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Abstract

It belongs to the folklore that graph grammars can be seen as a proper generalisation of Petri nets.
In this paper we show how this intuitive relationship can be made formal. The double-pushout
approach to graph rewriting turns out to be strictly related to Petri nets with read and inhibitor
arcs, while the single-pushout approach has strong connections to Petri nets with read and reset
arcs.
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Introduction

It belongs to the folklore that graph transformation systems can be seen as a
proper generalisation of Petri nets [20,12]. The correspondence is based on the
observation that a Petri net is essentially a rewriting system over structures
simpler than graphs, i.e., (multi)sets or markings, the rewriting rules being
the transitions of the net. And, in turn, net markings can be represented as a
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restricted kind of graphs, namely discrete, labelled graphs where the presence
of a token in a place s is represented by including a node labelled by s.

In this view graph transformation systems are a proper generalisation of
Petri nets in two dimensions:

• They allow to specify contextual rewritings, namely rewriting steps which
can occur only in the presence of a specific context which is preserved, i.e.,
not affected by the step.

• They allow to deal with general graphs, rather than discrete graphs.

The possibility of specifying a context for a rewriting step has an interesting
computational interpretation: the context can be thought of as a part of the
state which is accessed in a read-only way. This represents the basis to establish
a connection with contextual nets [25], an extension of basic Petri nets where
transitions can check for the presence of tokens without consuming them.

The second generalisation, i.e., the fact that general graphs are rewritten,
leads to complex kinds of dependencies between events in graph grammar
computations [4]. In particular, in the dpo approach [17,14], the dangling
condition prevents a rule to be applied at a given match when its application
would leave a dangling edge. The fact that the dangling condition is a negative
application condition establishes a link with a further extension of Petri nets,
the nets with inhibitor arcs [1] where transitions can check for the absence
of tokens in places. In the spo approach [22,18], instead, there is no dangling
condition: when a node is deleted by the application of a rule also all the edges
connected to such node are deleted. In this way, the edges which would remain
dangling are removed as a kind of side-effect of the application of the rule.
This is reminiscent of reset arcs [3] in the world of Petri nets: a transition
connected to a place s through a reset arc can fire regardless of the state of s,
but its firing will always remove all the tokens in s.

In this paper we show how the intuitive correspondences outlined above
can be made formal. Graph transformation systems in the dpo approach turn
out to be strictly related to Petri nets with read and inhibitor arcs (inhibitor
nets), while the spo approach exhibits strong connections to Petri nets with
read and reset arcs (reset nets). More precisely we show that any safe dpo

grammar can be encoded as a (safe) inhibitor net, while any safe spo grammar
can be encoded as a (safe) reset net. Vice versa, general inhibitor and reset
nets can be encoded into dpo and spo grammars, respectively.

An inhibitor net is encoded as a dpo grammar which acts on possibly
non-discrete graphs. Roughly, for any transition t of the original net, if t

is inhibited by a place s then the corresponding production pt deletes (and
produces again) a node ns. Then the encoding ensures that in the graph there
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are edges attached to ns if and only if the corresponding place s is marked
in the net. In this way, due to the dangling condition, the production pt will
be applicable to all and only the graphs corresponding to the markings where
transition t was fireable. The encoding of reset nets into spo grammars is
completely analogous.

All encodings mentioned above preserve the sequential behaviour of the
models at hand (firing/rewriting relation and reachability). Furthermore, the
encodings defined for safe (dpo and spo) grammars, as well as those for safe
inhibitor and reset nets, also preserve the concurrent behaviour of the involved
systems. However, the encodings of general nets into graph transformation
systems are not faithful from the point of view of concurrency. Intuitively, this
happens because in the encoding of a transition as a dpo (spo) production,
the negative testing (reset) operation is simulated by an action which deletes
a part of the state (node ns) and this imposes a bound to the number of tests
which can be conducted in parallel.

The rest of the paper is structured as follows. In Section 1 we review the
algebraic approaches to graph rewriting. In Section 2 we introduce Petri nets
with read, inhibitor and reset arcs. In Section 3 we define the encodings of
grammars into nets, while in Section 4 and 5 we discuss the encodings of nets
into grammars. Finally, in Section 6 we draw some conclusions.

1 The Single and Double Pushout Approaches

This section introduces some basics of the algebraic approaches to graph
rewriting considered in the paper. We concentrate on typed hypergraph re-
writing systems, both in the single-pushout (spo) [22,18] and double-pushout
(dpo) [17,14] approaches. Typed rewriting is a well-established variant of the
classical approach where rewriting takes place on so-called typed graphs, i.e.,
graphs labelled over a structure which is itself a graph [13,23].

1.1 Hypergraphs and hypergraph morphisms

Given a partial function f : A � B we will denote by dom(f) its domain,
i.e., the set {a ∈ A | f(a) is defined}. Let f, g : A � B be two partial
functions. We will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for
all x ∈ dom(f).

Given a set A we denote by A∗ the set of finite strings of elements of A.
Given u ∈ A∗ we write |u| to indicate the length of u and ui to denote the
i-th element of u. Furthermore, if f : A → B is a function then we denote by
f ∗ : A∗ → B∗ its extension to strings.
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Figure 1. Diagrams for partial graph and typed graph morphisms.

A (hyper)graph G is a triple G = (VG, EG, cG), where VG is a set of nodes,
EG is a set of edges and cG : EG → V ∗

G is a function mapping each edge to the
list of nodes it is connected to. We will improperly write n ∈ cG(e) if node n

is connected to edge e, i.e., if n ∈ VG, e ∈ EG, and there are s, s′ ∈ V ∗
G such

that cG(e) = sns′. An edge e ∈ EG is called a k-ary edge if |cG(e)| = k. A
graph G is called edge-discrete if VG = ∅ (and thus all edges are 0-ary).

