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This paper presents the explicit expression for matrix right symmetry factor with
prescribed rang and null space. Moreover, the explicit expression for generalized inverse
A(2,3)
T ,S , which is a {2,3}-inverse of A having the prescribed rang T and null space S, is derived.
As an application, two numerical examples are given.
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1. Introduction and preliminaries

It is well-known that the six important generalized inverses: the Moore–Penrose inverse A+, the weighted
Moore–Penrose inverse A+M,N , the Drazin inverse A

D, the group inverse Ag , the Bott–Duffin inverse A(−1)
(L) and the generalized

Bott–Duffin inverse A(+)

(L) are all special generalized inverse A
(2)
T ,S , which is {2}-inverse of A having the prescribed range T and

the null space S. There are a great number of papers dealing with the representation of the generalized inverse A(2)
T ,S and

its applications [3–6]. However, there are hardly any discussions about generalized inverse A(2,3)
T ,S in the literature. So we

continue the work in this area.
The weighted Moore–Penrose inverse is a generalization of the inverse of a non-singular matrix. The weighted

Moore–Penrose inverse is widely used for weighted linear least squares problem, statistics [1], etc. There are a good number
of papers dealingwith the computation ofweightedMoore–Penrose inverse [5,11–13]. Here, by applying the generalized in-
verseA(2,3)

T ,S to theweightedMoore–Penrose inverseA
+

M,N , we give a novel algorithm for theweightedMoore–Penrose inverse.
For the sake of convenience, we first present notations, definitions and lemmas needed in the discussions thatwill follow.

A∗, rank(A), Ind (A), A(i,j,...,k), R(A) and N(A) denote the conjugate transpose, the rank, the index, the {i, j, . . . , k}-inverse, the
range and the null space of a matrix A, respectively; PL,M and PL denote the projector on the space L along the spaceM and
the orthogonal projector on L, respectively; dim L and L⊥ denote the dimension and the orthogonal complement of a space
L; Cm×nr denotes the set of allm× nmatrices with rank r.

Definition 1 ([7]). Let A ∈ Cm×n, the matrix X is a right symmetry factor of A, if AX is a Hermitian matrix.

According to the definition above, we know that the right symmetry factor of A is just A(3).

Lemma 1.1 ([1,2]). For any A ∈ Cm×n,
(a) PL,MA = A⇔ R(A) ⊂ L; APL,M = A⇔ M ⊂ N(A).
(b) N(A) = R(A∗)⊥,N(A∗) = R(A)⊥.
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(c) AA(1) and A(1)A are idempotent matrices;

rank(AA(1)) = rank(A(1)A) = rank(A).

(d) R(AA(1)) = R(A), N(A(1)A) = N(A), R((A(1)A)∗) = R(A∗).
(e) B(AB)(1)AB = B if and only if rank(AB) = rank(B), and AB(AB)(1)A = A if and only if rank(AB) = rank(A).

Lemma 1.2. (1) For anymatrix A ∈ Cm×n, the Moore–Penrose inverse A+ and the weightedMoore–Penrose inverse A+M,N satisfy:
(a) [1] A+ = A(2)

R(A∗),N(A∗);
(b) [8] A

+

M,N = A
(2)
R(A#),N(A#)

= A(2)
N−1R(A∗),M−1N(A∗)

, where M and N are Hermitian positive definite matrices of order m and n,
and A# = N−1A∗M.

(2) For any A ∈ Cn×n, the Drazin inverse AD, the group inverse Ag, the Bott–Duffin inverse A(−1)
(L) and the generalized Bott–Duffin

inverse A(+)

(L) satisfy:
(c) [9] AD = A(2)

R(Ak),N(Ak), where k = Ind (A); in particular, when Ind (A) = 1, we have Ag = A(2)
R(A),N(A);

(d) [10] A(−1)
(L) = A

(2)
L,L⊥
, where L is a subspace of Cn satisfying AL⊕ L⊥ = Cn;

(e) [10] A(+)

(L) = A
(2)
S,S⊥
, where L is a subspace of Cn, S = R(PLA), A is an L-p.s.d matrix, which means that A is a Hermitian

matrix such that PLAPL is nonnegative definite, and N(PLAPL) = N(APL).

