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Abstract Pancreatic cancer is one of the most lethal malignancies. Significant progresses
have been made in understanding of pancreatic cancer pathogenesis, including appreciation
of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description
of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and
identification of major genetic and epigenetic events and the biological impact of those events
on malignant behavior. However, the currently used therapeutic strategies targeting tumor
epithelial cells, which are potent in cell culture and animal models, have not been successful
in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to
its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to
pancreatic cancer development and progression. Improved understanding of the dynamic
interaction between cancer cells and the stroma is important to better understanding pancre-
atic cancer biology and to designing effective intervention strategies. This review focuses on
the origination, evolution and disruption of stromal molecular and cellular components in
pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis.
Copyright ª 2015, Chongqing Medical University. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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Introduction

Pancreatic cancer is one of the most lethal malignancies
with a 5-year survival rate below 5%.1,2 Although surgery
remains the best choice for pancreatic cancer treatment,
most cases are diagnosed at an advanced stage, making
patients poor candidates for surgical treatment.3e6 Major
reasons for the dismal prognosis for pancreatic cancer
include lack of early appreciable symptoms, tendency of
rapid local or distant metastasis, and intrinsic resistance to
conventional chemotherapeutics.4e7 Because effective
systemic therapy capable of controlling the aggressive
pancreatic cancer biology is currently lacking, the need for
a better understanding of detailed mechanisms underlying
pancreatic cancer development and progression is
urgent.3,8e10

Recent studies on pancreatic cancer genetics and epi-
genetics have led to the identification of notable genetic
alterations, such as K-ras, p53, Smad4, and p16.11e16 These
signature genetic events, combined with accompanying
histopathological alterations, suggest a sequential trans-
formation roadmap of pancreatic cancer from normal
pancreatic epithelium to increasing grades of pancreatic
intraepithelial neoplasia to, ultimately, invasive pancreatic
adenocarcinoma.17 However, targeting these signature ge-
netic and epigenetic alterations has not resulted in useful
preventive and/or therapeutic modalities in clinic, while
gemcitabine remains the first-line chemotherapeutic agent
for pancreatic cancer.3,18

Recently, paradigm of pancreatic cancer research has
shifted from parenchyma to stroma.19e21 Evidently, tumors
with identical germline mutations exhibit diverse forma-
tions of stroma and the degrees of stromal reaction predict
aggressive phenotype.11e14 In fact, histological hallmark of
pancreatic cancer is its pronounced desmoplastic reactions
(Fig. 1). In general, pancreatic cancer stroma could account
for more than 90% of the total tumor volume. Many
Figure 1 Pancreatic cancer stroma. Shown are tissue sections o
cancer. The mouse pancreatic cancer is from a L-KrasG12D/þ; L-p5
arrows). In human pancreatic cancer, FOXM1 is highly expressed in
more information).
signaling pathways have been proposed to mediate in-
teractions between cancer cells and stroma.21,22 Identifi-
cation of the pivotal role that the stroma plays in
pancreatic cancer development and progression has led to
the development of potential targeted therapies for
pancreatic cancer, some of which appear to be promising
and exhibit synergistic efficacy in combination with gem-
citabine.18 This review focuses on the origination, evolution
and disruption of stromal molecular and cellular compo-
nents in pancreatic cancer, and their biological effects on
pancreatic cancer pathogenesis.

Pathogenetic basis of pancreatic cancer

Histopathological studies on pancreatic neoplasms have
identified three major precursor lesions, which have the
potential to evolve into highly malignant and invasive
pancreatic cancer (PDAC): pancreatic intraepithelial
neoplasia (PanIN), mucinous cystic neoplasms (MCN), and
intraductal papillary mucinous neoplasms (IPMN).23,24 PanIN
is the most common precursor pancreatic lesion.25 It is
believed that the precursor lesions evolve step-wisely into
invasive pancreatic cancer.17 This PanIN-to-PDAC progres-
sion model has been supported by thorough genetic ana-
lyses and molecular profiling studies.26,27