A graph G will be considered sometimes as an unstructured collection of
nodes and edges (assuming, without loss of generality, that VG ∩ EG = ∅).
Thus usual set operations and relations will be applied to graphs.

Definition 1.1 [partial graph morphism] A partial graph morphism f : G �

H is a pair of partial functions 〈fN : NG � NH , fE : EG � EH〉 such that

(i) for any e ∈ EG, if f(e) is defined then |cG(e)| = |cH(f(e))|

(ii) cH ◦ fE ≤ fN
∗ ◦ cG (see Fig. 1.(a)).

We denote by PGraph the category of (unlabelled) graphs and partial graph
morphisms. A morphism is called total if both components are total, and the
corresponding full subcategory of PGraph is denoted by Graph.

Notice that if f is defined over an edge then it must be defined on all the
nodes the edge is attached to: this ensures that the domain of f is a well-
formed graph. The inequality in condition (ii) ensures that any subgraph of
a graph G can be the domain of a partial morphism f : G � H . Instead,
the stronger (apparently natural) condition cH ◦ fE = fN

∗ ◦ cG would have
imposed f to be defined over an edge whenever it is defined on one of the
nodes the edge is attached to.

Given a graph T , a typed graph G over T is a graph |G|, together with a
total morphism tG : |G| → T . A partial morphism between T -typed graphs
f : G1 � G2 is a partial graph morphisms f : |G1| � |G2| consistent with
the typing, i.e., such that tG1

≥ tG2
◦ f (see Fig. 1.(b)). A typed graph G is

called injective if the typing morphism tG is injective. The category of T -typed
graphs and partial typed graph morphisms is denoted by T -PGraph.

Given a partial typed graph morphism f : G1 � G2, we denote by dom(f)
the domain of f typed in the obvious way. Since in this paper we work only
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with typed notions, we will usually omit the qualification “typed”.

1.2 DPO rewriting

Fixed a graph T of types, a (T -typed) dpo production q = (Lq

lq
← Kq

rq

→ Rq)
is a pair of injective typed graph morphisms lq : Kq → Lq and rq : Kq → Rq,
where |Lq|, |Kq| and |Rq| are finite graphs. The typed graphs Lq, Kq, and
Rq are called the left-hand side, the interface, and the right-hand side of the
production, respectively.

Definition 1.2 [dpo direct derivation] Given a typed graph G, a production
q, and a match (i.e., a graph morphism) g : Lq → G, a direct derivation δ

from G to H using q (based on g) exists, written δ : G ⇒q H , if the diagram

Lqq :

g

Kq
lq rq

k

Rq

h

G Db d H

can be constructed, where both squares have to be pushouts in T -Graph.

Intuitively, the rewriting step removes from the graph G the image of the
items of the left-hand side which are not in the interface, namely g(Lq−lq(Kq)),
adding the items of the right-hand side which are not in the interface, namely
Rq − rq(Kq). The items in the image of Kq are “preserved” by the rewriting
step (intuitively, they are accessed in a “read-only” manner).

Given an injective morphism lq : Kq → Lq and a match g : Lq → G as in
the above diagram, their pushout complement (i.e., a graph D with morphisms
k and b such that the left square is a pushout) exists if and only if the gluing
condition is satisfied. This consists of two parts:

• identification condition, requiring that if two distinct nodes or edges of Lq

are mapped by g to the same image, then both must be in the image of lq;

• dangling condition, stating that no edge in G−g(Lq) should be attached to a
node in g(Lq − lq(Kq)) (because otherwise the application of the production
would leave such an edge “dangling”).

1.3 SPO rewriting

Fixed a graph T of types, a (T -typed) spo production q is an injective partial

typed graph morphism Lq

rq

� Rq. The typed graphs Lq and Rq are called the
left-hand side and the right-hand side of the production, respectively.
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Figure 2. Side-effects in spo rewriting.

Definition 1.3 [spo direct derivation] Given a typed graph G, a production
q, and a match (i.e., a total graph morphism) g : Lq → G, we say that there is a
direct derivation δ from G to H using q (based on g), written δ : G ⇒q H , if, for
suitable morphisms h and d, the following is a pushout square in T -PGraph.

Lq

g

rq Rq

h

G d H

The effect is similar to that of a dpo rewriting step, with dom(rq) playing
the role of the interface: the step removes from the graph G the image of the
items of Lq which are not in dom(rq), namely g(Lq − dom(rq)), adding the
items of Rq which are not in the image of rq, namely Rq − rq(dom(rq)). The
items in the image of dom(rq) are “preserved” by the step.

A relevant difference with respect to the dpo approach is that here there is
no dangling condition preventing a rule to be applied whenever its application
would leave dangling edges. In fact, as a consequence of the way pushouts are
constructed in T -PGraph, when a node is deleted by the application of a rule
also all the edges connected to such node are deleted by the rewriting step,
as a kind of side-effect. For instance, production q in the top row of Fig. 2,
which consumes node B, can be applied to the graph G in the same figure.
As a result both node B and the loop edge L are removed.

Even if the category PGraph has all pushouts, still we will consider a condi-
tion which corresponds to the identification condition of the dpo approach.

Definition 1.4 [valid match] A match g : Lq → G is called valid when for
any x, y ∈ |Lq|, if g(x) = g(y) then x, y ∈ dom(rq).

Conceptually, a match is not valid if it requires a single resource to be
consumed twice, or to be consumed and preserved at the same time.

In the paper we will consider only valid derivations. This is needed to
have a computational interpretation which is resource-conscious, i.e., where a
resource can be consumed only once.

