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Abstract

A study of Sophie Germain’s extensive manuscripts on Fermat’s Last Theorem calls for a reassessment of
her work in number theory. There is much in these manuscripts beyond the single theorem for Case 1 for which
she is known from a published footnote by Legendre. Germain had a full-fledged, highly developed, sophisti-
cated plan of attack on Fermat’s Last Theorem. The supporting algorithms she invented for this plan are based
on ideas and results discovered independently only much later by others, and her methods are quite different
from any of Legendre’s. In addition to her program for proving Fermat’s Last Theorem in its entirety, Germain
also made major efforts at proofs for particular families of exponents. The isolation Germain worked in, due in
substantial part to her difficult position as a woman, was perhaps sufficient that much of this extensive and
impressive work may never have been studied and understood by anyone.
© 2009 Elsevier Inc. All rights reserved.

Résumé

Une étude approfondie des manuscrits de Sophie Germain sur le dernier théoréme de Fermat, révéle que 'on
doit réévaluer ses travaux en théorie des nombres. En effet, on trouve dans ses manuscrits beaucoup plus que le
simple théoréme du premier cas que Legendre lui avait attribué dans une note au bas d’une page et pour lequel
elle est reconnue. Mme Germain avait un plan trés élaboré et sophistiqué pour prouver entiérement ce dernier
théoréeme de Fermat. Les algorithmes qu’elle a inventés sont basés sur des idées et resultats qui ne furent indé-
pendamment découverts que beaucoup plus tard. Ses méthodes sont également assez différentes de celles de
Legendre. En plus, Mme Germain avait fait de remarquables progrés dans sa recherche concernant certaines
familles d’exposants. L’isolement dans lequel Sophie Germain se trouvait, en grande partie di au fait qu’elle
était une femme, fut peut-étre suffisant, que ses impressionnants travaux auraient pu passer complétement inap-
er¢us et demeurer incompris.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Sophie Germain (Fig. 1) was the first woman known for important original research in
mathematics.”> While perhaps more famous for her work in mathematical physics, which
earned her a French Academy prize, Germain is also credited with an important result
in number theory toward proving Fermat’s Last Theorem. We will make a substantial
reevaluation of her work on the Fermat problem, based on translation and mathematical
interpretation of numerous documents in her own hand, and will argue that her accom-
plishments are much broader, deeper, and more significant than has been realized.

Fermat’s Last Theorem refers to Pierre de Fermat’s famous 17th-century claim that the
equation z¥ = x” + y” has no natural number solutions x, y, z for natural number exponents
p > 2. The challenge of proving this assertion has had a tumultuous history, culminating in
Andrew Wiles’ success at the end of the 20th century [Ribenboim, 1999, XI1.2].

Once Fermat had proven his claim for exponent 4 [Dickson, 1920, 615ff; Weil, 1984,
75ff], it could be fully confirmed just by substantiating it for odd prime exponents. But
when Sophie Germain began working on the problem at the turn of the 19th century,
the only prime exponent that had a proof was 3 [Dickson, 1920, XXVI; Edwards, 1977,
Ch. 3; Ribenboim, 1999, 1.6, IV; Weil, 1984, 335ff]. As we will see, Germain not only devel-
oped the one theorem she has long been known for toward proving part of Fermat’s Last
Theorem for all primes. Her manuscripts reveal a comprehensive program to prove Fer-
mat’s Last Theorem in its entirety.

1.1. Germain’s background and mathematical development
Sophie Germain® was born on April 1, 1776 and lived with her parents and sisters in the
center of Paris throughout the upheavals of the French Revolution. Even if kept largely
indoors, she must as a teenager have heard, and perhaps seen, some of its most dramatic
and violent events. Moreover, her father, Ambroise-Francois Germain, a silk merchant,
was an elected member of the third estate to the Constituent Assembly convened in 1789
[Bucciarelli and Dworsky, 1980, 9ff]. He thus brought home daily intimate knowledge of
events in the streets, the courts, etc.; how this was actually shared, feared, and coped with
by Sophie Germain and her family we do not know.

Much of what we know of Germain’s life comes from the biographical obituary [Libri,
1832a] published by her friend and fellow mathematician Guglielmo Libri, shortly after her
death in 1831. He wrote that at age 13, Sophie Germain, partly as sustained diversion from
her fears of the Revolution beginning outside her door, studied Montucla’s Histoire des

! From Bucciarelli and Dworsky [1980, 17].

2 A biography of Germain, with concentration on her work in elasticity theory, discussion of her
personal and professional life, and references to the historical literature about her, is the book
[Bucciarelli and Dworsky, 1980].

3 Much of our description here of Germain’s background appears also in Pengelley [in press].
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Figure 1. Sophie Germain: a bust by Z. Astruc.

mathématiques, where she read of the death of Archimedes on the sword of a Roman sol-
dier during the fall of Syracuse, because he could not be distracted from his mathematical
meditations. And so it seems that Sophie herself followed Archimedes, becoming utterly
absorbed in learning mathematics, studying without any teacher from a then common
mathematical work by Etienne Bezout that she found in her father’s library.

Her family at first endeavored to thwart her in a taste so unusual and socially unaccept-
able for her age and sex. According to Libri, Germain rose at night to work from the glim-
mer of a lamp, wrapped in covers, in cold that often froze the ink in its well, even after her
family, in order to force her back to bed, had removed the fire, clothes, and candles from
her room; it is thus that she gave evidence of a passion that they thereafter had the wisdom
not to oppose further. Libri writes that one often heard of the happiness with which Ger-
main rejoiced when, after long effort, she could persuade herself that she understood the
language of analysis in Bezout. Libri continues that after Bezout, Germain studied Cousin’s
differential calculus, and was absorbed in it during the Reign of Terror in 1793-1794. 1t is
from roughly 1794 onward that we have some records of Germain interacting with the pub-
lic world. It was then, Libri explains, that Germain did something so rashly remarkable that
it would actually lack believability if it were mere fiction.

Germain, then 18 years old, first somehow obtained the lesson books of various profes-
sors at the newly founded Ecole Polytechnique, and was particularly focused on those of
Joseph-Louis Lagrange on analysis. The Ecole, a direct outgrowth of the French Revolu-
tion, did not admit women, so Germain had no access to this splendid new institution
and its faculty. However, the Ecole did have the novel feature, heralding a modern univer-
sity, that its professors were both teachers and active researchers. Indeed, its professors
included some of the best scientists and mathematicians in the world. Libri writes that pro-
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fessors had the custom, at the end of their lecture courses, of inviting their students to pres-
ent them with written observations. Sophie Germain, assuming the name of an actual stu-
dent at the Ecole Polytechnique, one Antoine-August LeBlanc, submitted her observations
to Lagrange, who praised them, and learning the true name of the imposter, actually went
to her to attest his astonishment in the most flattering terms.

