that

Lo [ Koy + Lo D) — f(Xow) | =k + 1
for each i € I and hence
SCaiy Flan D) =S Xai) + Lok +7,)
L Ve T [aqi)(fo(f; o)+ ri)-

Therefore, there exists (7, f°(X;7) 4 r,);, converging to (¥, f°(¥: 7)) and
verifying

(Xaiirs Yaw) + ta (@ fOET) + 1) Eepi f

and hence (7, f°(¢; 7)) € T(f; X) and the proof of the proposition is
finished.

Remark. If E is normed and if f is strictly differentiable at ¥ in the sense
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of Bourbaki [1] and Leach [12], that is, if there exists a continuous linear
mapping Vf(x) from E into F such that

= f() =V ER)x = ») + [lx — v] e(x. »)
with lim,_; , .z €(x, y) =0, it is not difficult to verify that
o) =V (®) = f1(%)
and hence that
&f®)=vr®=e. 1

If we consider Hadamard differentiability instead of strict differentiability.
then, as in Thibault [26], we have the following result.

2.6. PROPOSITION. Let us assume that E and F are normed vector
spaces. If f is a mapping from E into F' rtaking values in F on a
neighborhood of x in E and if f is Hadamard differentiable at x, that is, there
exists a continuous linear mapping Vf(X) from E into F such that for each
compact subset K of E the relation

SE+ 1) = f(X) =t Vf (R + tet. v)

holds for t sufficiently small in =, v € K with lim,_g e(f, v) = 0 uniformly
with respect to v € K, then we have

V() < S )
Sfor all v € E and

Vf(x) € of (X).

Progf. Consider (v,1) € T(f, X) and a sequence (f,),c,, of positive real
numbers converging to zero. According to the remark which follows
Proposition 1.2 there exists a sequence (v,,/,),c, converging to (v, /) such
that

(X, f(X) + t,(v,, 1) Eepi f
or
SE+,0,) - S <,
Let K be the compact subset K = {v} U {v, | n € N}. We have

V) v,) + et v) <,
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and hence
Vi@ <L
for lim,_ _&(t,,v,) =0 since lim,_, &(¢, w) =0 uniformly with respect to
w € K. Therefore it follows that
V(@) < S )

for each v € E, and the proof is finished. ]

Remark. 1If, as Rockafellar has made for read-valued functions in [21],
we suppose that f is strictly Hadamard differentiable at x, that is, for every
compact subset K of E the relation

fx+ )= fx)=tVF(X)(v) + te(t, x; v)

holds for x in a neighbourhood of %, ¢ sufficiently small, with

lim e(t,x;0)=0

-0, x—-x

uniformly with respect to v € K, then it is not difficult to verify that
(0, V(X)) E T/ X)
for every v € E. Therefore, in this case one has

fiEe)=Vf(D@) and  FEH=V(®. 1

Before closing this section, let us consider the case of a convex mapping
from E into F°, with f(X) € F.

For such a mapping, one defines (see Valadier [31]) the directional
derivative f'(%; -) by

S o) = inf 17 (% + 1) - (%)
and the subdifferential in the sense of convex analysis of f at X by

8. f(X)={TE€L(E F)|T() < f'(x;0), Yo € E}.

We are going to study relationship between directional derivative and
directional subderivative for such a mapping f and to show that the subdif-
ferential of f at X coincides with its convex subdifferential.



328 LIONEL THIBAULT

2.7. PROPOSITION. Ler f be a convex mapping from E into F' with
S(XYEF. Then

sup{dv|A €& LD < f (f:0) < [/ (Fv)
Sfor all v € E, with the convention sup @ = —oo. and
& (%) =& ().

Proof. Since epi fis a convex set, according to Remark 2 which foliows
proposition 1.2, T(f; X) is the closure in E X F of the set of all elements (v, /)
for which there exists ¢ > O with

(£ S(xX) + 10, [(v, ) cepi f.