P. Baldan et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 5–2810



1.4 Graph grammars

Graph grammars in the dpo/spo approach are defined as collections of
dpo/spo productions with a start graph.

Definition 1.5 [typed graph grammar] A (T -typed) graph grammar G is a
tuple 〈T, Gs, P, π〉, where Gs is the start (typed) graph, P is a set of produc-
tion names, and π is a function which associates a graph production to each
production name in P .

We will assume that for each production name q the corresponding produc-

tion π(q) is, in the dpo case, Lq

lq
← Kq

rq

→ Rq, and in the spo case Lq

rq

� Rq.

A derivation in a grammar G is a sequence of direct derivations starting
from the start graph, namely ρ = {Gi−1 ⇒qi−1

Gi}i∈{1,...,n}, with G0 = Gs.

Given an spo graph grammar, we can easily construct a corresponding dpo

grammar, which behaves as the original grammar when the dangling condition
is satisfied. Clearly, the converse construction is possible as well.

Definition 1.6 [from dpo to spo and backward] Let q = Lq

rq

� Rq be an
spo production. The corresponding dpo production, denoted by D(q) is

Lq

lq
← dom(rq)

rq

→ Rq

where lq is the inclusion of dom(rq) into Lq and, with abuse of notation,
rq denotes the total function obtained as the restriction of rq to its domain.
Given a spo grammar G = 〈T, Gs, P, π〉, we denote by D(G) the dpo grammar
〈T, Gs, P, π′〉, where for all q ∈ P , π′(q) = D(π(q)).

Vice versa, given a dpo grammar G we can define, in a dual way, the spo

grammar S(G).

For instance, if we consider the dpo grammar G2 in Fig. 3 and the spo

grammar G ′
2 in Fig. 4 then G2 = S(G′

2) and G′
2 = D(G2).

2 Petri nets with read, inhibitor and reset arcs

In this section we introduce some basic extensions of P/T Petri nets, i.e., Petri
nets with read, inhibitor and reset arcs. As already mentioned read arcs (also
called test, activator or positive contextual arcs) [10,25,19,28] allow a trans-
ition to check for the presence of tokens without consuming them. This allows
to represent faithfully the situations where a resource is read but not con-
sumed (read-only accesses). Read arcs have been used, for example, to model
concurrent accesses to shared data (e.g., read operations in a database) [27,15],
to study temporal efficiency in asynchronous systems [28] and to give a truly
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concurrent semantics to concurrent constraint programs [24,7].

Inhibitor arcs, which allow a transition to test for the absence of tokens
in a place, have been introduced in [1] to solve a synchronisation problem
not expressible in classical Petri nets. This extension makes the model Turing
complete because they allow to simulate the zero-testing operation of RAM
machines which cannot be expressed neither by flow nor by read arcs. Inhibitor
arcs have been employed, for example, for performance evaluation of distrib-
uted systems [2], to provide π-calculus with a net-based semantics [8] and to
show the existence of an expressiveness gap between two different semantics
of a process algebra based on Linda coordination primitives [9].

Reset arcs [3] allow a transition to remove all the tokens in a place, if any:
the notion of enabling is not influenced by reset arcs, but if a transition is con-
nected to a place by a reset arc then its firing resets the content of the place.
Reset arcs have been used, e.g., to model communications through unreliable
channels where messages can be lost (see [6,11] and references therein). It is
worth stressing that nets with reset arcs have peculiar decidability properties:
reachability and boundedness are undecidable, while coverability and termin-
ation are decidable [16]. As such they lie somehow between ordinary nets and
nets with inhibitor arcs.

A study of the expressiveness of these kinds of arcs, along with a compar-
ison with other extensions proposed in the literature, like priorities, exclusive-
or transitions and switches, is carried out in [26,21].

To give the formal definition of these generalised Petri nets we need some
notation for sets and multisets. Let A be a set. The powerset of A is denoted
by 2A. A multiset of A is a function M : A → N, where N is the set of natural
numbers. The set of multisets of A is denoted by µA. The usual operations
and relations on multisets, like multiset union ⊕ or multiset difference �,
are used. We write M ≤ M ′ if M(a) ≤ M ′(a) for all a ∈ A. If M ∈ µA, we
denote by [[M ]] the multiset defined as [[M ]](a) = 1 if M(a) > 0 and [[M ]](a) = 0
otherwise, obtained by changing all non-zero coefficients of M to 1; sometimes
[[M ]] will be confused with the corresponding subset {a ∈ A | [[M ]](a) = 1} of
A. Given a multiset M and a subset X ⊆ A, the multiset M ′ = M ↓ X is
defined by M ′(a) = M(a) if a �∈ X and M ′(a) = 0, otherwise.

A multirelation f : A → B is a multiset of A × B. We will limit our
attention to finitary multirelations, namely multirelations f such that the set
{b ∈ B | f(a, b) > 0} is finite. Multirelation f induces in an obvious way
a (possibly partial) function µf : µA → µB, defined as µf(

∑
a∈A na · a) =∑

b∈B

∑
a∈A(na · f(a, b)) · b. 4

4 The function µf can be partial since infinite coefficients are disallowed in multisets. For
instance, given the multirelation f : N → {0} with f(n, 0) = 1 for all n ∈ N, then µf is
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Definition 2.1 [read, inhibitor and reset arcs] A (marked) Petri net with
read, inhibitor and reset arcs is a tuple N = 〈S, Tr, F, C, I, R, m〉, where

• S is a set of places;

• Tr is a set of transitions ;

• F = 〈Fpre, Fpost〉 is a pair of multirelations from Tr to S;

• C, I and R are relations between Tr and S, called the context, inhibitor
and reset relation, respectively;

• m ∈ µS is a multiset called the initial marking.