Perhaps the most astounding aspect is that Germain appears to have entirely self-edu-
cated herself to at least the undergraduate level, capable of submitting written student work
to Lagrange, one of the foremost researchers in the world, that was sufficiently notable to
make him seek out the author. Unlike other female mathematicians before her, such as
Hypatia, Maria Agnesi, and Emilie du Chatelet, who had either professional mentors or
formal education to this level, Sophie Germain appears to have climbed to university level
unaided and entirely on her own initiative.

Libri continues that Germain’s appearance thus on the Parisian mathematical scene
drew other scholars into conversation with her, and that she became a passionate student
of number theory with the appearance of Adrien-Marie Legendre’s (Fig. 2) Théorie des
Nombres in 1798. Both Lagrange and Legendre became important personal mentors to
Germain, even though she could never attend formal courses of study. After Carl Friedrich
Gauss’s Disquisitiones Arithmeticae appeared in 1801, Germain took the additional auda-
cious step, in 1804, of writing to him, again under the male pseudonym of LeBlanc (who
in the meantime had died), enclosing some research of her own on number theory, and par-
ticularly on Fermat’s Last Theorem. Gauss entered into serious mathematical correspon-
dence with “Monsieur LeBlanc.” In 1807 the true identity of LeBlanc was revealed to
Gauss when Germain intervened with a French general, a family friend, to ensure Gauss’s
personal safety in Braunschweig during Napoleon’s Jena campaign [Bucciarelli and Dwor-
sky, 1980, Ch. 2, 3]. Gauss’s response to this surprise metamorphosis of his correspondent
was extraordinarily complimentary and encouraging to Germain as a mathematician, and
quite in contrast to the attitude of many 19th-century scientists and mathematicians about
women’s abilities:

But how can I describe my astonishment and admiration on seeing my esteemed corre-
spondent Monsieur LeBlanc metamorphosed into this celebrated person, yielding a copy
so brilliant it is hard to believe? The taste for the abstract sciences in general and, above
all, for the mysteries of numbers, is very rare: this is not surprising, since the charms of
this sublime science in all their beauty reveal themselves only to those who have the cour-
age to fathom them. But when a woman, because of her sex, our customs and prejudices,
encounters infinitely more obstacles than men, in familiarizing herself with their knotty
problems, yet overcomes these fetters and penetrates that which is most hidden, she
doubtless has the most noble courage, extraordinary talent, and superior genius. Nothing
could prove to me in a more flattering and less equivocal way that the attractions of that
science, which have added so much joy to my life, are not chimerical, than the favor with
which you have honored it.

The scientific notes with which your letters are so richly filled have given me a thousand
pleasures. I have studied them with attention and I admire the ease with which you pen-
etrate all branches of arithmetic, and the wisdom with which you generalize and perfect.
[Bucciarelli and Dworsky, 1980, 25]

The subsequent arcs of Sophie Germain’s two main mathematical research trajectories,
her interactions with other researchers, and with the professional institutions that forced
her, as a woman, to remain at or beyond their periphery, are complex. Germain’s develop-
ment of a mathematical theory explaining the vibration of elastic membranes is told by
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Figure 2. Adrien-Marie Legendre.

Bucciarelli and Dworsky in their mathematical biography [Bucciarelli and Dworsky, 1980].
In brief, the German physicist Ernst Chladni created a sensation in Paris in 1808 with his
demonstrations of the intricate vibrational patterns of thin plates, and at the instigation of
Napoleon, the Academy of Sciences set a special prize competition to find a mathematical
explanation. Germain pursued a theory of vibrations of elastic membranes, and based on
her partially correct submissions, the Academy twice extended the competition, finally
awarding her the prize in 1816, while still criticizing her solution as incomplete, and did
not publish her work [Bucciarelli and Dworsky, 1980, Ch. 7]. The whole experience was def-
initely bittersweet for Germain.

The Academy then immediately established a new prize, for a proof of Fermat’s Last
Theorem. While Sophie Germain never submitted a solution to this new Academy prize
competition, and she never published on Fermat’s Last Theorem, it has long been known
that she worked on it, from the credit given her in Legendre’s own 1823 memoir published
on the topic [Bucciarelli and Dworsky, 1980, 87; Laubenbacher and Pengelley, 1999, 189;
Legendre, 1823]. Our aim in this paper is to analyze the surprises revealed by Germain’s
manuscripts and letters, containing work on Fermat’s Last Theorem going far beyond what
Legendre implies.

We will find that the results Legendre credits to Germain were merely a small piece of a
much larger body of work. Germain pursued nothing less than an ambitious full-fledged
plan of attack to prove Fermat’s Last Theorem in its entirety, with extensive theoretical
techniques, side results, and supporting algorithms. What Legendre credited to her, known
today as Sophie Germain’s Theorem, was simply a small part of her big program, a piece
that could be encapsulated and applied separately as an independent theorem, as was put in
print by Legendre.

1.2. Germain’s number theory in the literature

Sophie Germain’s principal work on the Fermat problem has long been understood to be
entirely described by a single footnote in Legendre’s 1823 memoir [Dickson, 1920, 734;
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Edwards, 1977, Ch. 3; Legendre, 1823, §22; Ribenboim, 1999, 110]. The memoir ends with
Legendre’s own proof for exponent 5, only the second odd exponent for which it was pro-
ven. What interests us here, though, is the first part of his treatise, since Legendre presents a
general analysis of the Fermat equation whose main theoretical highlight is a theorem
encompassing all odd prime exponents, today named after Germain:

Sophie Germain’s Theorem. For an odd prime exponent p, if there exists an auxiliary prime 0
such that there are no two nonzero consecutive pth powers modulo 0, nor is p itself a pth power
modulo 0, then in any solution to the Fermat equation z¥ = x + yP, one of x,y, or z must be
divisible by p*.

Sophie Germain’s Theorem can be applied for many prime exponents, by producing a
valid auxiliary prime, to eliminate the existence of solutions to the Fermat equation involv-
ing numbers not divisible by the exponent p. This elimination is today called Case 1 of Fer-
mat’s Last Theorem. Work on Case 1 has continued to the present, and major results,
including for instance its recent establishment for infinitely many prime exponents [Adle-
man and Heath-Brown, 1985; Fouvry, 1985], have been proven by building on the very the-
orem that Germain introduced.