Thus consider any point (¢, /) of this set. There exists a positive real number
¢ such that for every ¢ € |0, ¢]

CUSE ) - f@)] <

and hence f'(x;v) </ Therefore, if (7, )€ T(f; %), there exists a net
(v;, ;)je, in the above set such that (7, /) =lim,, (v;, /;) and hence for every
A€ é.f(x) we have

A@) =lmA(e) <lim =1
jeJ ! jed

and the first inequality of the proposition is proved. Now to show that
A& v)< f'(% v), we may assume that there exist a real number § > 0 such
that f(X + 80) € F and hence that f(X + 1) € F for all ¢ € |0, 8]. Therefore,
for every a € ]0, ] and every ¢ € 0, a] we have

fE+ID)a (& +ab) + (1 —a't) f(X).
that is,
(&%, S(D) + 10, al(Z.a ' f(X + ab) — f()]) < epi /.
So we derive that
(B, o' [f (£ + ad) — f(F)]) € T(f; %)
for every a € 10, 8] and hence that
SIE ) S1(F ),

and the proof of the proposition is finished, for the equality concerning the
subdifferentials is a direct consequence of the two preceding inequalities. |

Remarks. (1) If int(F,)# @, then according to the results of Penot



SUBDIFFERENTIALS 329

and Thera [25], the two inequalities of the proposition shows that f T()E; )
lies between f'(X; -) and its lower semi-continuous hull.

(2) If f'(x;-) is continuous, then fT(%; -) = f'(%; -), since in this case
one has

S'(xiv) =sup{dv |4 € 6. f(X)

forall v € E.

3. FINITE SuM

In order to study the sum of two mappings, we shall introduce the
following tangential condition (T,).

Let f'be a mapping from E into F* and let X be a point in E with f(¥) € F.
We define the cone Q(f; X) of E X F (the term of cone is justified by the first
part of the proof of Proposition 3.2) to be the set of all (7,/) in E X F such
that for each neighbourhood L of [ in F, there exists a neighbourhood X of
in E, a neighbourhood Y of f(¥) in F, a real number ¢>0 and a
neighbourhood V of v in E such that

[(x, )+ t({o} X L) Mepi f# O

for all (x, y)EX X Y)Nepi f,tE€ |0,¢[ and v E V.
If £(X) € F, we shall say that f verifies the tangential condition (T,) at ¥ if

T(f; %) = clg  ((Q(S; X)). (T,)

Remarks. (1) The following inclusion is always true:
O(/; X) < T(f; X).

(2) If I(f; x) denotes the interior pseudo-tangent cone (see Thibault
[28] and Rockafellar [21] where the terminology “hypertangent” is used),
that is, the set of all (v, /) € E X F for which there exist a neighbourhood Q
of (X, (X)), a real number ¢ > 0 and a neighbourhood U of (v, [) such that

QnNepi f+ 0, e[Ucepi f,
then the following relation holds
I(f; X) < Q(fs ) = T(f; X).

Therefore, if F =R and if f is directionally lipschitzian at ¥ in the sense of
Rockafellar [21] (T(f} %) = cl. [I(f: X)]), then f verifies at ¥ the tangential
condition (T,).

The reader will note that the preceding inclusions can be strict. A simple
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example is given by fi= - with f(x)=0 if x>0 and f{x)=4+w
otherwise and X = 0. Indeed one has
I(f:0)= |0, +o| X |0, +o0{. Q(f;0)= 0. +[ X |0, +oo|

and
T(f:0)=[0. +o0[ X [0, + 0.

(3) It is easy to verify that for each v € E the set
L={lEF|[(v,))e Q(/:X)}
is closed in F and operator-convex in the following sense:
al +(Ild, —a)Lc L

for every a € L(F, F) with O a < ld,, ie, O0<ayrL yforall ye F,.

(4) If F is a Daniell topological lattice. i.e.. the application y+—
inf( y, 0) is continuous and for every decreasing net (y;);., which is bounded
below one has lim,, y;=inf;.; v;, then Q(f;x) is the epigraph of a
mapping from FE into F. Indeed. let © be a point in E such that the set

L=\{[EF|(r.])E Q(f: %)}

is nonempty and bounded below. Using the continuity of the mapping
(y15 y2)— inf(y,, »,) one easily sees that inf(/,./,) € L whenever /, and /,
are in L. Therefore, considering the decreasing net of infimums of finite
subsets of L we derive from what precedes that inf(L) € L since L is closed.