Some subclasses of nets will play a relevant role in the paper:

• If C, I and R are empty, the net is called ordinary net and denoted by
NO = 〈S, Tr, F, m〉.

• If I and R are empty, the net is called contextual net and denoted by
NC = 〈S, Tr, F, C, m〉.

• If R is empty, the net is called inhibitor net and denoted by NI =
〈S, Tr, F, C, I, m〉.

• If I is empty, the net is called reset net and denoted by NR =
〈S, Tr, F, C, R, m〉.

We assume, as usual, that S ∩ Tr = ∅. The functions from µTr to µS

induced by the multirelations Fpre and Fpost are denoted by •( ) and ( )•,
respectively. If A ∈ µTr is a multiset of transitions, •A is called its pre-
set, while A• is called its post-set. Moreover, by A we denote the context of
A, defined as A = C([[A]]), by �A = I([[A]]) the inhibitor set of A, and by
�A = R([[A]]) the reset set of A. The same notation is used to denote the
functions from S to 2Tr defined as, for s ∈ S, •s = {t ∈ Tr | Fpost(t, s) > 0},
s• = {t ∈ Tr | Fpre(t, s) > 0}, s = {t ∈ Tr | C(t, s)}, �s = {t ∈ Tr | I(t, s)}
and �s = {t ∈ Tr | R(t, s)}.

A finite multiset of transitions A is enabled at a marking M , if M contains
the pre-set of A and an additional set of tokens which covers the context of A.
Furthermore the places of the inhibitor set of A must be empty both before
and after the firing of the transitions in A. Finally, no place in the reset set of
A can be used (read, consumed or produced).

Definition 2.2 [token game] Let N be a net with read, inhibitor and reset
arcs, and let M be a marking of N , i.e., a multiset M ∈ µS. A finite multiset
A ∈ µTr is enabled at M if (i) •A⊕A ≤ M , (ii) [[M ⊕ A•]]∩ �A = ∅, and (iii)
( •A ⊕ A ⊕ A•) ∩ �A = ∅. The step relation between markings is defined as

undefined on the multiset
∑

n∈N
1 · n.
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M [A〉M ′ iff A is enabled at M and M ′ = (M � •A ⊕ A•) ↓ �A.

Step and firing sequences, as well as reachable markings, are defined in the
usual way. We will assume that for any transition t, ( �t∪ �t)∩([[ •t ⊕ t•]]∪t) = ∅
(otherwise the transition would never be executable).

3 Encoding safe grammars as extended nets

We present here an encoding of graph grammars as extended nets. The en-
coding works for a restricted class of grammars only, namely for safe gram-
mars. The notion of safeness for grammars, originally defined in the context
of dpo [13], generalises the corresponding notion for P/T nets, which requires
that each place contains at most one token in any reachable marking. Since
large part of the theory is independent from the adopted approach, when pos-
sible we will give notions and constructions for a generic grammar G, without
sticking specifically to the dpo or spo approach.

Definition 3.1 [safe grammar] A grammar G = 〈T, Gs, P, π〉 is safe if, for all
H such that Gs ⇒

∗ H , H has an injective typing morphism.

The definition can be understood by thinking of nodes and edges of the
type graph as a generalisation of places in Petri nets. In this view the number
of different items of a graph which are typed on a given item of the type
graph corresponds to the number of tokens contained in a place, and thus
the condition of safeness for a marking is generalised to typed graphs by the
injectivity of the typing morphism.

Safe graph grammars admit a natural net-like pictorial representation,
where items of the type graph and productions play, respectively, the role of
places and transitions of Petri nets. The basic observation is that typed graphs
having an injective typing morphism can be safely identified with the corres-
ponding subgraphs of the type graph (just thinking of injective morphisms as
inclusions). Therefore, in particular, each graph G = 〈|G|, tG〉 reachable in a
safe grammar can be identified with the subgraph tG(|G|) of the type graph
T , and thus it can be represented by suitably decorating the nodes and edges
of T . Concretely, nodes and edges are drawn as circles and boxes, respectively,
and they are filled if they belongs to tG(|G|) and empty otherwise (see Fig. 3).
This is analogous to the usual technique of representing the marking of a safe
net by putting a token in each place which belongs to the marking.

With the above identification, in each reachable graph of a safe grammar a
production can be applied only to the subgraph of the type graph which is the
image via the typing morphism of its left-hand side. Therefore according to its
typing, we can think that a production produces, preserves and consumes items

P. Baldan et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 5–2814



of the type graph. This is expressed by drawing productions as arrow-shaped
boxes, connected to the consumed and produced resources by incoming and
outcoming arrows, respectively, and to the preserved resources by undirected
lines.

For instance, Fig. 3 presents two examples of safe dpo grammars, with
their pictorial representation. Notice that the typing morphisms for the start
graph and the productions are represented by suitably labelling the involved
graphs with items of the type graph.

A completely analogous representation can be given for spo grammars.
Formally, we represent any spo grammar G exactly as the corresponding dpo

grammar D(G). For instance, the spo grammar G′
2 in Fig. 4 is represented

exactly as the grammar G2 in Fig. 3, since D(G ′
2) = G2.

Given the graphical representation of safe dpo and spo grammars, as
in the right part of Fig. 3, one could play the token game on them as if
they were contextual Petri nets. However, the resulting behaviour would not
correspond faithfully to the behaviour of the original grammars, since the
token game can delete and generate nodes and edges freely, without any care
for the consistency of the graphical structure of the state. In the next two
subsections we will show how the encoding can be finalised, separately for
dpo and spo grammars, by adding inhibitor and reset arcs, respectively.