Before proceeding further, we briefly give the minimum mathematical background
needed to understand fully the statement of the theorem, and then an illustration of its
application. The reader familiar with modular arithmetic may skip the next two
paragraphs.

Two whole numbers a and b are called “congruent” (or “equivalent”) “modulo 6” (where
0 is a natural number called the modulus) if their difference a — b is a multiple of 0; this is
easily seen to happen precisely if they have the same remainder (“residue”) upon division by
0. (Of course the residues are numbers between 0 and 0 — 1, inclusive.) We write
a = b(mod @) and say “a is congruent to b modulo 6” (or for short, just “a is » modulo
0”).* Congruence satisfies many of the same simple properties that equality of numbers
does, especially in the realms of addition, subtraction, and multiplication, making it both
useful and easy to work with. The reader will need to become familiar with these properties,
and we will not spell them out here. The resulting realm of calculation is called “modular
arithmetic,” and its interesting features depend very strongly on the modulus 6.

In the statement of the theorem, when one considers whether two numbers are “consec-
utive modulo 6,” one means therefore not that their difference is precisely 1, but rather that
it is congruent to 1 modulo 0; notice that one can determine this by looking at the residues
of the two numbers and seecing if the residues are consecutive. (Technically, one also needs
to recognize as consecutive modulo 0 two numbers whose residues are 0 and 0 — 1, since
although the residues are not consecutive as numbers, the original numbers will have a dif-
ference congruent to 0 — (0 — 1) = 1 — 0, and therefore to 1 (mod#). In other words, the
residues 0 and 6 — 1 should be thought of as consecutive in how they represent numbers
via congruence. However, since we are interested only in numbers with nonzero residues,
this complication will not arise for us.)

We are ready for an example. Let us choose p = 3 and 0 = 13, both prime, and test the
two hypotheses of Sophie Germain’s Theorem by brute force calculation. We need to find
all the nonzero residues of third powers (cubic residues) modulo 13. A basic feature of mod-

4 The notation and language of congruences was introduced by Gauss in his Disquisitiones
Arithmeticae in 1801, and Sophie Germain was one of the very first to wholeheartedly and profitably
adopt it in her research.
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ular arithmetic tells us that we need only consider the cubes of the possible residues modulo
13, i.e., from O to 12, since all other numbers will simply provide cyclic repetition of what
these produce. And since we only want nonzero results modulo 0, we may omit 0. Brute
force calculation produces Table 1.

For instance, the residue of 8° = 512 modulo 13 can be obtained by dividing 512 by 13,
with a remainder of 5. However, there are much quicker ways to obtain this, since in a con-
gruence calculation, any number (except exponents) may be replaced with anything congru-
ent to it. So for instance we can easily calculate that 8° = 64 -8 = (—1) - (=5) = 5(mod 13).

Now we ask whether the two hypotheses of Sophie Germain’s Theorem are satisfied.
Indeed, no pair of the nonzero cubic residues 1, 5, 8, 12 modulo 13 are consecutive, and
p = 3 is not itself among the residues. So Sophie Germain’s Theorem proves that any solu-
tion to the Fermat equation z* = x* + y* would have to have one of x, y, or z divisible by
pr=0.

Returning to Legendre’s treatise, after the theorem he supplies a table verifying the
hypotheses of the theorem for p < 100 by brute force display of all the p-th power residues
modulo a single auxiliary prime 0 chosen for each value of p. Legendre then credits Sophie
Germain with both the theorem, which is the first general result about arbitrary exponents
for Fermat’s Last Theorem, and its successful application for p < 100. One assumes from
Legendre that Germain developed the brute force table of residues as her means of verifi-
cation and application of her theorem. Legendre continues to develop more theoretical
means of verifying the hypotheses of Sophie Germain’s Theorem, and he also pushes the
analysis further to demonstrate that any solutions to the Fermat equation for certain expo-
nents would have to be extremely large.

For almost two centuries, it has been assumed that this theorem and its application to
exponents less than 100, the basis of Germain’s reputation, constitute her entire contribu-
tion to Fermat’s Last Theorem. However, we will find that this presumption is dramatically
off the mark as we study Germain’s letters and manuscripts. The reward is a wealth of new
material, a vast expansion over the very limited information known just from Legendre’s
footnote. We will explore its enlarged scope and extent. Figs. 8 and 9 in Section 7 show
all the interconnected pieces of her work, and the place of Sophie Germain’s Theorem in
it. The ambitiousness and importance of Germain’s work will prompt a major reevaluation,
and recommend a substantial elevation of her reputation.

Before considering Germain’s own writing, we note that the historical record based
solely on Legendre’s footnote has itself been unjustly portrayed. Even the limited results
that Legendre clearly attributed to Germain have been understated and misattributed in
much of the vast secondary literature. Some writers state only weaker forms of Sophie Ger-
main’s Theorem, such as merely for p = 5, or only for auxiliary primes of the form 2p + 1
(known as “Germain primes”’), which happen always to satisfy the two required hypotheses.
Others only conclude divisibility by the first power of p, and some writers have even attrib-
uted the fuller p?-divisibility, or the determination of qualifying auxiliaries for p < 100, to
Legendre rather than to Germain. A few have even confused the results Legendre credited
to Germain with a completely different claim she had made in her first letter to Gauss, in
1804 [Stupuy, 1896]. We will not list all these failings here. Fortunately a few books have
correctly stated Legendre’s attribution to Germain [Dickson, 1920, 734; Edwards, 1977,
Ch. 3; Ribenboim, 1999, 110]. We will not elaborate in detail on the huge related mathemat-
ical literature except for specific relevant comparisons of mathematical content with Ger-
main’s own work. Ribenboim’s most recent book [Ribenboim, 1999] gives a good overall
history of related developments, including windows into the intervening literature.
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Table 1

Cubic residues modulo 13.