(5) If fis continuous at X, then
(0. 1) E QU %) (5,1) € Q(—f; ).

Indeed, let (—5,7) be a point in Q(f; ) and let L be a neighbourhood of /
in F. There exists a neighbourhood X, of ¥ in E, a neighbourhood Y, of f(¥)
in F, a neighbourhood V| of —f in F and a real number ¢, > 0 such that

(e, Y+ t(iwt X L)) Mepi f +O
or
e+ mw)—plEL—F,

for all (x.y)E (X, XY,)Mepif, t€]0.g[, w€V,. By arguments of
continuity, there exist a neighbourhood X of ¥ in E with X< X, a
neighbourhood V of ¢ in E with —V c V,, and a real number £ > 0 with
€ < g, such that

X+ 10, efVaX, and X+ ]0, el Y,.
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If we put Y=—Y,, we obtain for all (x, y) € (X X Y)Nepi(—f), tE€ |0, ¢]
and v € V that
(=) + w) — y]

=t (=)= flx+ )]

€t flx) = flx+ )| - F,

=t [f((x+ )+ 1(=v)— flx+w)| = F,

cL—-F,
or

((x, )+ t({v} X L) Nepi(—f) = @

and hence (7,71)€ Q(—f; %). So, the assertion is proved for the reverse
implication derives from arguments of symmetry. [

In order to give a condition under which the set Q(f; X) is convex, we
recall the extension of Penot and Thera of the notion of lower semi-
continuity to functions taking values in ordered topological vector spaces
(see [25]).

3.1. DeFINITION. Let fbe a mapping from E into F' and let X be a point
in E with f(¥) € F. One says that f is lower semi-continuous at X if for each
neighbourhood Y of f(¥) in F there is a neighbourhood X of X in E such that

SX)cY+F,,
where F°, = F_ U {+0}.
3.2. PrROPOSITION. Ler f be a mapping from E into F* with f(X) € F. If f
is lower semi-continuous at x, then Q(f; X) is a convex cone in E X F.

Proof. Let us begin by proving that Q(f; X) is a cone. Let 1 be a positive
real number, let (7, ) be a point in Q(f; %) and let L be a neighbourhood of
Alin F. The set L,=A"'L is a neighbourhood of 7 and hence there exist a
neighbourhood X of X in E, a neighbourhood Y of f(X) in Y, a real number
&, > 0, and a neighbourhood V', of © in E such that

(s y) + (ot X Lo)) Mepi f # @

for all (x, y)E (X X Y)Mepi f, tE |0, ¢, and v € V. Therefore, if we put
V=2V, and ¢ = 1~ '¢,, we obtain

(6 ») +1({o} X L)) Nepi [+ 2
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for all (x, ) E(X X Y)Nepi f, t € |0.¢[. v € V and hence A(%, ) € Q(f; %),
that is, Q(f: %) is a cone. Now let (7,./,) and (7,,],) be two points in
Q(f;x) and let L be a neighbourhood of l_,+l-, in F. There exist a
neighbourhood L, of /, in F and a neighbourhood L} of I, in F such that
L,+LicL. So there are a neighbourhood X, of ¥ in E, a normal
neighbourhood

Yi=(Y,+F )N (Y, —F,)

of f(x) in F, a real numer ¢ > 0, and a neighbourhood V, of ¥, in E such
that

((x, »)+ t({v, ) X L) Mepi f #+ B,
that is,
t'fx+w)—y|EL ~F,

for all (x,p)E X, XY,)Nepif, t€]0,¢[ and v, €V,. Consider a
neighbourhood L, of [, in F, a real number ¢, > 0 and a neighbourhood Y,
of f(x) in F verifying

L,cL) and Y.+ 10,6 LY. (1)
Then, since f'is lower semi-continuous at % and (7, /,) € Q(f %), there exist

a neighbourhood X of x in E, a neighbourhood Y of f(¥) in F, a positive real
number ¢ < inf(e,, ¢,) and a neighbourhood ¥, of © in E such that