Before that, we will define the pre-set •q, context q and post-set q• of a
production q, thus introducing a net-like language for the productions of a
grammar.

Definition 3.2 [pre-set, post-set, context]

(i) Let G be a safe dpo graph grammar. For any q ∈ P we define
•q = tLq

(|Lq| − lq(|Kq|)) q• = tRq
(|Rq| − rq(|Kq|)) q = tKq

(|Kq|)

seen as sets of nodes and edges of the graph of types, and we say that q

consumes, creates and preserves items in •q, q• and q, respectively.

(ii) The definition for spo grammars is essentially the same: the pre-set, post-
set and context of a production q = rq : Lq � Rq are defined as above
just replacing lq(|Kq|) with dom(rq) and rq(|Kq|) with rq(dom(rq)).

For instance, for the dpo grammar G2 in Fig. 3, as well as for the spo grammar
G′

2 in Fig. 4, the pre-set, context and post-set of production p1 are •p1 = {C},
p1 = {B} and p1

• = {A, L}.

Definition 3.3 [self-loops] We say that a safe grammar G has a self-loop if
there exists a production q ∈ P such that q• ∩ •q �= ∅.

In the remainder of this section we will restrict our attention to graph
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Figure 3. Two safe dpo grammars and their net-like representation.

spo grammar G′
2
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Figure 4. An spo grammar corresponding to the dpo grammar G2 in Fig. 3. The partial morphisms
from the lhs to the rhs of productions are represented by the dotted arrows.

grammars without self-loops.

3.1 Encoding in the DPO case

In the case of dpo grammars, because of the dangling condition, a production
q which consumes a node n can be applied only if there are no edges connected
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to n which would remain dangling after the application of q. In other words,
if n ∈ •q, e �∈ •q and n ∈ c(e) then the application of q is inhibited by the
presence of e. By analogy with inhibitor nets we introduce the inhibitor set of
a production.

Definition 3.4 [inhibitor set] Let G be a dpo graph grammar. The inhibitor
set of a production q ∈ P is defined by

�q = {e ∈ ET | ∃n ∈ •q. n ∈ c(e) ∧ e �∈ •q}

For instance, in the grammar G2 of Fig. 3 the inhibitor set of production
p4 is �p4 = {L}.

Note that with the above definition, a production q of a safe grammar
G satisfies the dangling condition w.r.t. the match determined by the typing
morphism if and only if tLq

(|Lq|) ∩
�q = ∅.

The correspondence between dpo safe grammars and inhibitor nets can be
made more explicit:

Definition 3.5 [from dpo grammars to inhibitor nets] To any safe dpo gram-
mar G = 〈T, Gs, P, π〉 we associate an inhibitor net NI(G) = 〈S, Tr, F, C, I, m〉,
where the places are the items of T (i.e., S = VT ∪ ET ), the transitions are
the productions (i.e., Tr = P ), and for each transition t ∈ Tr, the pre-set,
post-set, context and inhibitor set are defined as in Definitions 3.2(i) and 3.4.
The initial marking m is the set of items in (the image in T of) Gs.

Figure 5 shows the inhibitor nets NI(G1) and NI(G2) corresponding to the
safe dpo grammars G1 and G2 of Fig. 3.

It is possible to show that a T -typed dpo grammar G and the net NI(G),
as defined above, have essentially the same behaviour in the sense that each
(concurrent) derivation in G corresponds to a step sequence in NI(G) using
the same productions and leading to the same state, and vice versa. More
precisely, given a graph G injectively typed over T , let us denote by m(G)
the corresponding safe marking over the net NI(G), i.e., the set of nodes and
edges in tG(|G|). Then the following result holds:

Proposition 3.6 Let G be a safe dpo T -typed graph grammar and let G be an

injectively T -typed graph. Then there is a parallel direct derivation G
q1+...+qn

=⇒
G′ in G iff there is a step m(G) [q1 ⊕ . . . ⊕ qn〉m(G′) in NI(G).

The result can be proved along the following lines. First, observe that given
any injectively typed graph G, if a (parallel) production q = q1 + . . . + qn can
be applied to G then the existence of the match exactly corresponds to the
fact that the marking m(G) covers the pre-set and the context of q. Then,
by construction, the fact that the dangling condition holds for the match
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Figure 5. The inhibitor nets NI(G1) and NI(G2) corresponding to the grammars G1 and G2 in Fig. 3.

exactly corresponds to the absence of tokens in the inhibitor set of q. Finally,
the requirement that the post-set of q does not intersect its inhibitor set is
enforced by the fact a production q, to be inhibited by an edge L, must delete
a node which L is attached to.

3.2 Encoding in the SPO case

The encoding for spo grammars is formally the same as for dpo grammars, but
with inhibitor arcs replaced by reset arcs. In fact, as already mentioned, when
a production q which deletes a node n is applied, all the edges connected to n

that would remain dangling after the application of q are removed. Therefore,
if n ∈ •q, e �∈ •q and n ∈ c(e), then we can say that the application of q

resets the edge e. By analogy with reset nets we introduce the reset set of a
production.

Definition 3.7 [reset set] Let G be a spo graph grammar. The reset set of a
production q ∈ P is defined by

�q = {e ∈ ET | ∃n ∈ •q. n ∈ c(e) ∧ e �∈ •q}

For instance, in the spo grammar G′
2 of Fig. 4 the reset set of production

p4 is �p4 = {L}.

The correspondence between safe spo grammars and reset nets is formal-
ised in the following definition.