Residue 1 2 3 4 5 6 7 8 9 10 11 12

Cube 1 8 27 64 125 216 343 512 729 1000 1331 1728

Cubic 1 8 1 12 8 8 5 5 1 12 5 12
residue

1.3. Manuscript sources, recent research, and scope

Bucciarelli and Dworsky’s mathematical biography of Germain’s work on elasticity the-
ory [Bucciarelli and Dworsky, 1980] utilized numerous Germain manuscripts from the
archives of the Bibliothéque Nationale in Paris. Many other Germain manuscripts are also
held in the Biblioteca Moreniana in Florence [Del Centina et al., 2004, 229-235, 239-241;
Del Centina, 2005].> While Bucciarelli and Dworsky focused primarily on her work on elas-
ticity theory, many of the manuscripts in these archives are on number theory. Their book
also indicates that there are unpublished letters from Germain to Gauss, held in Goéttingen;
in particular, there is a letter written in 1819 almost entirely about Fermat’s Last Theorem.

It appears that Germain’s number theory manuscripts have received little attention during
the nearly two centuries since she wrote them. We began working with them in 1994, and pub-
lished a translation and analysis of excerpts from one (Manuscript B below) in our 1999 book
[Laubenbacher and Pengelley, 1999, 190f]. We demonstrated there that the content and proof
of Sophie Germain’s Theorem, as attributed to her by Legendre, is implicit within the much
broader aims of that manuscript, thus substantiating in Germain’s own writings Legendre’s
attribution. Since then we have analyzed the much larger corpus of her number theory

> The story of how Germain’s manuscripts ended up in the two archives is an extraordinary one, a
consequence of the amazing career of Guglielmo (Guillaume) Libri, mathematician, historian,
bibliophile, thief, and friend of Sophie Germain [Del Centina et al., 2004; Ruju and Mostert, 1995].
Exactly how Libri originally obtained Germain’s manuscripts remains uncertain. We note, however,
that Germain was not affiliated with any institution that might naturally have taken them, while
Libri was a good friend of hers. After his expulsion from Tuscany for his role in the plot to persuade
the Grand Duke to promulgate a constitution, Libri traveled for many months, not reaching Paris
until fully six months after Germain died. Nonetheless, it seems he ended up with almost all her
papers [Del Centina et al., 2004, 142f], and it was entirely in character for him to manage this, since
he built a gargantuan private library of important books, manuscripts, and letters [Del Centina et al.,
2004].

It appears that many of Germain’s manuscripts in the Bibliothéque Nationale were probably
among those confiscated by the police from Libri’s apartment at the Sorbonne when he fled to
London in 1848 to escape the charge of thefts from French public libraries [Del Centina et al., 2004,
146]. The Germain manuscripts in the Biblioteca Moreniana were among those shipped with Libri’s
still remaining vast collection of books and manuscripts before he set out to return from London to
Florence in 1868. These latter Germain materials are among those fortunate to have survived intact
despite a long and tragic string of events following Libri’s death in 1869 [Del Centina et al., 2004;
Del Centina, 2005]. Ultimately it seems that Libri was the good fortune that saved Germain’s
manuscripts; otherwise they might simply have drifted into oblivion. See also [Del Centina, 2002a,b,
2006] for the story of Abel manuscripts discovered in the Libri collections in the Biblioteca
Moreniana.
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manuscripts, and we present here our overall evaluation of her work on Fermat’s Last The-
orem, which forms a coherent theory stretching over several manuscripts and letters.

Quite recently, and independently from us, Andrea Del Centina [2008] has also tran-
scribed and analyzed some of Germain’s manuscripts, in particular one at the Biblioteca
Moreniana and its more polished copy at the Bibliotheque Nationale (Manuscripts D
and A below). While there is some overlap between Del Centina’s focus and ours, there
are major differences in which manuscripts we consider, and in what aspects of them we
concentrate on. In fact our research and Del Centina’s are rather complementary in what
they analyze and present. Overall there is no disagreement between the main conclusions we
and Del Centina draw; instead they supplement each other. After we list our manuscript
sources below, we will compare and contrast Del Centina’s specific selection of manuscripts
and emphasis with ours, and throughout the paper we will annotate any specifically notable
comparisons of analyses in footnotes.

Germain’s handwritten papers on number theory in the Bibliothéque Nationale are
almost all undated, relatively unorganized, and unnumbered except by the archive. And
they range all the way from scratch paper to some beautifully polished finished pieces.
We cannot possibly provide a definitive evaluation here of this entire treasure trove, nor
of all the manuscripts in the Biblioteca Moreniana. We will focus our attention within these
two sets of manuscripts on the major claims about Fermat’s Last Theorem that Germain
outlined in her 1819 letter to Gauss, the relationship of these claims to Sophie Germain’s
Theorem, and presenting a coherent and comprehensive mathematical picture of the many
facets of Germain’s overall plan of attack on Fermat’s Last Theorem, distilled from the var-
ious manuscripts.

We will explain some of Germain’s most important mathematical devices in her
approach to Fermat’s Last Theorem, provide a sense for the results she successfully
obtained and the ones that are problematic, compare with the impression of her work left
by Legendre’s treatise, and in particular discuss possible overlap between Germain’s work
and Legendre’s. We will also find connections between Germain’s work on Fermat’s Last
Theorem and that of mathematicians of the later nineteenth and twentieth centuries.
Finally, we will discuss claims in Germain’s manuscripts to have actually fully proven Fer-
mat’s Last Theorem for certain exponents.

Our assessment is based on analyzing all of the following, to which we have given short
suggestive names for reference throughout the paper:

e Manuscript A (Bibliothéque Nationale): An undated manuscript entitled Remarques sur
limpossibilité de satisfaire en nombres entiers a ['équation x? + y? =z’ [Germain, MS.
FRI114, 198r-208v] (20 sheets numbered in Germain’s hand, with 13 carefully labeled
sections). This is a highly polished version of Manuscript D (some, but not all, of the
marginal notes added to Manuscript A have been noted in the transcription of Manu-
script D in Del Centina [2008]).

e Errata to Manuscript A (Biblioth¢que Nationale): Two undated sheets [Germain, MS.
FR9114, 214r, 215v] titled “errata” or “erratu.”

e Manuscript B (Bibliothéque Nationale): An undated manuscript entitled Démonstration
de I'impossibilité de satisfaire en nombres entiers a I'équation z>®*3) = y2EnE3) | 2(8nk3)
[Germain, MS. FR9114, 92r-94v] (4 sheets).

e Manuscript C (Bibliothéque Nationale): A polished undated set of three pages [Germain,
MS. FRI115, 348r-349r] stating and claiming a proof of Fermat’s Last Theorem for all
even exponents.
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e Letter from Germain to Legendre (New York Public Library): An undated three page let-
ter [Germain, Letter to Legendre]® about Fermat’s Last Theorem.

e Manuscript D (Biblioteca Moreniana): A less polished version of Manuscript A [Ger-
main, Nuovo Fondo Libri, cass. 11, ins. 266; Del Centina et al., 2004, 234] (25 pages,
the 19th blank), transcribed in Del Centina [2008].

o Letter of May 12, 1819 from Germain to Gauss (Niedersidchsische Staats- und Universi-
tatsbibliothek Gottingen): A letter of eight numbered sheets [Germain, 1819], mostly
about her work on Fermat’s Last Theorem, transcribed in Del Centina [2008].