Mutational activation of K-ras is the most notable
oncogene identified in pancreatic cancer cells. Although
occasionally occurring in normal pancreatic tissue and only
about 30% of pancreatic cancer lesions at the earliest
stage,28 the frequency of K-ras activation increases as the
disease progresses and is found in nearly all pancreatic
cancer cases.29 Other major genetic alterations include
inactivation of tumor-suppressive genes, e.g., p16/
CDKN2A, TP53, and SMAD4. Most recently, a landmark study
of sequencing of 23,219 transcripts representing 20,661
protein-coding genes in 24 pancreatic cancer cases has
detailed a large number of genetic alterations (an average
f both mouse (left panel) and human (right panel) pancreatic
3R172H; pdx1-Creþ (KPC) mouse (stroma is indicated by black
the invasive lesion (indicated by a red arrow, see Ref. 10 for
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of 63) and a core set of 12 signaling pathways and processes
that have an altered gene expression in 67%e100% of
pancreatic cancer cases.30

However, identification and experimental validation of a
tremendous number of molecular events and aberrant
activated signal transduction pathways have failed to be
translated into the clinic as either reliable early detection
markers or effective therapies for pancreatic cancer.31e39

Arguably, both malignant cells and stroma are responsible
for the extreme lethality and general therapy resistance of
pancreatic cancer, and their highly complex interplays are
as important.20,21,40 Knowledge of the cancer cell paren-
chyma and surrounding stroma as well as the molecules and
signaling pathways that mediate their interactions will
improve our reevaluation and optimization of current
therapeutic strategies for pancreatic cancer. Those in-
teractions are further subject to temporal and spatial
changes during pancreatic cancer progression. Therefore, it
is very difficult to simplify what the functions of any
particular molecules and/or cells are in the tumor stroma
(Fig. 2).
Figure 2 Pancreatic cancer progression. Pancreatic cancer
with distinct desmoplasia differs from normal tissues struc-
turally and functionally, leading to imbalanced oxygen perfu-
sion, radical generation and growth factor production. This
extremely chaotic tumor environment (“Mess”) causes the
majority of tumor cells to die (“Miss” in action) and only few to
survive cellular selection and adaptation through genetic and
epigenetic changes. The surviving tumor cells with new genetic
and epigenetic makeup proliferate and induce vascular for-
mation, leading to an increased tumor size (“Mass”). The cycle
repeats and tumor cells become more malignant, invasive and
metastatic. The temporal and spatial changes of tumor cells
and their surrounding stroma impose tremendous problems for
designing effective therapeutic strategies.
Biology of pancreatic cancer stroma

It is understandable that initiation and progression of ma-
lignant cells are not fully determined by the molecular
genetic determinants of cancer cells.40 Histologically, a
tumor consists of far more than a collection of homogenous
cancer cells; it also includes the stroma, the extracellular
and cellular tissue framework that surrounds and interacts
with cancer cells.40 Our failure to eliminate tumors thera-
peutically by targeting those events in the clinic is at least
in part due to our lack of detailed appreciation of the role
of tumor cell microenvironment in tumor pathogenesis and
therapy resistance. There are many lines of evidence to
support the pivotal role of stroma in pancreatic cancer
development and progression.40

Normal pancreatic tissue suppresses pancreatic tumor
formation. Physiologically, pancreatic stroma is essential
to maintain pancreatic tissue homeostasis, as reflected by
reciprocity among the cells in the pancreas and the sur-
rounding microenvironment via communication with each
other and the extracellular matrix (ECM) via junctions, re-
ceptors, hormones, and other soluble factors.40 Also,
normal stroma may protect non-malignant pancreatic cells
from developing into malignant cells. For example,
pancreatic ductal hyperplasia, commonly considered a
precancerous condition or carcinoma in situ, precedes
pancreatic carcinoma.41 In fact, autopsy studies have
shown that around 30% of cases harbor ductal hyperplasia in
pancreatic tissue in those presumably having no malignant
pancreatic diseases.41,42 Although pancreatic ductal hy-
perplasia possesses genetic alterations, some of which are
even more chaotic than those in pancreatic cancer cells, it
does not transform into malignancy in most cases. Given
the vital impact of the stroma on pancreatic cancer
development as well as the similarities between organ
development and carcinogenesis, it is reasonable to state
that alterations of the stroma are actively involved in
pancreatic cancer development and progression.

Several studies have supported the suppressive impact
of normal stroma on pancreatic cancer. In a three-
dimensional tissue culture system model, co-culture of
pancreatic cancer cells with “normal” stromal cells
reduced the total number of tumor cells, indicating the
protective effects of normal stroma against pancreatic
cancer development.43,44 Similarly, the normal adipose-
derived stromal cells inhibited pancreatic cancer cell
viability and proliferation in vitro and pancreatic tumor
growth in an animal model.45 Therefore, normal stromal
cells could be potentially used as cytotoxic agents targeting
malignant ductal cells for pancreatic cancer treatment.