Definition 3.8 [from spo grammars to reset nets] To any safe spo grammar
G = 〈T, Gs, P, π〉 we associate a reset net NR(G) = 〈S, Tr, F, C, R, m〉, where
S = VT ∪ ET , Tr = P , and for each transition t ∈ Tr, the pre-set, post-set,
context and reset set are defined as in Definitions 3.2(ii) and 3.7. The initial
marking m is the set of items in the start graph Gs.

Figure 6 shows the reset net corresponding to the safe spo grammars G ′
2

of Fig. 4. Since G2 = D(G ′
2), this net is obtained simply by replacing inhibitor

arcs with reset arcs in the net NI(G2), depicted in the right side of Fig. 5.
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Figure 6. The reset nets corresponding to the grammar G′

2 in Fig. 4.

It is possible to show that, as for dpo grammars, a T -typed spo grammar G
and the reset net NR(G), as defined above, have essentially the same behaviour.

Proposition 3.9 Let G be an spo T -typed graph grammar and let G be an

injectively T -typed graph. Then there is a parallel direct derivation G
q1+...+qn

=⇒
G′ in G iff there is a step m(G) [q1 ⊕ . . . ⊕ qn〉m(G′) in NR(G).

The encoding of graph grammars as Petri nets is heavily based on the
safety hypothesis: since in a safe grammar each reachable graph is (up to
isomorphism) a subgraph of the type graph, it can be described by suitably
marking the items of the type graph itself with tokens. The connectivity among
such items does not need to be described explicitly in the encoding, since it
can be “inherited” from the type graph. For non-safe grammars one can still
consider a similar construction: a non injective graph G determines a non-
safe marking of the type graph, but the correspondence is not one-to-one
(several graphs induce the same marking) and thus some information about
connectivity of the items in G is lost. Still, restricting to graph grammars
where productions do not delete nodes, the Petri net associated to a graph
grammar G can be seen as an (over-)approximation of the original grammar
G, in a way that resembles the work on Petri graphs [5].

4 Encoding extended nets as graph grammars

We have seen that safe dpo and spo grammars can be encoded as safe reset
and inhibitor nets, respectively. In this section we investigate the possibility
of providing an encoding in the opposite direction, i.e., of encoding inhibitor
nets into dpo grammars and reset nets into spo grammars.
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4.1 Ordinary nets

It is part of the folklore (see e.g.,the discussion in [12] and references therein),
that Petri nets can be seen as a very special kind of graph grammars. The
simple idea is that the marking of a net can be represented as a discrete
graph typed over the places: a token in place s is represented as a node typed
over s. Then transitions are seen as productions which consume and produce
nodes, as prescribed by their pre- and post-set. In this way, Petri nets exactly
correspond to graph grammars acting over discrete graphs, where productions
do not preserve items.

To make it extensible to more general classes of Petri nets, here we consider
a slightly different encoding, where edges, rather than nodes, play the role of
tokens, i.e., Petri nets are seen as grammars acting on edge-discrete graphs.

The encoding of markings into graphs will depend on the specific kind of
nets we are considering. However, in all cases there will be an edge s in the
type graph for each place s of the net, and the number of edges typed over s

will represent the number of tokens in that place.

Definition 4.1 [relating markings and typed graphs] Let G by a T -typed
graph. The marking generated by G, denoted by m(G) ∈ µET , is defined by
m(G)(e) = |t−1

G (e)| for any e ∈ ET .

Given a graph T , any marking m ∈ µET corresponds to a T -typed graph
GT (m) defined as follows:

• |GT (m)| = 〈V, E, c〉, where
· V = {n ∈ VT | ∃e ∈ ET .n ∈ cT (e) ∧ m(e) > 0}, i.e., |GT (m)| has nodes

taken from T and a node is included if it is attached to an edge which
appears in the multiset

· E = {(e, i) | e ∈ ET , 1 ≤ i ≤ m(e)}
· for any (e, i) ∈ E, c(e, i) = cT (e).

• The typing tGT (m) is the identity on nodes, and tGT (m)(e, i) = e for all
(e, i) ∈ E.

Observe that, since isolated nodes do not contribute to the marking, given
a graph T and a marking m ∈ µET , the graph GT (m) is, in some sense, the
least T -typed graph such that m(GT (m)) = m.

Definition 4.2 Let NO = 〈S, Tr, F, m〉 be an ordinary Petri net. The corres-
ponding dpo grammar Gd(NO) = 〈T, Gs, P, π〉 is defined as follows.

• T = (∅, S, cε), where cε(s) = ε (the empty string) for all s ∈ S

• P = Tr

• Gs = GT (m)
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Figure 7. A Petri net transition and the corresponding dpo production.

• for any t ∈ P , π(t) = GT ( •t) ← ∅ → GT (t•).

Observe that, as anticipated, the type graph T is an “edge-discrete” hy-
pergraph, with only 0-ary edges, one for each place. Production names are
net transitions, and the span associated with each production is the obvious
one, with empty interface since nothing is explicitly preserved by a P/T net
transition.

The encoding as spo grammar is completely analogous. We can define the
spo grammar corresponding to a net NO as Gs(NO) = S(Gd(NO)).

In Fig. 7 the reader can find a Petri net transition and the corresponding
dpo production, with the typing morphism depicted explicitly.

4.2 Contextual nets

The encoding of contextual nets as graph grammars is an easy extension of the
previous one. The corresponding grammars still operate only on edge-discrete
graphs. The novelty is that, since a transition of a contextual net can “read”
some token via read arcs, the corresponding productions can have a non-empty
interface, i.e., they can preserve some edges.

Definition 4.3 Let NC = 〈S, Tr, F, C, m〉 be a contextual Petri net. The
corresponding dpo grammar Gd(NC) = 〈T, Gs, P, π〉 is defined as follows.