X+10,e[V,cX,. Ycv,. )
SX+ 10, el V)oY, + F,
and
S+ ) —ylEL,—F, 3)

for all (x. p)E (X X Y)Nepi f, t€]0, ¢ and v, € V,. Therefore, for every
(x, Y)E (X X Y)Mepi f, every v, € V, and every ¢ € |0, ¢ relations (1), (2),
and (3) imply that

fix+w,)eyY, +F,
and
fix+tw)€Ey+tL,—F, cY ~F_,
which implies that f(x + rv,) € Y, and hence

(x+tv,, f(x+w,))EX, XY,)Nepi f.
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Therefore, for all (x, yY)E(X X Y)Nepi f, t€ ]0,¢[ and v, + v, EV, + V,
with v, € V|, and v, € V,, we derive from the relation

U fx 4w+ ty) =y =t S((x + y) + 1vy) — fx + 1,)]
+t7 S+ wy) =yl
that
N fe+w, +wy)—y]EL+L,—F, cL—F,

and hence (7, + 5,,1, + 1,) € Q(f; %) and the proof of the proposition is
finished. 1

Remark. If F=R and if fis directionally lipschitzian at ¥ in the sense of
Rockafellar (see Remark 2 following the definition of Q(f; X)), then even if /
is not lower semi-continuous at X the cone Q(f; X) lies between the tangent
cone T(f; ¥) and its interior for in this case (see Rockafellar [21])

I(f; %) = int , ,(T(f} X))
and
I(f;5)c ;%) cT(f;%). 1

More generally we can establish that if int(F, ) # @, then the cone Q(f; X)
is convex and it can be derived from I(f; X).

3.3. ProposITION. If int(F, )+ @, then for every v € E we have

I(f; %)= int[Q.(f; X)].
where

I(fiX)={IEF|({.])EIf; %)}
and

QfiX)={lEF|(v.))EQ(fi X)}.

Proof. First of all let us note that the set /,(f; X) is open since I(f: X) is
open. Therefore, since I(f; X) c Q(f; X), we have

I{f; X) cint[QAS; %)] for every # € E.

Now let / be a point in int[Q(f; ¥)] and let W be a circled neighbourhood of
zero in F verifying W= (W + F, )N (W — F. ) and such that (7, /) € Q(f; ¥)
for every € I + W. Choose two points

ae(+wW)Nn({—int(F,)) and bE @+ W)Nn({+int(F,)).
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Ifweputc=2""(a+/{)andd=2""(a + c). then we have d € |a,c| [+ W,
where la, c| denotes

la. ¢| = (a + int(F,)) N (c —int{F ,)).

So (0, d)€ Q(f, X} and hence, since |a,c| is a neighbourhood of d in F,
there exists a neighbourhood V of  in E and a real number ¢ > O such that

tflx+w)—p| € la, e —F,
for all (x, y)€ (X X Y)Mepi f. v € V and ¢t € |0, ¢|. Therefore we have

' flx+w)y—ylel-F,

or
(x,v)+Hv.)Eepi f

for all (x, y)E (X X Y)Nepi f, t€]0,¢[ and (v,/) € V' X |c, b and hence
(&, I € I(f; X), which proves the proposition. §

3.4. CorOLLARY. Let f be a mapping from E into F* and let X be a point
in E with f(X) € F. If in(F, )+ @. then we have

(i) I(fiX)+@ if and only if Q (/2 X)+ @,
(i) Q.(fix)=cl(I,(f-%)) for each v € E:

(iii) Q(f; X) is a convex cone.

Proof. Since I(f: %)< Q(f; X). I.(f;X)+# @ implies that Q,.(f:X)#@.
Now let us suppose that Q,.(f: %) # @. As

Q.(f1 ) +int(F,) < Q.S ).

we obtain that int(Q,(f; ¥)) + @ and hence according to Proposition 3.3 the
cone [, (f; X) is nonempty, and assertion (i) is verified.

Since Q. (f:X) is convex and closed for each v € E (see Remark 3
following the definition of Q(f; X)) assertion (ii) is a direct consequence of
(i) and of Proposition 3.3.