Pancreatic inflammation regulates pancreatic carci-
nogenesis. Chronic pancreatitis is a well-defined disease
induced by repetitive acute injury or a self-perpetuating
inflammatory process.46e49 Constant tissue damage in
cases of this disease leads to excessive stromal formation
and, ultimately, exocrine insufficiency.50 Chronic pancrea-
titis and pancreatic cancer have the similar property in that
they bear large portions of the stroma. Epidemiological
studies have provided strong evidence that chronic
pancreatitis is a major risk factor for pancreatic cancer.51

In one prospective study, pancreatic cancer incidence was
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strikingly 27-fold higher in patients with chronic pancrea-
titis than in disease-free individuals in a common popula-
tion.52 Patients with topical pancreatitis have a 100-fold
increase in risk of pancreatic cancer, and onset of malig-
nant transformation in such patients is approximately 14
years earlier than in patients with sporadic pancrea-
titis.51,53 A recent study has further confirmed the link
between pancreatic inflammation and pancreatic cancer.54

The pancreatic stroma is relevant in hereditary
pancreatic cancer. More than 10% of pancreatic cancer
cases are hereditary,11 and most of those cases result from
progression from hereditary pancreatitis to chronic
pancreatitis to, finally, pancreatic cancer. Previous studies
demonstrated that an Arg-His substitution at residue 117 of
the cationic trypsinogen gene (PRSS1) was associated with
the hereditary pancreatic cancer phenotype. However,
despite the presence of mutations of PRSS1 in all 10 trillion
human cells of a human body, they only cause hereditary
cancer specifically in the pancreas.55 Given the fact that
tumors caused by such mutations not only are tissue- and
individual-specific but also are formed from just one or a
few cells in pancreatic tissue, it is logical to believe that
aberrant stroma has a deciding impact on pancreatic
carcinogenesis.

Tumor-associated stromal cells promote pancreatic
cancer progression. Epidemiological and histological ana-
lyses described above strongly support the potential for the
pancreatic stroma to promote pancreatic cancer develop-
ment and progression, and prompt biologists to seek direct
evidence of it. Hwang et al first identified and isolated
immortalized primary human pancreatic stellate cells
(hPSCs) from fresh pancreatic adenocarcinoma samples.56

In vivo studies showed that hPSCs in conditioned medium
increased pancreatic tumor cell proliferation, migration,
invasion, and colony formation. Furthermore, treatment
with hPSCs in conditioned medium rendered pancreatic
cancer cells more resistant to gemcitabine and radiation
therapy. Co-injection of pancreatic tumor cells and hPSCs
in an orthotopic model of pancreatic cancer resulted in
increased primary tumor incidence, size, and metastasis,
which corresponded with the proportion of hPSCs in the
injections.56 Other group confirmed this finding.57 These
data indicate that stellate cells play an important role in
supporting and promoting multiple aspects of pancreatic
cancer (e.g., proliferation, migration, invasion, colony
formation, and angiogenesis). However, there are many
other studies, which have shown that stromal cells, such as
myofibroblasts and immune cells may be more an inhibitory
than promoting factor to tumor development and progres-
sion.58,59 Understandably, the impacts of stroma on
pancreatic cancer are highly circumstantial, depending on
the temporal and spatial existence and functional statuses
of those stromal components and the malignant cells
themselves.
Origination of pancreatic cancer stroma

The presence of a large amount of stroma in tumor samples
is the most prominent histological feature of pancreatic
cancer, much more so than in other tumor types. Among the
complexity and heterogeneity of pancreatic tumor stromal
cells are: mesenchymal, endothelial, and inflammatory/
immune cells.40 Presumably, different stromal components
restrain or support the growth and metastasis of pancreatic
cancer cells, while the origins of those phenotypically
diverse stromal cells remain a subject of heated debate.40

Clearly defining the sources of pancreatic stromal cells may
help enhance our understanding of stroma functions and
improve our current therapeutic strategies for pancreatic
cancer.60e63 There are four major sources of stromal cells:
1) recruitment of pre-existing stromal cells, 2) trans-
differentiation from quiescent precursors, 3) generation via
epithelial-to-mesenchymal transition, and 4) derivation
from cancer stem cells.