Together these appear to be Germain’s primary pieces of work on Fermat’s Last Theo-
rem. Nevertheless, our assessment is based on only part of her approximately 150-200
pages of number theory manuscripts in the Bibliothéque, and other researchers may ulti-
mately have more success than we at deciphering, understanding, and interpreting them.
Also, there are numerous additional Germain papers in the Biblioteca Moreniana that
may yield further insight. Finally, even as our analysis and evaluation answer many ques-
tions, they will also raise numerous new ones, so there is fertile ground for much more study
of her manuscripts by others. In particular, questions of the chronology of much of her
work, and of her interaction with others, still contain enticing perplexities.

Before beginning our analysis of Germain’s manuscripts, we summarize for comparison
Andrea Del Centina’s recent work [Del Centina, 2008]. He first analyzes an appendix’ to an
1804 letter from Germain to Gauss (for which he provides a transcription in his own appen-
dix). This represents her very early work on Fermat’s Last Theorem, in which she claims
(incorrectly) a proof for a certain family of exponents; this 1804 approach was mathemat-
ically unrelated to the coherent theory that we will see in all her much later manuscripts.
Then Del Centina provides an annotated transcription of the entire 1819 letter to Gauss,
which provides her own not too technical overview for Gauss of her later and more mature
mathematical approach. We focus on just a few translated excerpts from this 1819 letter, to
provide an overview and to introduce key aspects of her various manuscripts.

Finally Del Centina leads the reader through an analysis of the mathematics in Manu-
script D (almost identical with A), which he also transcribes in its entirety in an appendix.
Although Manuscript A is our largest and most polished single source, we view it within the
context of all the other manuscripts and letters listed above, since our aim is to present most
of Germain’s web of interconnected results in one integrated mathematical framework,
illustrated in Figs. 8 and 9 in Section 7. Also, even in the analysis of the single Manuscript
A that is discussed in both Del Centina’s paper and ours, we and Del Centina very often
place our emphases on different aspects, and draw somewhat different conclusions about
parts of the manuscript. We will not remark specially on numerous aspects of Manuscript
A that are discussed either only in his paper or only in ours; the reader should consult both.
Our footnotes will largely comment on differences in the treatment of aspects discussed in

® Although we have found nothing else in the way of correspondence between Legendre and
Germain on Fermat’s Last Theorem, we are fortunate to know of this one critical letter, held in the
Samuel Ward papers of the New York Public Library. These papers include, according to the
collection guide to the papers, “letters by famous mathematicians and scientists acquired by Ward
with his purchase of the library of mathematician A. M. Legendre.” We thank Louis Bucciarelli for
providing us with this lead.

" Held in the Biblioteca Moreniana.
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both papers.® Del Centina does not mention Germain’s Errata to Manuscript A (noted by
her in its margin), nor Manuscripts B or C, or the letter from Germain to Legendre, all of
which play a major role for us.

1.4. Outline for our presentation of Germain’s work

In Section 2 we will examine the interaction and mutual influences between Germain and
Gauss, focusing on Fermat’s Last Theorem. In particular we will display Germain’s sum-
mary explanation to Gauss in 1819 of her “grand plan” for proving the impossibility of
the Fermat equation outright, and her description of related successes and failures. This
overview will serve as introduction for reading her main manuscripts, and to the big picture
of her body of work.

The four ensuing sections, 3—6, contain our detailed analysis of the essential components of
Germain’s work. Her mathematical aims included a number of related results on Fermat’s
Last Theorem, namely her grand plan, large size of solutions, p*-divisibility of solutions
(i.e., Sophie Germain’s Theorem, applicable to Case 1), and special forms of the exponent.
These results are quite intertwined in her manuscripts, largely because the hypotheses that
require verification overlap. We have separated our exposition of these results in the four sec-
tions in a particular way, explained below, partly for clarity of the big picture, partly to facil-
itate direct comparison with Legendre’s treatise, which had a different focus but much
apparent overlap with Germain’s, and partly to enable easier comparison with the later work
of others. The reader may refer throughout the paper to Figs. 8 and 9 in Section 7, which por-
tray the big picture of the interconnections between Germain’s claims (theorems), conditions
(hypotheses), and propositions and algorithms for verifying these conditions.

Section 3 will address Germain’s grand plan. We will elucidate from Manuscripts A and D
the detailed methods Germain developed in her grand plan, the progress she made, and its dif-
ficulties. We will compare Germain’s methods with her explanation and claims to Gauss, and
with Legendre’s work. The nonconsecutivity condition on pth-power residues modulo an
auxiliary prime 0, which we saw above in the statement of Sophie Germain’s Theorem, is
key also to Germain’s grand plan. It has been pursued by later mathematicians all the way
to the present day, and we will compare her approach to later ones. We will also explore
whether Germain at some point realized that her grand plan could not be carried through,
using the published historical record and a single relevant letter from Germain to Legendre.

Section 4 will explore large size of solutions and p?-divisibility of solutions. In Manu-
scripts A and D Germain proved and applied a theorem which we shall call “Large size
of solutions,” whose intent is to convince that any solutions which might exist to a Fermat
equation would have to be astronomically large, a claim we will see she mentioned to Gauss
in her 1819 letter. Germain’s effort here is challenging to evaluate, since her proof as given
in the primary manuscript is flawed, but she later recognized this and attempted to compen-
sate. Moreover, Legendre published similar results and applications, which we will contrast
with Germain’s. We will discover that the theorem on p?-divisibility of solutions that is
known in the literature as Sophie Germain’s Theorem is simply minor fallout from her
“Large size of solutions” analysis. And we will compare the methods she uses to apply
her theorem with the methods of later researchers.

8 In particular, in Section 4.1.4 we examine a subtle but critical mistake in Germain’s proof of a
major result and her later attempts to remedy it. In his analysis of the same proof, Del Centina does
not appear to be aware of this mistake or its consequences.
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Section 5 addresses a large family of prime exponents for the Fermat equation. In Man-
uscript B, Germain claims proof of Fermat’s Last Theorem for this family of exponents,
building on an essentially self-contained statement of Sophie Germain’s Theorem on p*-
divisibility of solutions to deal with Case 1 for all exponents first.