To show (iii) we may suppose that Q(f; X) is nonempty. Let (v, k) and
(w, I) be two points in Q(f;x) and let o and § be two non-negative real
numbers with a + = 1. According to (ii) there exist two nets (k;};., and
(!)jes in F such that

(v, k;) € I(f; X) and (w, ) EI(f; X) for every j€J
and

limk, =k and lim/ =1
jedJ jed
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Moreover it is not difficult to see that I(f; %) is convex. So we obtain
(av + Bw, ak; + Bl;) € I(f; x) for every jE€J
and hence according to (ii)
(av + fw, ak + Bl) € Q[ %)
which finishes the proof. |

Taking Proposition 3.2 and Corollary 3.4 into account we are naturally
led to define the directional pseudo-subderivative in the following way.

3.5. DEFINITION. If f is a mapping from E into F* with f(X) € F, we
shall call directional pseudo-subderivative of f at x the mapping / N(x; -) from
E into F defined by

SOE v)=inf{l€ F|(v,]) € Q(f; ¥).

Remarks. (1) The relation [ T()?; v) < fO(%; v) always holds and hence
if f verifies tangential condition (T,), f7(¥; -) takes its values in F".

(2) If fis lower semi-continuous at x or if int(¥, ) # &, then according
to Proposition 3.2 and Corollary 3.4, SP(x: ) is a sublinear mapping from E
intoF. 1

3.6. LEMMA. Let fand g be two mappings from E into F'. If f and g are
semi-continuous at X € domfMNdom g or if f or g is continuous at X with
respect to dom fMdom g, then for all (7,1,) € Q(f; %) and (7,1,) € T(f; X)
we have (7,1, +,) € T(f + g: %).

Progf. Let V be a neighbourhood of ¢ in E and let L be a neighbourhood
of I, + I, in F. There exist neighbourhoods L; of I, i=1, 2, in F verifying
L, +L,cL. Then, according to the definition of Q(f; X) there exist a
neighbourhood X, of X in E. a neighbourhood Y, of f(x) in F, a real number
g, > 0 and a neighbourhood V| of & in E with V| < v such that

(6 ») +1(fet X L)) Nepi f # & (4)

for all (x,y,)EX XY, )Nepif, t€]0,¢| and v € V,. Taking now the
definition of 7(g; ¥) into account we can find a neighbourhood X, of x with
X,c X,. a neighbourhood Y, of g(x), and a positive real number & with
€ < &, such that

((x, y2) +1(Vy X Ly))Mepi f # @ (5)

for all (x,y,)EXXY,)Nepig and € |0,e[. With the help of the
assumptions it is not difficult to see there exist a neighbourhood X of x with
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X < X,NX,, a neighbourhood Y of f(x) + g(x) such that for each (x,y) €
(X X Y)Y epi(f+ g) we can write y =y, +y, with (x,y,)E€E X X Y,)Nepif
and (x,y,) E (X X Y,)Nepig. So for each (x, ) E(X X Y)Nepi(f+g) and
t € |0, gf, according to relation (5), there exist v € V', c V and [, € L, such
that

gx+w) y + .
But relation (4) implies that there exists /, € L, such that
Sx+w) <y +t,
and hence
(f+gx+)<y+ul, +1y)
with [, + [, €L, + L, < L. Thus it follows that

(5, ) + V' X L)) Nepi(f + g)+ @

and the lemma is proved. Wi

Let us also establish another lemma which will be used in the sequel.

3.7. LEMMA. Let f be a mapping from E into F' with f(X)€EF and
verifying tangential condition (T,) at X. We have

sup{dv |4 € L(E, F). A(-) < fO& ) < Sl v) < fO(F v)
forallvEE.

Proof. Let A be an element in L(E, F) verifying A(w) < fO(x: w) for all
w€ E and let (7, /) be any point in T(f; X). There exists a net (v;./;);c, in
O(f. X) converging to (7,1) in E X F. Also for each j € J we have

A(Uj) < fD(f: v} < lj
and hence
A(f) = lim A(v,) <lim [, = [,
jeJ jeJ
Thus it follows that
sup{di| A € L(E, F), A(-) < SU& )} < (%5 )
and the lemma is proved. 1

Let us recall now the following result of Zowe [33].