Generation of stromal cells via recruitment of pre-
existing stromal cells. Morphological similarities between
myofibroblasts and pre-existing tissue fibroblasts suggest
that myofibroblasts are derived from those fibroblasts.
Under culture conditions with specific cytokines and growth
factors, such as transforming growth factor (TGF)-b, fibro-
blasts can be induced to express myofibroblast markers and
obtain morphological properties of myofibroblasts.64,65 In
addition to local activation of quiescent stromal cells in
cancerous regions, tumor cells are also able to recruit
stromal cells to adjacent regions and organize them into
tumor vessels.66 Therefore, activating pre-existing stromal
cells may be the initial and most efficient method for tumor
cells to form an extensive stroma.

Generation of stromal cells via transdifferentiation
from mesenchymal stem cells (MSCs). MSCs represent
another potential source of pancreatic cancer stromal
cells.60,67 MSCs are heterogeneous connective tissue pro-
genitors found in various locations, such as bone marrow,
dermis, and adipose tissue.68 Upon secretion of chemo-
tactic factors by pancreatic cancer cells, MSCs may exhibit
innate tropism for those locations, migrate to the cancer
stroma, and exert their multipotent capacity to trans-
differentiate into osteocytes, adipocytes, chondrocytes, or
myocytes.40 Lineage-tracing studies confirmed the function
of MSCs as potential sources of cancer stroma.60,61 Studeny
et al first tested the use of MSCs to induce overexpression of
cytotoxic agents in certain tumors, and found that after
intravenous administration, MSCs were able to integrate
and persist in the tumor stroma of pre-established lung
cancers and suppress the growth of the tumor cells.61

Similar concepts are confirmed in other tumor
models.60,69,70 Also, Karnoub et al reported that tumor cells
recruit MSCs to tumor xenografts54 and are addicted to the
chemokine CCL5 secreted from MSCs for their metastatic
spread.71 The ability of MSCs to travel to solid tumors after
intravenous administration further supports that activated
hPSCs are derived from MSCs.

Generation of stromal cells via epithelial-to-
mesenchymal transition. Myofibroblasts are the most
abundant stromal cells and are actively involved in the
development of pancreatic cancer stroma.64,72e76 However,
recent discoveries that myofibroblasts can be derived from
epithelial cells have provided a new impetus for investi-
gating the processes involved in myofibroblast formation in
the fibrotic and malignant contexts.76e84 Several lines of
evidence support that epithelial cells are important sources
of myofibroblasts in pancreatic fibrosis and cancer.83 First,
epithelium-to-myofibroblast transition can be induced in
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cultured epithelial cells in a number of organ systems.80,82

Second, histopathological analysis revealed that stromal
cells from different tissues shared many characteristics
with epithelial cells derived tissues.81 Third, genetic tests
of malignant tissues have shown that isolated mesenchymal
cells with myofibroblast characteristics were derived from
tumor epithelial cells.76,85 Finally, in a genetic mouse
model of TGF-b-induced pulmonary fibrosis, increases in
the number of myofibroblasts largely resulted from trans-
differentiation from epithelial cells.82

Generation of stromal cells via transdifferentiation
from cancer stem cells. Blood vessels play vital roles in
growth and metastasis of cancer cells.86,87 It is generally
accepted that tumor angiogenesis is the formation of new
blood vessels from existing ones and new circulating
endothelial progenitor cells from bone marrow.88 However,
recent evidences suggest that a proportion of the endo-
thelial cells of blood vessels formed in certain tumors are
derived from the tumors themselves, having differentiated
from stem-like tumor cells.89,90 These findings raise further
questions. Can this concept be generalized to other cancer
types, such as pancreatic cancer? Also, what factors are
engaged in tumor stem cell transdifferentiation into
endothelial cells? Answering these questions could help
improve our designing of new therapies for pancreatic
cancer.40
Regulation of pancreatic stroma formation

Although the biological impact of pancreatic cancer stroma
on tumor cells has been investigated for some time, it is
still too early to develop stroma-eliminating agents that
indirectly target pancreatic cancer before the molecular
mechanisms underlying stromal formation are well under-
stood. Indeed, various autocrine and paracrine loops are
engaged in the process of stromal formation.40 Here we
describe our current knowledge on and the supportive ev-
idence of the contribution of three signaling path-
waysdTGF-b, platelet-derived growth factor (PDGF), and
Hedgehog (Hh)dto the initiation of pancreatic cancer
desmoplastic reactions.