Section 6 considers even exponents. Germain’s Manuscript C, using a very different
approach from the others, claims to prove Fermat’s Last Theorem for all even exponents
based on the impossibility of another Diophantine equation.

We end the paper with three final sections: a précis and connections for Germain’s var-
1ous thrusts at Fermat’s Last Theorem, our reevaluation, and a conclusion. The reevalua-
tion will take into account Germain’s frontal assault on Fermat’s Last Theorem, her
analysis leading to claims of astronomical size for any possible solutions to the Fermat
equation, the fact that Sophie Germain’s Theorem is in the end a small piece of something
much more ambitious, our assessment of how independent her work actually was from her
mentor Legendre’s, of the methods she invented for verifying various conditions, and of the
paths unknowingly taken in her footsteps by later researchers. We will conclude that a sub-
stantial elevation of Germain’s contribution is in order.

2. Interactions with Gauss on number theory

Number theory held a special fascination for Germain throughout much of her life. Lar-
gely self-taught, due to her exclusion as a woman from higher education and normal sub-
sequent academic life, she had first studied Legendre’s Théorie des Nombres, published in
1798, and then devoured Gauss’s Disquisitiones Arithmeticae when it appeared in 1801
[Libri, 1832a]. Gauss’s work was a complete departure from everything that came before,
and organized number theory as a mathematical subject [Goldstein and Schappacher,
2007; Neumann, 2005], with its own body of methods, techniques, and objects, including
the theory of congruences and the roots of the cyclotomic equation.

2.1. Early correspondence

Germain’s exchange of letters with Gauss, initiated under the male pseudonym LeBlanc,
lasted from 1804 to 1808, and gave tremendous impetus to her work. In her first letter [Bon-
compagni, 1880]° she sent Gauss some initial work on Fermat’s Last Theorem stemming
from inspiration she had received from his Disquisitiones.

Gauss was greatly impressed by Germain’s work, and was even stimulated thereby in
some of his own, as evidenced by his remarks in a number of letters to his colleague Wil-
helm Olbers. On September 3, 1805 Gauss wrote [Schilling, 1900, 268]: “Through various
circumstances — partly through several letters from LeBlanc in Paris, who has studied
my Disq. Arith. with a true passion, has completely mastered them, and has sent me occa-
sional very respectable communications about them, [...] I have been tempted into resum-
ing my beloved arithmetic investigations.”'® After LeBlanc’s true identity was revealed to
him, he wrote again to Olbers, on March 24, 1807 [Schilling, 1900, 331]: “Recently my Disgq.
Arith. caused me a great surprise. Have I not written to you several times already about a
correspondent LeBlanc from Paris, who has given me evidence that he has mastered com-

% Relevant excerpts can be found in Chapter 3 of Bucciarelli and Dworsky [1980]; see also Stupuy
[1896].
1 Throughout the paper, any English translations are our own, unless cited otherwise.
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pletely all investigations in this work? This LeBlanc has recently revealed himself to me
more closely. That LeBlanc is only a fictitious name of a young lady Sophie Germain surely
amazes you as much as it does me.”

Gauss’s letter to Olbers of July 21 of the same year shows that Germain had become a
valued member of his circle of correspondents [Schilling, 1900, 376-377]: “Upon my return
I have found here several letters from Paris, by Bouvard, Lagrange, and Sophie Germain.
[...] Lagrange still shows much interest in astronomy and higher arithmetic; the two sample
theorems (for which prime numbers'! is [the number] two a cubic or biquadratic residue),
which I also told you about some time ago, he considers ‘that which is most beautiful and
difficult to prove.” But Sophie Germain has sent me the proofs for them; I have not yet been
able to look through them, but I believe they are good; at least she has approached the mat-
ter from the right point of view, only they are a little more long-winded than will be
necessary.”

The two theorems on power residues were part of a letter Gauss wrote to Germain on
April 30, 1807 [Gauss, 18631929, Vol. 10, 70-74]. Together with these theorems he also
included, again without proof, another result now known as Gauss’s Lemma, from which
he says one can derive special cases of the Quadratic Reciprocity Theorem, the first deep
result discovered and proven about prime numbers.'? In a May 12, 1807 letter to Olbers,
Gauss says, “Recently I replied to a letter of hers and shared some Arithmetic with her,
and this led me to undertake an inquiry again; only two days later I made a very pleasant
discovery. It is a new, very neat, and short proof of the fundamental theorem of art. 131”
[Schilling, 1900, 360]. The proof Gauss is referring to, based on the above lemma in his letter
to Germain, is now commonly called his “third” proof of the Quadratic Reciprocity The-
orem, and was published in 1808 [Gauss, 1808], where he says he has finally found “the sim-
plest and most natural way to its proof” (see also [Laubenbacher and Pengelley,
1994a,b)).

We shall see in Germain’s manuscripts that the influence of Gauss’s Disquisitiones on
her work was all-encompassing; her manuscripts and letters use Gauss’s congruence
notion and point of view throughout, in contrast to her Paris mentor Legendre’s style
of equalities “omitting multiples” of the modulus. Her work benefits from the ease of
writing and thinking in terms of arithmetic modulo a prime enabled by the Disquisitiones
[Goldstein and Schappacher, 2007; Neumann, 2005; Wussing, 1984]. Germain also seems
to have been one of the very first to adopt and internalize in her own research the ideas
of the Disquisitiones. But her work, largely unpublished, may have had little influence on
the next generation.

2.2. Letter of 1819 about Fermat's Last Theorem

On 12 May 1819, Sophie Germain penned a letter from her Parisian home to Gauss in
Gottingen [Germain, 1819]. Most of this lengthy letter describes her work on substantiating
Fermat’s Last Theorem.

The letter provides a window into the context of their interaction on number theory from
a vantage point 15 years after their initial correspondence. It will show us how she viewed
her overall work on Fermat’s Last Theorem at that time, placing it in the bigger picture of

""" As modulus.
12 Gauss was the first to prove quadratic reciprocity, despite major efforts both by its discoverer
Euler and by Legendre.
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her mathematical research, and specifically within her interaction with and influence from
Gauss. And the letter will give enough detail on her actual progress on proving Fermat’s
Last Theorem to prepare us for studying her manuscripts, and to allow us to begin com-
parison with the published historical record, namely the attribution by Legendre in 1823
of Sophie Germain’s Theorem.