In this paper, we firstly propose the explicit expressions for the matrix right symmetry factor with prescribed rang T and
null spaces S. Then, we derive the representation of the generalized inverse A(2,3)

T ,S , which is a {2,3}-inverse of A having the
prescribed rang T and null space S. Finally, we give the application of generalized inverse A(2,3)

T ,S and two numerical examples.

2. Main results

In this section, we firstly derive the explicit expression for matrix right symmetry factor with prescribed rang and null
space.

Theorem 2.1. Let A ∈ Cm×n, T and S be subspaces of Cn and Cm, respectively, with dim(AT ) = dim T = t. Suppose that E
is any matrix satisfying R(E) = T and M is an arbitrary Hermitian matrix satisfying R(M) = AT , then X = E(AE)(1)M is a
right symmetry factor of matrix A and R(X) = T ,N(X) = S if and only if AT = S⊥. Moreover X is independent of the choice of
{1}-inverse (AE)(1).

Proof. IF: Sine R(M) = AT = AR(E) = R(AE), then

AX = AE(AE)(1)M = PR(AE(AE)(1)),N(AE(AE)(1))M, by Lemma 1.1(c),
= PR(AE),N(AE(AE)(1))M, by Lemma 1.1(d),

= M, by Lemma 1.1(a). (1)

Hence AX is a Hermitian matrix, i.e., X is right symmetry factor of A.
From X = E(AE)(1)M we get R(X) ⊂ R(E). Furthermore, we have

t = rank(E) ≥ rank(X) ≥ rank(AX) = rank(M) = dim(AT ) = t, (2)

so we have rank(X) = rank(E) = rank(AX) = t and R(X) = R(E) = T .
Further, from rank(X) = rank(E) = rank(AX), we have

dim(N(AX)) = m− rank(AX) = m− rank(X) = dim(N(X)), (3)

which, together with N(AX) ⊃ N(X), implies that

N(X) = N(AX) = R(AX)⊥, by Lemma 1.1(b),
= (AT )⊥, by R(X) = R(E) = T ,
= S. (4)

ONLY IF: note that X is a right symmetry factor of matrix A and R(X) = T ,N(X) = S. From Lemma 1.1(b), we have

AT = AR(X) = R(AX) = N(AX)⊥ ⊂ N(X)⊥ = S⊥. (5)

On the other hand, from R(X) = T and dim(AT ) = dim T = t , we have

t = dim(AT ) = rank(AX) ≤ rank(X) = dim T = t. (6)

Combining (5) and (6) we get AT = S⊥.
Now, we prove that X is independent of the choice of {1}-inverse (AE)(1).
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Since R(M) = AT = R(AE), there exists some matrix Y such thatM = AEY , therefore, we have

X = E(AE)(1)M = E(AE)(1)AEY = EPR((AE)(1)AE),N((AE)(1)AE)Y = EPR((AE)(1)AE),N(AE)Y . (7)

From N(AE) ⊃ N(E) and rank(E) = t = dim(AT ) = rank(AE), we have

N(AE) = N(E). (8)

Combining (7) and (8), and Lemma1.1(a)we getX = EY . Obviously,X is independent of the choice of {1}-inverse (AE)(1). �

In the following theorems, we consider the construction for the generalized inverse A(2,3)
T ,S , which is a {2,3}-inverse of A

having the prescribed rang T and null space S.

Theorem 2.2. Let A ∈ Cm×n, T and S be subspaces of Cn and Cm, respectively, with dim(AT ) = dim T = t. Suppose that E is
any matrix satisfying R(E) = T and M is an arbitrary Hermitian idempotent matrix satisfying R(M) = AT , then X = E(AE)(1)M
is a {2, 3}-inverse of A and R(X) = T ,N(X) = S if and only if AT = S⊥. Moreover X is independent of the choice of {1}-inverse
(AE)(1).