The TGF-b signaling pathway is commonly deregulated
in pancreatic cancer cells. Alteration of this pathway has
an important function in cancer stroma formation. For
example, ligands secreted by tumor cells can activate the
TGF-b pathway in the stromal cells in a paracrine manner,
leading to downregulation of known antitumor factors and
upregulation of protumor factors and resulting in increased
ECM deposition.91 Pancreatic cancer cells overexpressing
TGF-b1 may also promote fibroblast proliferation.92 More-
over, TGF-b can influence angiogenesis directly or indi-
rectly by stimulating the vascular endothelial growth factor
(VEGF) pathway. SMAD4 mutation is the most common ge-
netic event in the TGF-b pathway.30 SMAD4 deficiency
combined with activated K-ras mutation accelerated PSCs
activation and ECM production,93 whereas restoration of
SMAD4 expression suppressed PDAC xenograft tumor growth
in part by modulation of ECM turnover.94,95 Both IL-1 and IL-
6 activate PSC in part via modulation of TGF-b1 produc-
tion,96 and anti-TGF-b1 neutralizing antibody-attenuated
a-smooth muscle actin expression induced by IL-1 and IL-
6.96 Recent study has indicated that TGF-b regulates des-
moplastic responses by carcinoma cells.96,97 This supports
that TGF-b inhibitors have potential as adjuncts to treat-
ment of pancreatic cancer with gemcitabine in that they
eliminate stroma-associated chemoresistance. TGF-b-
based therapeutic strategies for pancreatic cancer are
promising and currently in development, including those
with inhibitors of TGFBR1 and TGFBR2.98,99 LY2157299, a
potent TGF-b type I receptor kinase inhibitor that can
reverse TGF-b-mediated biological activity, is currently
under phase 1e2, study in pancreatic cancer. Researchers
are also examining an antisense oligonucleotide agent
specific to TGF-b2, named AP 12009, in a phase 1e2,
study.100

The PDGF family members are the most extensively
investigated regulators of mesenchymal cell proliferation
and migration during development.101 They are also highly
expressed in tumors and are among the strongest mediators
of desmoplastic reactions.102 Upon stimulation, pancreatic
cancer cells can secrete PDGF into the surrounding micro-
environment and recruit stromal fibroblasts to facilitate
tumor cell growth and migration.103 Furthermore, PDGF is a
required element in division of fibroblasts and confers a
more efficient cell-cycle transition from G1 to S phase in
those cells.104 Soluble PDGF receptor (PDGFR)-IgG signifi-
cantly reduced pancreatic tumor growth by disrupting the
paracrine PDGFR signaling among tumor cells and stromal
fibroblasts.102 Therefore, PDGF plays an important role in
the activation of PSCs and the initiation of pancreatic
desmoplastic reactions.102

The role of Hh signaling pathway in pancreatic cancer
development remains controversial. The Hh signaling
pathway is one of the most fundamental factors in embry-
onic development and takes part in patterning of numerous
tissue structures105 and aberrant Hh signaling is involved in
numerous types of cancer,106 including pancreatic can-
cer.107 Differential expressions of the core components of
the pathway are found in normal pancreatic tissues and
pancreatic cancers.108 For example, expression of sonic Hh
(SHH), a secreted Hh ligand, becomes dysregulated as early
as in PanIN lesions, whereas expression of this ligand is
completely absent from normal human pancreatic cells.107

However, elucidation of the roles of Hh signaling in
pancreatic cancer development is far from com-
plete.107e109 For instance, a paracrine is required for the Hh
pathway in human pancreatic cancer xenograft models and
autochthonous murine pancreatic tumor models, in which
the Hh ligand is produced by tumor cells and the pathway is
activated in the tumor stroma.110,111 Consistently, Bailey
et al reported that expression of SHH increased tumor
growth by contributing to the formation of desmoplasia in
pancreatic tumors; and mechanistically, SHH increased the
differentiation and motility of hPSCs and fibroblasts.112

Conversely, cyclopamine inhibits Hh signaling pathway by
binding to and suppressing SMO, resulting in the depletion
of tumor-associated stroma and increase of the intra-
tumoral concentration of gemcitabine.113 These data indi-
cate that Hh signaling pathway plays an important role in
pancreatic cancer desmoplasia and inhibition of this
pathway may constitute a novel therapeutic strategy.
Indeed, IPI-926, a semisynthetic derivative of cyclopamine,
dramatically depleted stromal components in the pancreas
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and increased intratumoral vascular density. Also, co-
administration of gemcitabine and IPI-926 significantly
enhanced the intratumoral concentration of a gemcitabine
metabolite, produced transient disease stabilization, and
prolonged survival in mice with pancreatic cancer.113