3.8. PROPOSITION. Let f and g be two convex mappings from E into F".
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If there is a point z € dom f M dom g such that f is continuous at z, then for
each x, € dom f M dom g we have

oS + 8)(xo) = af (x,) + 98(x,),
with the convention ¢ + B = @ for every subset B of L(E, F).

We can now establish our result concerning the subdifferential of the sum
of two mappings.

3.9. PROPOSITION. Let f and g be two mappings from E into F* such that
S and g are semi-continuous at x € domfdomg or such that f or g is
continuous at X with respect to dom M dom g.

(i) For every v € E we have
f + @& )< fOF v) + g% v).

(ii) If in addition f and g verify (T,) at X, if f verifies (T,) at X and is
lower semi-continuous at % and if there is a point ¥ € dom f5(%; )N
dom gl(%; -) such that SO ) or gT(f; -) is continuous at v, then

of + &)X) < gf (%) + 2g(x).

Progf. Part (i) is an immediate consequence of Lemma 3.6. To show (ii)
we may suppose that (f + g)T(X; -) takes its values in F°, for otherwise
o(f + g)(x)=g. If for every mapping s from E into " we denote by s, the
mapping from E into F* defined by s,(0) =0 and s,(v) = s(v) if v # 0, then
the mapping s, is sublinear whenever s is sublinear. Therefore, it follows
that the mappings (f + g)}(%;-), f5(%: -) and g{(%: -) are sublinear. Thus
using assertion (i), Propositions 3.2 and 3.8 and Lemma 3.7, one obtains the
result of (ii). N

Remarks. (1) The result of (ii) is still true if, instead of assuming f is
lower semi-continuous at %, we assume the cone Q(/; X) is convex.

(2) If int(F,)+# @, then according to Corollary 3.4 the assumption
that f'is lower semi-continuous at ¥ is superfluous. So if /'is a function taking
values in R* and if fis directionally lipschitzian at ¥, we find the inclusion
formula about the subdifferential of a sum of two extented real-valued
functions of Theorem 2 of Rockafellar [22]. 1

Consider now the case where f'is strictly compactly lipschitzian at x.

3.10. PROPOSITION. Let f be a mapping from E into F which is strictly
compactly lipschitzian at X. Then f verifies tangential conditions (T,) and
(T,) at X and

& v)= % v)  forall vEE.
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Progf. Condition (T,) is a direct consequence of equality f°(%;-)=
f1(%; -) in Proposition 2.5. To show that condition (T,) and the equality of
the proposition are verified it suffices to show T(f;X) < Q(f; %). for the
reverse inclusion is always true. Suppose there exists a point (7, /) in T(f; X)
which does not belong to Q(f;X). According to the definition of Q(f; x)
there are an open neighbourhood L of / in F, nets (xjs ¥))jey in€pi fo (1)ies
in |0, o[ and (v;),., in E converging respectively to (%, f(X)), zero and &
such that

(5 + g,y + 1) Eepi f
for every [ € L and every j € J. So we have
S+ ) — | €L —F,
for every j € J and hence
S+ ) — fx)|€L-F,

for every j€J since p;> f(x;) and ;> 0. Since f is strictly compactly
lipschitzian at X, there exists a subnet

el Kaiy + tain ) = [ o) Dies

which converges to some point z € F. So using the remark following
Definition 2.3 we obtain that

z= lllgl t;(l,-,[f(xn“-, Flan0)— f(xam)]
= l}g‘ t;(li)[f(xa(i) + iy Vaiiy) — S Xai)]

and hence that z¢& L —F,. But since (7, [)E T(f: %), according to
Proposition 2.5 we have f°(x; &) < . So it follows that

z= 1,151 t;(li)[f(xa(i) + i 0) — f(xa0)] € o5 0)—F, .

which is in contradiction with the definition of f°(%; 7). 1
Let us study the case where f is convex.
3.11. PROPOSITION. If f is a convex mapping from E into F° which is

continuous on a neighbourhood of X in E, then f verifies tangential conditions
(T,) and (T,) at x.