Proof. IF: From Theorem 2.1, it is obvious that we need only prove that X is {2}-inverse of the matrix A.
SinceM is an idempotent matrix and AX = M by Theorem 2.1, we have

XAX = XM = E(AE)−MM = E(AE)−M = X, (9)

namely X is {2}-inverse of the matrix A.
ONLY IF: since X is a {2,3}-inverse of matrix Awith R(X) = T ,N(X) = S, we obtain from Lemma 1.1(b)

AT = AR(X) = R(AX) = N(AX)⊥ ⊂ N(X)⊥ = S⊥. (10)

Furthermore, for X is {2}-inverse of matrix A, we know

rank(X) = rank(XAX) ≤ rank(AX) ≤ rank(X). (11)

Therefore, we have N(AX)⊥ = N(X)⊥, which leads to AT = S⊥.
The proof that X is independent of the choice of {1}-inverse (AE)(1) is analogous to Theorem 2.1. �

Theorem 2.3. Let A ∈ Cm×n, T and S be subspaces of Cn and Cm, respectively, with dim(AT ) = dim T = t. Suppose that E is a
arbitrary matrix satisfying R(E) = T , then the matrix A has a unique A(2,3)

T ,S = E(AE)
(1)PAT if and only if AT = S⊥.

Proof. IF: From Theorem 2.2, we know that X = E(AE)(1)M is {2, 3}-inverse of matrix A and R(X) = T ,N(X) = S, whereM
is a Hermitian idempotent matrix satisfying R(M) = AT and X is independent of the choice of {1}-inverse(AE)(1).
So we only need to prove that X is unique and E(AE)(1)M = E(AE)(1)PAT .
Since M is Hermitian idempotent matrix satisfying R(M) = AT , we know M is unique and M = PAT . Furthermore, as

E(AE)(1)M is independent of the choice of {1}-inverse(AE)(1), we have a unique

X = E(AE)(1)M = E(AE)(1)PAT .

ONLY IF: this result can easily be obtained analogous to Theorem 2.2. �

Corollary 2.4. Let A ∈ Cm×n, T and S be subspaces of Cn and Cm, respectively, with dim T = dim S⊥ = t. Suppose that E is any
matrix satisfying R(E) = T and M is an arbitrary Hermitian idempotent matrix satisfying R(M) = S⊥, then X = E(AE)(1)M is
a {2, 3}-inverse of the matrix A and R(X) = T ,N(X) = S if and only if AT = S⊥. Moreover X is independent of the choice of
{1}-inverse (AE)(1).

Proof. The ‘‘IF’’ part can easily be obtained from Theorem 2.2. And we can prove ‘‘ONLY IF’’ part and that X is independent
of the choice of {1}-inverse(AE)(1) by the same method as in Theorem 2.2. �

Corollary 2.5. Let A ∈ Cm×n, T and S be subspaces of Cn and Cm, respectively, with dim T = dim S⊥ = t. Suppose that E is an
arbitrary matrix satisfying R(E) = T , then the matrix A has a unique A(2,3)

T ,S = E(AE)
(1)PAT if and only if AT = S⊥.

Proof. The proof of Corollary 2.5 is analogous to that of Theorem 2.3. �
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3. Applications and examples

The six important generalized inverses: the Moore–Penrose inverse A+, the weighted Moore–Penrose inverse A+M,N , the
Drazin inverse AD, the group inverse Ag , the Bott–Duffin inverse A(−1)

(L) and the generalized Bott–Duffin inverse A(+)

(L) are all

special generalized inverse A(2)
T ,S , which is {2}-inverse of A having the prescribed range T and the null space S. Combining

Lemma 1.2 and Theorem 2.3 or Corollary 2.5, we can get the corresponding explicit expressions for the six important
generalized inverses mentioned above. In this section, we shall give the explicit expressions for the Moore–Penrose inverse
A+and the weighted Moore–Penrose inverse A+M,N .

Theorem 3.1. For A ∈ Cm×n, we have A+ = A∗(AA∗)(1)PR(A) = A∗Y , where Y is a matrix satisfying PR(A) = AA∗Y .