Another study has shown that combination treatment with
cyclopamine and an EGFR inhibitor had a better antitumor
activity than either drug alone.114 Hh inhibitors are now
being tested in treatment of pancreatic cancer in a phase 2
clinical trial.
Clinical significance of stromal markers of
pancreatic cancer

Although various treatment modalities have been devel-
oped and tested for pancreatic cancer, surgical resection
remains the most effective treatment. To that end, great
efforts have been made to identify efficient markers for
detecting pancreatic cancer before it becomes unresect-
able. However, early-stage pancreatic cancer could remain
a “silent” disease in the clinic and the disease only be-
comes apparent after the tumor invades surrounding tissues
or metastases to distant organs.115 In a retrospective re-
view of patients with pancreatic cancer diagnosed by
chance, tumors at the onset of certain subtle symptoms are
still resectable.116 However, the symptoms appeared to be
too nonspecific and vague and opportunities for early
detection are easily missed. Development of efficient
detection methods for pancreatic cancer is an urgent need.

Search for curable pancreatic precursor lesions.
Pancreatic cancer stromal markers are potentially very
significant biomarker for early pancreatic cancer detection
and diagnosis. Normal tissue stroma strictly protects cells
bearing genetic or epigenetic mutations (initiators) from
malignant transformation, while aberrant tissue stroma
may act as a tumor promoter indispensable for the carci-
nogenic process. Because surgical resection generates the
best survival benefits in pancreatic cancer patients, current
screening efforts are mainly directed at individuals with an
inherited predisposition for curable early-stage disease.40

Indeed, screening has identified silent pancreatic
neoplasia in many individuals with strong family histories of
pancreatic cancer.117,118 However, such screening based
solely on identification of genetic or epigenetic mutations
(initiators) will definitely bring with it risk of over-
treatment. Defects in current screening modalities for
pancreatic cancer highlight the importance of screening for
tumor-promoting factors, such as differentially expressed
molecules in the pancreatic tumor stromal environment.

Stromal preponderance in sampled pancreatic tissue is
used for cancer diagnosis. Because of its ability to detect
small preinvasive lesions (w1 cm in diameter), endoscopic
ultrasound is used widely as a screening test for pancreatic
cancer.40 Clinical trials demonstrated that endoscopic ul-
trasound detected more pancreatic cystic lesions (93%)
than did magnetic resonance imaging (81%) or computed
tomography (27%).119 Focal preinvasive lesions evident on
endoscopic sonograms, such as IPMN, are probably most
readily sampled using fine-needle aspiration. However,
because pancreatic cancer is characterized by pronounced
desmoplasia, many pancreatic tumor specimens obtained
using fine-needle aspiration come from the stromal
compartment, making accurate diagnosis difficult.40 Iden-
tification and validation of stroma-related markers of
pancreatic cancer will definitely aid enhancing current
parenchyma-based diagnostic modalities.

Distinctions between normal stroma in the pancreas
and tumor stroma. Arguably, pancreatic stromal samples
can have ample traits sufficient to distinguish malignant
and normal tissue. Although clinical trials are lacking in this
regard of using stromal markers to diagnose pancreatic
cancer, oncologists have done much work in searching for
candidate stromal markers of pancreatic cancer.40 Based on
the finding that interactions among cancer and stromal
cells play critical roles in tumor invasion, metastasis, and
chemoresistance, it is reasonable to believe that the gene
expression profiles of the stromal components in pancreatic
cancer differ from those in chronic pancreatitis and reflect
the interaction of stroma with tumor cells. In a study of
gene expression profiles of pancreatic stromal tissue sam-
ples obtained from patients with PDAC and chronic
pancreatitis, and pancreatic cell lines of stromal origin, 255
genes were expressed at higher levels and 61 genes were
expressed at lower levels in the PDAC samples than in the
chronic pancreatitis samples.120 Binkley et al reported
similar results.121 Distinct gene expression patterns in
tumor and normal stromal samples are reported for other
cancer types, such as breast cancer.122 These studies
demonstrate the potential application of stromal markers
for pancreatic cancer detection.
Development of stroma-targeting therapy