Germain’s letter was written after an 11-year hiatus in their correspondence. Gauss had
implied in his last letter to Germain in 1808 that he might not continue to correspond due
to his new duties as astronomer, but the visit of a friend of Gauss’s to Paris in 1819 pro-
vided Germain the encouragement to attempt to renew the exchange [Bucciarelli and
Dworsky, 1980, 86, 137]. She had a lot to say. Germain describes first the broad scope of
many years of work, to be followed by details on her program for proving Fermat’s Last
Theorem:

[...] Although I have worked for some time on the theory of vibrating surfaces [...], I
have never ceased thinking about the theory of numbers. I will give you a sense of my
absorption with this area of research by admitting to you that even without any hope
of success, I still prefer it to other work which might interest me while I think about
it, and which is sure to yield results.

Long before our Academy proposed a prize for a proof of the impossibility of the Fer-
mat equation, this type of challenge, which was brought to modern theories by a geom-
eter who was deprived of the resources we possess today, tormented me often. I glimpsed
vaguely a connection between the theory of residues and the famous equation; I believe I
spokelgo you of this idea a long time ago, because it struck me as soon as I read your
book.

Germain continues the letter by explaining to Gauss her major effort to prove Fermat’s
Last Theorem (Fig. 3), including the overall plan, a summary of results, and claiming to
have proved the astronomically large size of any possible solutions. She introduces her
work to him with the words “Voici ce que ja’i trouvé:” (“Here is what I have found:”).

Here is what I have found: [.. ]

The order in which the residues (powers equal to the exponent'?) are distributed in the
sequence of natural numbers determines the necessary divisors which belong to the num-
bers among which one establishes not only the equation of Fermat, but also many other
analogous equations.

Let us take for example the very equation of Fermat, which is the simplest of those we
consider here. Therefore we have zZ = x” + ), p a prime number. I claim that if this
equation is possible, then every prime number of the form 2Np + 1 (N being any integer),

13 “Quoique jai travaillé pendant quelque tems a la théorie des surfaces vibrantes [...], je n’ai

jamais cess¢ de penser a la théorie des nombres. Je vous donnerai une idée de ma préoccupation
pour ce genre de recherches en vous avouant que méme sans aucune esperance de succes je la prefere
a un travail qui me donnerait necessairement un resultat et qui pourtant m’interresse ...quand j’y
pense.

“Longtems avant que notre academie ait proposé pour sujet de prix la démonstration de
I'impossibilité de I’équation de Fermat cet espece de défi—porté aux théories modernes par un
géometre — qui fut privé des resources que nous possedons aujourd’hui me tourmentait souvent.
Jentrevoyais vaguement une liaison entre la théorie des residus et la fameuse équation, je crois méme
vous avoir parlé anciennement de cette idée car elle m’a frappé aussitot que j’ai connu votre livre”
(Letter to Gauss, p. 2).

14 1., power residues where the power is equal to the exponent in the Fermat equation.
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for which there are no two consecutive p-th power residues in the sequence of natural
numbers, '° necessarily divides one of the numbers x, y, and z.

This is clear, since the equation z/ = x” + y” yields the congruence 1 = r¥ — r? in
which r represents a primitive root and s and ¢ are integers.' [.. ]

It follows that if there were infinitely many such numbers, the equation would be
impossible.

I have never been able to arrive at the infinity, although I have pushed back the limits
quite far by a method of trials too long to describe here. I still dare not assert that for
each value of p there is no limit beyond which all numbers of the form 2Np 4+ 1 have
two consecutive p-th power residues in the sequence of natural numbers. This is the case
which concerns the equation of Fermat.

You can easily imagine, Monsieur, that I have been able to succeed at proving that this
equation is not possible except with numbers whose size frightens the imagination;
because it is also subject to many other conditions which I do not have the time to list
because of the details necessary for establishing its success. But all that is still not enough;
it takes the infinite and not merely the very large.!”

15 Germain is considering congruence modulo an auxiliary prime 6 =2Np + 1 that has no
consecutive nonzero pth-power residues. While the specified form of 0 is not necessary to her
subsequent argument, she knows that only prime moduli of the form 6 = 2Np + 1 can possibly have
no consecutive nonzero pth-power residues, and implicitly that Gauss will know this too. (This is
easy to confirm using Fermat’s “Little” Theorem; see, for instance, [Ribenboim, 1999, 124].) Thus
she restricts without mention to considering only those of this form.

16 Here Germain is utilizing two facts about the residues modulo the prime 6. One is that when the
modulus is prime, one can actually “divide” in modular arithmetic by any number with nonzero
residue. So if none of x, y, andz were divisible by 0, then modular division of the Fermat equation by
x? or y” would clearly produce two nonzero consecutive pth-power residues. She is also using the
fact that for a prime modulus, there is always a number, called a primitive root for this modulus,
such that any number with nonzero residue is congruent to a power of the primitive root. She uses
this representation in terms of a primitive root later on in her work.

17 “Voici ce que j’ai trouvé:

“L’ordre dans lequel les residus (puissances egales a ’exposant) se trouvent placés dans la serie des
nombres naturels détermine les diviseurs necessaires qui appartiennent aux nombres entre lequels on
établit non seulement I’équation de Fermat mais encore beaucoup d’autres équations analogues a celle la.

“Prenons pour exemple I’équation méme de Fermat qui est la plus simple de toutes celles dont il s’agit
ici. Soit donc, p étant un nombre premier, z¥ = x” + y”. Je dis que si cette équation est possible, tout
nombre premier de la forme 2Np + 1 (N étant un entier quelconque) pour lequel il n’y aura pas deux
résidus p'™ puissance placés de suite dans la serie des nombres naturels divisera nécessairement I'un des
nombres x y et z.

“Cela est évident, car 1’équation z’ = x” + y” donne la congruence 1 = ¥ — 1?7 dans laquelle r
represente une racine primitive et s et # des entiers.

“... Il suit dela que s’il y avoit un nombre infini de tels nombres 1’équation serait impossible.

“Je n’ai jamais pa arriver a l'infini quoique j’ai reculé bien loin les limites par une methode de
tatonnement trop longue pour qu’il me soit possible de I'exposer ici. Je n’oserais méme pas affirmer que
pour chaque valeur de p il n’existe pas une limite audela delaquelle tous les nombres de la forme 2Np + 1
auraient deux résidus p**™ placés de suite dans la serie des nombres naturels. C’est le cas qui interesse
I’équation de Fermat.