Proof. Let T = R(A∗), S = N(A∗), E = A∗, we can get

dim(AT ) = rank(AA∗) = rank(A∗) = dim(T ), (12)

AT = AR(A∗) = R(AA∗) = R(A) = N(A∗)⊥ = S⊥. (13)

Using Theorem 2.3 and Lemma 1.2(a), we have

A+ = A∗(AA∗)(1)PAT = A∗(AA∗)(1)PR(A). (14)

Since R(PR(A)) = R(A) = R(AA∗) there exists some matrix Y such that

PR(A) = AA∗Y . (15)

Therefore, combining (14) and (15) and Lemma 1.1(e), we have

A+ = A∗Y ,

where Y is a matrix satisfying PR(A) = AA∗Y . �

Theorem 3.2. For A ∈ Cm×n, we have

(1) A+M,N = N
−1A∗(AN−1A∗)−1, if A is full row rank matrix.

(2) A+M,N = N
−1A∗M1/2YM1/2, where Y is matrix satisfying PR(M1/2A) = M

1/2AN−1A∗M1/2Y .

Proof. (1) Let T = N−1R(A∗), S = M−1N(A∗), E = N−1A∗. Since A is full row rank matrix, we can get

dim(AT ) = rank(AN−1A∗) = rank(N−1/2A∗) = rank(N−1A∗) = dim(T ) (16)

AT = AN−1R(A∗) = R(AN−1A∗) = R(A) = N(A∗)⊥ = (M−1N(A∗))⊥ = S⊥. (17)

Using Theorem 2.3 and Lemma 1.2(b), we have

A
+

M,N = N
−1A∗(AN−1A∗)(1)PAT = N−1A∗(AN−1A∗)(1)PR(A). (18)

Furthermore, since A is full row rank matrix, we obtain from Lemma 1.1(a)

A+M,N = N
−1A∗(AN−1A∗)−1PR(A) = N−1A∗(AN−1A∗)−1. (19)

(2) From Theorem 1.4.4 of [2], we have

A+M,N = N
−1/2(M1/2AN−1/2)+M1/2. (20)

Using Theorem 3.1 we get

A+M,N = N
−1A∗M1/2(M1/2AN−1A∗M1/2)(1)PR(M1/2A)M

1/2
= N−1A∗M1/2YM1/2, (21)

where Y is a matrix satisfying PR(M1/2A) = M
1/2AN−1A∗M1/2Y . �

Example 1. Let

A =

1 0 3 0
0 −2 0 1
1 0 2 0
0 0 −1 0

 .
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Compute the Moore–Penrose inverse A+.
Solution. From Theorem 3.1, we know A+ = A∗Y , where Y is a matrix satisfying PR(A) = AA∗Y . Clearly, we only need

compute the matrix Y . From the Lemma 5.3.3 of [8] we have

PR(A) = A(A∗A)(1)A∗, (22)

which, together with PR(A) = AA∗Y , gives

AA∗Y = A(A∗A)(1)A∗ ⇒ A∗AA∗Y = A∗A(A∗A)(1)A∗,

⇒ A∗AA∗Y = A∗, by Lemma 1.1(e). (23)

Therefore, Y can be obtained from the matrix equation A∗AA∗Y = A∗, namely17 0 12 −5
0 −10 0 0
47 0 33 −14
0 5 0 0

 Y =
1 0 1 0
0 −2 0 0
3 0 2 −1
0 1 0 0

 . (24)

Using Gaussian elimination, we can easily get one solution of matrix equation (24), namely

Y =

−1/3 0 4/3 5/3
0 1/5 0 0
0 0 0 0
−4/3 0 13/3 17/3

 .

Bring Y to A+ = A∗Y , we give

A+ =

−1/3 0 4/3 5/3
0 −2/5 0 0
1/3 0 −1/3 −2/3
0 1/5 0 0

 .

The following example comes form [13], and the approximate value of the weighted Moore–Penrose inverse A+M,N
was obtained by using the successive matrix squaring algorithm. However, the precision value can be obtained by using
Theorem 3.2. Now we illustrate the calculation procedure by the same example.

Example 2. The martix A and the weighted matricesM and N are as follows:

A =



22 10 2 3 7
14 7 10 0 8
−1 13 −1 −11 3
−3 −2 13 −2 4
9 8 1 −2 4
9 1 −7 5 −1
2 −6 6 5 1
4 5 0 −2 2


, M =


1
2

. . .

8


8×8

and N =


1
2

. . .

5


5×5

.