Only about 10% of patients with newly diagnosed pancreatic
cancer are candidates for surgical resection, whereas the
remaining 90% undergo combination treatment including
gemcitabine-based chemotherapy.123e125 However, large
percentage of pancreatic cancers is resistant to gemcita-
bine, while the underlying mechanisms of resistance are
unclear. Evidently, the pancreatic cancer stroma plays
critical roles in gemcitabine resistance of pancreatic can-
cer. In a xenograft pancreatic cancer model with little
stromal formation, the intracellular metabolite of gemci-
tabine is readily detected at a relatively high concentration
and it exerts optimal tumor-suppressive effects.113 In
contrast, in pancreatic tumors in KPC mice, which are
characterized by pronounced desmoplastic reactions, the
metabolite is almost undetectable and has little effect on
tumors.113 Multiple components in the pancreatic tumor
stroma, such as abnormal vasculature and myofibroblasts,
are believed to contribute to chemoresistance. The func-
tional redundancy exists among various signaling molecules
and pathways that regulate tumor stromal formation and
maintenance. Therefore, targeting single molecules would
unlikely be effective in control pancreatic cancer (Fig. 3).

Growth factor receptor pathways. Overexpression of
epidermal growth factor receptor (EGFR) and its ligands is
frequently observed in pancreatic cancer and correlates
with poor prognosis and disease progression.126 Erlotinib is
an orally active small molecule that binds to the ATP-
binding site of EGFR. A phase 3 trial of erlotinib in combi-
nation with gemcitabine produced a small but significant



Figure 3 VEGF inhibitors resistance model. The use of a
VEGF neutralizing antibody (“BVZ” or others) decreases tumor
angiogenesis of and reduces blood perfusion to tumor tissues.
Increased hypoxia and other changes aggravate the stressful
microenvironment in the tumor. The tumor cells counteract by
inducing the expression of critical transcription factors (“TFs”)
like Sp1, which upregulates VEGF expression and renders BVZ
resistance. Permanent resistance to BVZ occurs when other
functionally redundant factors, e.g., IFG-I/R, PDGF/R, EGF/R
and other unknown factors (“XGF/R”), are also unregulated by
the increased expression of Sp1, which is initiated by the
treatment of the VEGF neutralizing antibody.

Pancreatic desmoplasia 139
increase in survival durations in patients with advanced
pancreatic cancer.127 However, the precise mechanisms by
which EGFR inhibitors exert their clinical activity remain
undefined. That EGFR activation produces both chemo-
attraction and stimulation of proliferation of hPSCs sug-
gests a potential involvement of stromal regulation in the
tumor-suppressive efficacy of EGFR inhibitors.102 Howev-
er, a recent phase 3 trial of EGFR inhibitors have shown to
be ineffective, including the use of the monoclonal anti-
body cetuximab in patients with late-stage pancreatic
cancer. Several other clinical trials examining EGFR tyro-
sine kinase inhibitors are under way.40 Therefore, the re-
sults of clinical trials examining EGFR inhibitors seem to be
promising, while the clinical relevance and cost-
effectiveness remains debatable.

On the other hand, hepatocyte growth factor (HGF) is
also overexpressed in 78% of pancreatic cancer cells.128

Mesenchymal cells normally constitute the major source
of HGF, whereas under hypoxic conditions, activated myo-
fibroblasts overproduce HGF and subsequently enhance the
malignant phenotypes of pancreatic cancer cells and
render them resistant to conventional therapy. Preclinical
evaluations suggested that targeting the HGF pathway is of
potential value in pancreatic cancer treatment.40 In addi-
tion, ARQ 197 is a MET receptor tyrosine kinase inhibitor
that is currently being tested in treatment of pancreatic
cancer in a phase 2 trial.40

Angiogenesis and extracellular remodeling. Angiogen-
esis is indispensable to tumor development and progression
and is mainly mediated by the VEGF family of proteins and
receptors. VEGF is overexpressed in more than 90% of
pancreatic cancers, making it an appealing target for
therapy.40 Treatment of other tumor types showed that
VEGF-targeted therapy has optimal antitumor efficacy.129

However, a phase 3 trial in patients with advanced
pancreatic cancer failed to show a survival benefit for
bevacizumab, a humanized monoclonal antibody.130 The
AVITA (BO17706) phase 3 study testing the antitumor
efficacy of the addition of bevacizumab to gemcitabine and
erlotinib in patients with metastatic pancreatic cancer had
similar results.131 Although there are still clinical trials
examining the potential benefits of VEGF inhibitors in
combination with other agents, the data currently available
do not seem to justify their use for pancreatic cancer.