• T = (∅, S, cε)

• P = Tr

• Gs = GT (m)

• for any t ∈ P , π(t) = GT (t ⊕ •t) ← GT (t) → GT (t ⊕ t•), where the left
and right morphisms in the span are inclusions.

An example of contextual net transition with the corresponding dpo pro-
duction can be found in Fig. 8. The typing over T is implicitly represented by
labelling the items.

As in the previous case, a completely analogous encoding can be carried
out using spo grammars.

P. Baldan et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 5–28 21



s0

2

t

11

s1

s2 s3

s2 s3 s1s1

s1s0 s3s2

s0 s0 s1

T =

Figure 8. A contextual Petri net transition and the corresponding dpo production.

4.3 Inhibitor nets

Not surprisingly, inhibitor nets are represented as dpo grammars by using
the effects of the dangling condition to encode inhibitor arcs. This requires to
move from edge-discrete graphs to graphs which possibly include nodes. More
precisely, as in the previous cases the type graph includes one edge for each
place s of the net. In addition, if place s inhibits at least one transition, then
the type graph contains one node ns to which the edge corresponding to s is
connected. If place s inhibits transition t, the production corresponding to t

will delete and produce again the node ns corresponding to s. In this way the
presence of a token in place s, represented by an edge labelled over s connected
to such node, will inhibit the production because of the dangling condition.

All the nodes corresponding to inhibiting places are included in the start
graph and, since each time they are deleted they are immediately regenerated,
they will be present in any reachable graph. As a consequence, the reachable
graph corresponding to a marking m will coincide with GT (m) only up to
isolated nodes. This is formalised by the following definition of complete graph
for a marking.

Definition 4.4 [complete graph for a marking] Let T be a graph and let m ∈
µET be a marking. The complete T -typed graph corresponding to m, denoted
G̃T (m), is defined as GT (m) ∪ DT , where GT (m) is as in Definition 4.1 and
DT is the discrete graph including only the nodes of T , i.e., DT = 〈VT , ∅, ∅〉.

In the sequel, given a relation r ⊆ X × Y and a subset X ′ ⊆ X, we call
r-image of X ′ the set r(X ′) = {y ∈ Y | ∃x ∈ X ′. r(x, y)}.

Definition 4.5 Let NI = 〈S, Tr, F, C, I, m〉 be an inhibitor Petri net. The
corresponding dpo grammar Gd(NI) = 〈T, Gs, P, π〉 is defined as follows.

• T = (V, S, c), where V = {ns | s ∈ I(Tr)}, c(s) = ns for each s ∈ I(Tr),
and c(s) = ε for each s ∈ S − I(Tr)

• P = Tr

• Gs = G̃T (m)
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Figure 9. An inhibitor Petri net and the corresponding dpo grammar.

• for each t ∈ P ,

π(t) = GT (t ⊕ •t) ∪ Gt ∪ GI ← GT (t) ∪ Gt → GT (t ⊕ t•) ∪ Gt ∪ GI

where Gt = 〈{ns ∈ V | s ∈ •t⊕ t•}, ∅, ∅〉, GI = 〈{ns ∈ V | s ∈ �t}, ∅, ∅〉 and
the left and right morphisms in the span are inclusions.

Observe that, as mentioned above, the production corresponding to a
transition t deletes the edges in its pre-set, preserves the edges in its con-
text, produces the edges in its post-set, preserving all the attached nodes, and
deletes and produces again each node ns such that s ∈ �t. The last point is
ensured by including the graph GI , which contains exactly such nodes, both
in the lhs and in the rhs, but not in the interface of the production.

A very simple inhibitor net and the corresponding dpo grammar are
presented in Fig. 9.

4.4 Reset nets

The duality between dpo/inhibitor arcs and spo/reset arcs is confirmed also in
the encoding of reset nets into spo grammars. In fact, it can be obtained from
the encoding described in the previous section in a trivial way: just replace
inhibitor arcs with reset arcs and dpo productions with the corresponding
spo productions.

As before, the type graph contains one edge for each place, and, in addi-
tion, for each place which is reset by at least one transition the type graph
includes one node, to which the corresponding edge is connected. If transition
t resets place s, the production corresponding to t will delete and produce
again the node ns corresponding to s. In this way, all tokens in place s, rep-
resented by edges labelled over s connected to that node, will be removed by
the application of the corresponding spo production.

Definition 4.6 Let NR = 〈S, Tr, F, C, R, m〉 be a reset Petri net. The corres-
ponding spo grammar Gs(NR) = 〈T, Gs, P, π〉 is defined as follows.
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Figure 10. A reset Petri net and the corresponding spo grammar.

• T = (V, S, c), where V = {ns | s ∈ R(Tr)}, c(s) = ns for each s ∈ R(Tr),
and c(s) = ε for each s ∈ S − R(Tr)

• P = Tr

• Gs = G̃T (m)

• for each t ∈ P ,

π(t) = GT (t ⊕ •t) ∪ Gt ∪ GR → GT (t ⊕ t•) ∪ Gt ∪ GR

where Gt = 〈{ns ∈ V | s ∈ •t ⊕ t•}, ∅, ∅〉, GR = 〈{ns ∈ V | s ∈ �t}, ∅, ∅〉
and the morphism is a partial inclusion with domain GT (t) ∪ Gt.

Equivalently, one could define the spo grammar Gs(NR) as S(Gd(NI)),
where NI = 〈S, Tr, F, C, I, m〉, with I = R, is the inhibitor net obtained from
NR replacing reset arcs with inhibitor arcs. An example, obtained in this way
from the dpo grammar and inhibitor net in Fig. 9, can be found in Fig. 10.