Proof. Denote by R(f;x) the set of all (v,l/) € E X F for which there
exists a real number & >0 verifying (¥, f(¥)) + |0, ¢[(v, ]) € epi f. Since



SUBDIFFERENTIALS 339

condition (T,) is an immediate consequence of Proposition 2.7 and of the
nonvacuity of the subdifferential ¢, f(x) (see Corollary | of Theorem 1 of
Zowe [33] or Theorem 6 of Valadier [31]), then according to Remark 2
following Proposition 1.2 it is enough to show

R(f;%) < Q(f; X).

Let (. 7) be a point in R(f; ¥) and let L be a neighbourhood of [ in F. There
exists a real number £ > 0 such that

(T f(E D)~ f(R)EI-F,

for every ¢ € |0, ¢[. Since f is continuous on a neighbourhood of ¥, there is
a € 10, ¢] such that fis continuous at the point ¥ + af. So, as

a '[f(X+ab)~ f(¥)|EL-F,,

there exist a neighbourhood X of X in E and a neighbourhood V of # in E
verifying

a ' f(x+ar)— f(x)]EL—F,

for all x€ X and v € V. Therefore, for every (x, ¥) € (X X Y)Mepi f. every
t€ 10, a| and every v € V we have

N fx+w)y—-ylertfx+ ) - fx)|—F,
ca '[f(x+av)— f(x)] - F,
clL—-F,
and hence (7, 1) € Q(f; %).

Remark. 1If the order intervals of F are compact and if the lattice
mapping of F defined by x— sup(x, 0) is continuous, then the preceding
proposition can also be seen as a consequence of Proposition 3.10 above and
of Proposition 1.9 of Thibault [27].

4, COMPOSITION WITH A STRICTLY DIFFERENTIABLE MAPPING

We shall begin by studying the case f o 4 where [ is a convex mapping
and 4 is a continuous linear mapping.

4.1. PROPOSITION. Let A be a continuous linear mapping from a
topological vector space G into E and let f be a convex mapping from E into

40986/2-3
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F* with f{AX) € F. If there is a point T € E such that [ is continuous at AT,
then

“(f o A)=f(AX) o A = |T o A | T E &f (A5}

Progf. The proof follows an idea of Rockafellar |22] which consists to
derive composition formula from sum formula. Define two convex mappings
g, and g, from G X E into F* by putting

gi(x.1)=0 if yp=Ax and gx, 1) =+00 otherwise
and
g(x, ¥»)=f(») for all (x,EGXE.

Set g = g, + g,. Since f'is continuous at 47, then g, is continuous at (7. A7)
and (7,4A7)€dom g,Ndom g,. So as (% Ax)E dom g, Ndom g,,
according to Proposition 3.6 we have

6g(%, AX) = ég (X, AF) + 6g,(F, AX). (6)

Now let us characterize the three sets that appear in relation (6). For each
continuous linear mapping 7 from G X E into F we shall denote by T’ and
T the continuous linear mappings from G into F and from E into F defined
by T(x,y)=T'(x)+ T"(y) for all (x,y)E G X E and we shall write T =
(T'.T"). We claim

g AX)={TEL(GXE.FY|T' +T'c A€ &(f o A) ).
Indeed, we have T € dg(x. AX) if and only if
T(x, y) — T(X. AX) < g(x, y) — 8(X, AX)
for all (x, y) € G X E. hence if and only if
T'(x)+ T" o A(x) —T(X) — T" c A(X) < [ 0 A(x) — [ o A(X)
and hence if and only if
T + T" o A€ &(f o A)(X).
One shows in a similar way
8g, (X, AX)= {TE L(GX E,F)|T' + T" o A =0}

and

3g,(%, AX) = {TEL(GX E,F)| T' =0 and T" € 8f (4%)}.
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Let 7" be an element in J(f o A)(X). According to relation (6) and the above
characterizations of the subdifferentials appearing in relation (6), there exist
T/ €L(G.F), T/ EL(E,F)with T{+ T{ oA =0 and Ty € gf (4x) verifying

(T".0)= (T}, T} + T}).
[t follows T' = T3 o A and hence
A(f o A)x)c df (AX) o A.
As the reverse inclusion is obvious, we obtain the desired equality.