The large gap between experimental data and clinical
reality prompts biologists to explore the underlying mech-
anisms. Olive et al showed that extensive desmoplastic
reactions in pancreatic tumors render blood vessels sparse
and functionally abnormal,113 thus imposing a strong bar-
rier to drug delivery. Therefore, an excessive destruction of
the vasculature would severely compromise the delivery of
oxygen and therapeutics to solid tumors, producing hypoxia
that would decrease the effectiveness of many chemo-
therapeutics. Based on this rationale, a delicate balance
between vascular normalization and excessive vascular
regression is needed, which may confer substantial benefits
to pancreatic cancer patients.8,40

On the other hand, experimental results indicate that
overexpression of matrix metalloproteinases (MMPs) in
pancreatic cancer cells plays an important role in tumor
cell migration and invasion,132 making MMPs ideal candi-
date therapeutic targets for preventing the promotion of
pancreatic cancer progression. However, clinical trials
questioned their effectiveness as potential targets in
pancreatic cancer chemotherapy. Marimastat is a broad-
spectrum synthetic MMP inhibitor (MMPI) that was first
tested in a large randomized phase 3 trial in patients with
advanced pancreatic cancer.40 Inconsistent with preclinical
studies, marimastat, neither alone nor combined with
gemcitabine, improved overall survival durations over that
produced by treatment with gemcitabine alone.133,134 In
another phase 3 trial, investigators studied BAY-12-9566, a
specific inhibitor of MMP-2, MMP-3, MMP-9, and MMP-13, in
patients with locally advanced or metastatic pancreatic
cancer. Disappointingly, interim analysis showed that
treatment with BAY-12-9566 was not superior to that with
gemcitabine but rather undermined its survival benefits.135

Promising preclinical results but contradictory clinical
findings have indicated that the roles of MMPs in cancer
biology are very complex and far from being elucidated
fully. Besides protumorigenic functions, various studies
showed that MMPs could act as tumor suppressors in certain
contexts.40 The circumstantial functions of MMPs as well as
the disappointing clinical trial results cast doubts for future
applications of their inhibitors in pancreatic cancer
therapy.

Other stromal components. The abundance of pancre-
atic tumor stroma and its major implications for cancer
promotion inspired us to identify stromal markers to help
enrich cytotoxic agents in certain tumor compartments.
Secreted protein acidic and rich in cysteine (SPARC) is an
important component of the pancreatic tumor stroma and
has a distinct overexpression pattern.136 Previous studies
found that albumin holds some affinity for SPARC and that
this property may facilitate intratumoral accumulation of
albumin-bound drugs.137 For example, nab-paclitaxel is a
130-nm albumin-bound formulation of paclitaxel particles.
In vivo experiments showed that the pancreatic cancer
stroma enriched the pattern of nab-paclitaxel distribution,
significantly increasing the intratumoral concentration of
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gemcitabine over that with administration of gemcitabine
alone, and partly reversing the innate gemcitabine resis-
tance of pancreatic cancer cells.138 Nab-paclitaxel further
stabilized intratumoral gemcitabine levels by promoting
oxidative degradation of cytidine deaminase, which is the
primary enzyme responsible for gemcitabine metabo-
lism.139e142 Combination therapy for pancreatic cancer
with nab-paclitaxel and gemcitabine is currently under
investigation in a late-stage phase 3 clinical trial.
Conclusions and future directions

Massive stromal formation is a histological hallmark of
pancreatic cancer, making the pancreatic cancer an
outstanding model for exploring the temporal and spatial
interplays among cancer cells and the stroma. Increasing
experimental and clinical evidence indicate that the
pancreatic tumor stroma actively regulates tumor devel-
opment and progression. Clearly, the stroma consists of
highly heterogeneous components, e.g., various cell types,
diverse matrix compositions, and complex signaling net-
works, mediating the initiation, evolution and perpetuation
of the desmoplastic reactions. Evidently, it would be naı̈ve
to judge the stroma as either a promoter or an inhibitor of
carcinogenesis, thus being premature to target the stroma
indiscriminationally as therapeutic strategies. However,
the presence of a unique gene expression profiles within
the stroma suggests that differentially expressed molecules
may be used as detecting markers to aid currently ineffi-
cient parenchyma-based methods of detection, diagnosis
and prognosis. Furthermore, detailed evaluation and vali-
dation of a large number of those stroma-related markers
would help identify potential therapeutic targets. System-
atical studies of the cross-talk between pancreatic cancer
cells and the stroma will further our understanding of
pancreatic cancer pathogenesis and categorizing molecular
pathways for designing more effective preventive and
therapeutic modalities.
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