Compute the weighted Moore–Penrose inverse A+M,N .
Solution. From Theorem 3.2 we know A+M,N = N−1A∗M1/2YM1/2, where Y is matrix satisfying PR(M1/2A) =

M1/2AN−1A∗M1/2Y . Clearly, we only need compute the matrix Y . From (22), we have

PR(M1/2A) = M
1/2A(A∗MA)(1)A∗M1/2, (25)

which, together with PR(M1/2A) = M
1/2AN−1A∗M1/2Y , gives

M1/2A(A∗MA)(1)A∗M1/2 = M1/2AN−1A∗M1/2Y ⇒ A∗MA(A∗MA)(1)A∗M1/2 = A∗MAN−1A∗M1/2Y

⇒ A∗M1/2 = A∗MAN−1A∗M1/2Y , by Lemma 1.1(e). (26)

Therefore, Y can be obtained from the matrix equation A∗MAN−1A∗M1/2Y = A∗M1/2, namely

194135/4 62333
√
2/2 13283

√
3/4 −13699 42923

√
5/2 74267

√
6/4 6345

√
7/4 10131

√
8

540787/20 176649
√
2/10 223903

√
3/20 −44703/5 146647

√
5/10 166519

√
6/20 −80019

√
7/20 39283

√
8/5

−26669/20 36217
√
2/10 −28961

√
3/20 71041/5 −7529

√
5/10 −87113

√
6/20 68493

√
7/20 −3381

√
8/5

69197/20 12623
√
2/10 −143869

√
3/20 −10531/5 −6601

√
5/10 71723

√
6/20 71157

√
7/20 −5124

√
8/5

291609/20 111753
√
2/10 60441

√
3/20 4359/5 71229

√
5/10 70833

√
6/20 9687

√
7/20 17466

√
8/5


Y
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=



22 14
√
2 −

√
3 −6 9

√
5 9

√
6 2

√
7 4

√
8

10 7
√
2 13

√
3 −4 8

√
5

√
6 −6

√
7 5

√
8

2 10
√
2 −

√
3 26

√
5 −7

√
6 6

√
7 0

3 0 −11
√
3 −4 −2

√
5 5

√
6 5

√
7 −2

√
8

7 8
√
2 3

√
3 8 4

√
5 −

√
6

√
7 2

√
8


.

Using Gaussian elimination and Maple, we can easily get one solution of matrix equation above, namely

Y =



836322
329166541

157187
√
2

498198008
−
125915659

√
3

9216663148
−
12945357
9216663148

−
7715501

√
5

2633332328
10958599

√
6

2304165787
31263257

√
7

4608331574
−
50329593

√
2

9216663148

−
2738575

√
2

1974999246
376655

1494594024
171132267

√
6

18433326296
68155639

√
2

55299978888
33825703

√
10

15799993968
−
44369021

√
3

6912497361
−
124753589

√
14

27649989444
212217827
27649989444

0 0 0 0 0 0 0 0
1072541
987499623

4000679
√
2

5978376096
−
224351749

√
3

36866652592
118318855
110599957776

−
40954169

√
5

31599987936
43958287

√
6

27649989444
185761465

√
7

55299978888
−
273060709

√
2

110599957776
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Bring Y to A+M,N = N
−1A∗M1/2YM1/2, we get

A+M,N =



10421956
987499623

2756141
213513432

−32370117
2633332328

−22197971
3949998492

257680295
15799993968

10332517
329166541

76365037
3949998492

16825001
1974999246

543157
658333082

39899
17792786

17477253
658333082

−352263
329166541

19278775
1316666164

−3683352
329166541

−20189813
658333082

5921374
329166541

1839416
987499623

2925151
213513432

344281
2633332328

130757791
3949998492

85873085
15799993968

−8781881
329166541

32776261
1316666164

1438289
658333082

1618367
1974999246

−92357
106756716

−16435203
1316666164

−8386681
1974999246

−35606675
7899996984

3904936
329166541

11950981
987499623

−6425201
987499623

846898
987499623

409015
106756716

3338145
1316666164

14572295
1974999246

26671765
7899996984

−2108858
329166541

6004523
1974999246

2705707
987499623


.
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