4.5 Correspondence results

The encodings of inhibitor and reset nets into dpo and spo grammars presen-
ted in the previous sections preserve the firing relation and reachability, in the
following sense.

Proposition 4.7 Let NI be an inhibitor net and let M be a marking of NI .

Then M [t〉M ′ in NI iff G̃T (M)
t

=⇒ G′ in Gd(NI) and m(G′) = M ′.

Similarly, if NR is a reset net and M is a marking of NR, then M [t〉M ′

in NR iff G̃T (M)
t

=⇒ G′ in Gs(NR) and m(G′) = M ′.

The proof can be done by formalising the intuitions in the previous para-
graphs. First one proves that, for both encodings, tokens in a place s corres-
ponds to edges connected to the node ns. When relating dpo grammars and
inhibitor nets, a transition inhibited by a place s is encoded as a production
which removes (and generates again) node ns. Hence, such production can be
applied if and only if there are no edges connected to ns, i.e., if and only if

P. Baldan et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 5–2824



•s1 • s2

t1

s

t2

s′1 s′2

Figure 11. An inhibitor Petri net NI where transitions can fire concurrently, while in Gd(NI) they
cannot.

there are no tokens in place s. The argument for spo grammars and reset nets
is analogous.

Unfortunately, the encodings do not preserve the concurrency of the ori-
ginal net. For example, for inhibitor nets, if two transitions are inhibited by
the same place s, then their encodings as dpo productions cannot be ex-
ecuted in parallel, since both such productions delete and produce again the
node ns corresponding to s. For instance, in the inhibitor net in Fig. 11, the
two transitions t1 and t2 can fire concurrently. However, in the correspond-
ing dpo grammar the productions associated to t1 and t2 delete and generate
again the same node ns and thus they are forced to be applied sequentially.

5 Encoding safe nets

If we restrict to safe inhibitor and reset nets, the encodings given in the pre-
vious section can be improved to preserve also the concurrent operational
behaviour of the original net. We discuss only the case of inhibitor nets, since
the one of reset nets is, again, related to it by the usual form of duality.

Given a safe inhibitor net, the idea is to include in the type graph a different
node for each transition which is inhibited by a given place. More precisely, for
each transition t and for each place s which inhibits t, the type graph includes
a node (s, t). There is still only one edge associated to s, and it is connected to
all such nodes. Then the production corresponding to t will delete and produce
again node (s, t). In this way, because of the dangling condition it will not be
enabled if there is a token in s (represented by an s-edge connected to all the
(s, ti) nodes). But having a different node for each transition inhibited by s

allows one to fire in parallel several transitions inhibited by the same place.
Having only one node for each transition suffices, since in a safe net one cannot
have two copies of the same transition concurrently enabled.

Definition 5.1 Let NI = 〈S, Tr, F, C, I, m〉 be an inhibitor Petri net. The
corresponding dpo grammar G ′

d(NI) = 〈T, Gs, P, π〉 is defined as follows.

• T = (V, S, c), where
· V =

⋃
t∈Tr

�t × {t},
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Figure 12. The dpo grammar corresponding to the safe inhibitor net in Fig. 11.

· c(s) = (s, t1) . . . (s, tk) if �s = {t1, . . . .tn}

• P = Tr

• GS = G̃T (m)

• for any t ∈ P ,

π(t) = GT (t ⊕ •t) ∪ Gt ∪ GI ← GT (t) ∪ Gt → GT (t ⊕ t•) ∪ Gt ∪ GI

where Gt = 〈([[ •t ⊕ t•]] × Tr) ∩ V, ∅, ∅〉, GI = 〈�t × {t}, ∅, ∅〉 and the left
and right morphisms in the span are inclusions.

Informally, the production corresponding to t deletes the edges in its pre-set,
preserve the edges in its context, produces the edges in its post-set, preserving
all the attached nodes, and deletes and produces again the nodes (t, s) for any
inhibiting place s ∈ �t.

As an example, the dpo graph grammar corresponding to the safe inhibitor
net in Fig. 11, can be found in Fig. 12. It can be shown that this new encoding
preserve also concurrent steps of the original net.

Proposition 5.2 Let NI be a safe inhibitor net and let M be a safe marking

of NI . Then M [t1 + . . . + tn〉M ′ in NI iff G̃T (M)
t1+...+tn=⇒ G′ and m(G′) = M ′

in G ′
d(NI).

6 Conclusions

In this paper we discussed how the intuitive view of graph grammars as gener-
alisations of Petri nets can be made formal. More specifically, we showed that
graph rewriting in the double-pushout and single-pushout approach is strictly
related to inhibitor and reset Petri nets, respectively.

We proved that any safe dpo/spo grammar can be encoded as a safe in-
hibitor/reset net. Vice versa, general inhibitor and reset nets can be encoded
as dpo and spo grammars, respectively. This last encoding preserves the se-
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quential, but not the concurrent behaviour of the models at hand. An encoding
which preserves the concurrent behaviour is defined only for safe inhibitor and
reset nets. We conjecture that this should be extensible also to bounded nets,
but not to general nets. In fact when encoding a net transition as a dpo (spo)
production, the negative testing (reset) operation is simulated by an action
which deletes a part of the state, thus imposing a bound to the number of
tests which can be performed in parallel.

Generally speaking, we hope that this formalisation of the relationship
between graph grammars and generalised Petri nets, can help to enhance the
already lively cross-fertilization activity between the two areas. In particular,
this tight relationship suggests the possibility of reusing in the setting of graph
rewriting the enormous amount of notions, techniques and tools existing for
Petri nets, and of studying problems conceptually relevant for graph rewriting
in the simpler setting of inhibitor and reset nets.
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