Now let us extend the definition in the remark following Proposition 2.5 of
a strictly differentiable mapping to the case where the space of definition is
not necessarily normed (see [22]).

4.2, DEFINITION. A mapping g from a topological vector space G into £
is said to be strictly differentiable at a point X € G if there are a continuous
linear mapping Vg(x) € L(G, E) and a mapping r from [0, +o0| X G X G
into E such that

glx+w)= gx)+tVgxXw +tr(s x; v)
for all (£, x; )€ |0, 0] X G X G and

liff)l rt, x;w)y=0 forall ve€G.
I3

W

Remark. It is not difficult to see that a mapping g is strictly differen-
tiable at a point X if and only if it is strictly compactly lipschitzian at ¥ with
a mapping K (see Definition 2.3) taking values in the set of singletons of E.

4.3. LEMMA. Let g be a mapping from a topological vector space G into
E which is strictly differentiable ar X with derivative Vg(X) = A and let f be a
mapping from E into F* with f(g(x)) € F. For every (0, ]) € G X F such that
(A, 1) € Q(f; g(x)) we have (7,1) € Q(f o g %).

Proof. Suppose (A7,1) € Q(f; g(x)) and let L be a neighbourhood of /
in F. There exist a neighbourhood Z X Y of (g(x), f o g(X))in £ X F, a real
number &, > 0 and a neighbourhood U of A7 in E such that

((z, ») + t({uy X L)) Nepi f + S,
that is,
t7 ' fz+w)—y|eEL-F, (7
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for all (z, y)E(Z X Y)Mepi f, t € |0.¢| and u € U. As (see Definition 4.2)

lim r(f, x;w)=0
1o

X=X

Wl

and that g is continuous at X, there exist a neighbourhood X of ¥ in G, a
positive real number ¢ < ¢, and a neighbourhood ¥ of ¢ in G such that

gX)cZ and AWM+ (0, e[ X X X V)< UL (8)

So for all (x, EMAXXY)Nepi(fcog) t€1]0.¢l and v €V, since
(g(x) »)E€(Z X Y)Y epi f. we have according to relations (7) and (8)

1 foglx+w)—yl=t""flglx)+H{Av + rt. i) — »|EL - F,

and hence (7, /)E Q(f o g: 5). 1

We can now state the following result.

4.4. PROPOSITION. Let g be a mapping from a topological vector space G
into E which is strictly differentiable at X with derivative Vg(X) = A and let f
be a mapping from E into F' with f(g(X)) € F. Then

(i) forevery vt €G
(f o @)l(F )< (f o g)7F ) < S g(®): Av).

(ii) If in addition f verifies (T,) at g(X), if [ is lower semi-continuous
at g(xX) and if there is a point ¥ € G such that f"(g(%): -) is continuous at
AT, then

&S o g)X) = af (8(X)) o 4.

Proof. Part (i) is a direct consequence of the preceding lemma and of
Definition 3.5. For (ii) it suffices to repeat the arguments of the proof of
Proposition 3.9 and to apply Proposition 4.1 to the mapping ¢ ¢ 4 at zero
where ¢ is defined by @(y)= f"(g(%); ») if y# 0 and ¢(0)=0 by using
Proposition 3.2 and Lemma 3.7. 1§

Remarks. (1) Assertion (ii) still holds if instead of assuming f is lower
semi-continuous at g(¥) we suppose the cone Q(f; g(¥)) is convex.

(2) If int(F,)+# @, then (as in Remark 2 following Proposition 3.7)
the assumption that f is lower semi-continuous at g(¥) is superfluous.
Moreover in this case condition (T,) at g(¥) is according to Corollary 3.4
equivalent to

clp (S5 g(X)) = T(S; g(X)).
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So if f takes values in [R* and if it is directionally lipschitzian at X, we find

in

21

22.

23.

24.

clusion formula of Theorem 3 of Rockafellar [22].
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