“Vous concevrez aisement, Monsieur, que j’ai dii parvenir a prouver que cette équation ne serait
possible qu’en nombres dont la grandeur effraye I'imagination ; Car elle est encore assujettic a bien
d’autres conditions que je n’ai pas le tems d’énumérer a cause des details necessaire pour en établir la
réussite. Mais tout cela n’est encore rien, il faut 'infini et non pas le trés grand” (Letter to Gauss, pp. 2-4).
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Figure 3. “Voici ce que ja’i trouvé:” From Germain’s letter to Gauss, 1819.

7~

Several things are remarkable here. Most surprisingly, Germain does not mention to
Gauss anything even hinting at the only result she is actually known for in the literature,
what we call Sophie Germain’s Theorem. Why not? Where is it? Instead, Germain explains
a plan, simple in its conception, for proving Fermat’s Last Theorem outright. It requires
that, for a given prime exponent p, one establish infinitely many auxiliary primes each sat-
isfying a nonconsecutivity condition on its nonzero pth power residues (note that this con-
dition is the very same as one of the two hypotheses required in Sophie Germain’s
Theorem for proving Case 1, but there one only requires a single auxiliary prime, not infi-
nitely many). And she explains to Gauss that since each such auxiliary prime will have to
divide one of Xx, y, z, the existence of infinitely many of them will make the Fermat equation
impossible. She writes that she has worked long and hard at this plan by developing a
method for verifying the condition, made great progress, but has not been able to bring
it fully to fruition (even for a single p) by verifying the condition for infinitely many aux-
iliary primes. She also writes that she has proven that any solutions to a Fermat equation
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would have to “frighten the imagination” with their size. And she gives a few details of her
particular methods of attack. The next two sections will examine the details of these claims
in Germain’s manuscripts.

3. The grand plan

Our aim in this section is to study Germain’s plan for proving Fermat’s Last Theorem, as
outlined to Gauss, to show its thoroughness and sophistication, and to consider its promise
for success.

As we saw Germain explain to Gauss, one can prove Fermat’s Last Theorem for expo-
nent p by producing an infinite sequence of qualifying auxiliary primes. Manuscript A
(Fig. 4) contains, among other things, the full details of her efforts to carry this plan
through, occupying more than 16 pages of very polished writing. We analyze these details
in this section, ending with a comparison between Manuscripts A and D.

3.1. Germain’s plan for proving Fermat’s Last Theorem

We have seen that Germain’s plan for proving Fermat’s Last Theorem for exponent p
hinged on developing methods to validate the following qualifying condition for infinitely
many auxiliary primes of the form 6 = 2Np + 1:

Condition N-C (Non-Consecutivity). There do not exist two nonzero consecutive p™ power
residues, modulo 0.

Early on in Manuscript A (Fig. 5), Germain claims that for each fixed N (except when N
is a multiple of 3, for which she shows that Condition N-C always fails'®), there will be only
finitely many exceptional numbers p for which the auxiliary 0 = 2Np + 1 fails to satisfy
Condition N-C (recall from footnote 15 that only primes of the form 6 = 2Np + 1 can pos-
sibly satisfy the N-C condition). Much of Germain’s manuscript is devoted to supporting
this claim; while she was not able to bring this to fruition, Germain’s insight was vindicated
much later when proven true by E. Wendt in 1894 [Dickson, 1920, 756; Ribenboim, 1999,
124ff; Wendt, 1894]."

Note that a priori there is a difference in impact between analyzing Condition N-C for
fixed N versus for fixed p. To prove Fermat’s Last Theorem for fixed p, one needs to verify
N-C for infinitely many N, whereas Germain’s approach is to fix N and aim to verify N-C
for all but finitely many p. Germain was acutely aware of this distinction. After we see
exactly what she was able to accomplish for fixed N, we will see what she had to say about
converting this knowledge into proving Fermat’s Last Theorem for particular values of p.

Before delving into Germain’s reasoning for general V, let us consider just thecase N = 1,
i.e.,, when 0 = 2p + 1isalso prime, today called a “Germain prime.” We consider N = 1 partly
because it is illustrative and not hard, and partly to relate it to the historical record. Germain
knew well that there are always precisely 2N nonzero pth power residues modulo an auxiliary
prime of the form 0 = 2Np + 1. Thus in this case, the numbers 1 and 2p =0 — 1 = —1 are

% See Ribenboim [1999, 127].

19 Germain’s claim would follow immediately from Wendt’s recasting of the condition in terms of a
circulant determinant depending on N: Condition N-C fails to hold for 0 only if p divides the
determinant, which is nonzero for all N not divisible by 3. There is no indication that Wendt was
aware of Germain’s work.
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Figure 4. Beginning of Manuscript A.

clearly the only nonzero pth power residues, so Condition N-C automatically holds. Of course
for N > 1, with more pth power residues, their distribution becomes more difficult to analyze.
Regarding the historical record, we remark that the other condition of Sophie Germain’s The-
orem for Case 1, namely that p itself not be a pth power modulo 6, is also obviously satisfied in
this case. So Sophie Germain’s Theorem automatically proves Case 1 whenever 2p + 1 is
prime. This may shed light on why, as mentioned earlier, some writers have incorrectly
thought that Sophie Germain’s Theorem deals only with Germain primes as auxiliaries.

3.1.1. Establishing Condition N-C for each N, including an induction on N

In order to establish Condition N-C for various N and p, Germain engages in extensive
analysis over many pages of the general consequences of nonzero consecutive pth power
residues modulo a prime 0 = 2Np + 1 (N never a multiple of 3).

Her analysis actually encompasses all natural numbers for p, not just primes. This is impor-
tant in relation to the form of 0, since she intends to carry out a mathematical induction on N,
and eventually explains in detail her ideas about how the induction should go. She employs
throughout the notion and notation of congruences introduced by Gauss, and utilizes to great
effect a keen understanding that the 2 Np multiplicative units mod 0 are cyclic, generated by a
primitive 2/ Npth root of unity, enabling her to engage in detailed analyses of the relative place-
ment of the nonzero pth powers (i.e., the 2Nth roots of 1) amongst the residues. She is acutely
aware (expressed by us in modern terms) that subgroups of the group of units are also cyclic,
and of their orders and interrelationships, and uses this in a detailed way. Throughout her
analyses she deduces that in many instances the existence of nonzero consecutive pth power
residues would ultimately force 2 to be a pth power mod 6, and she therefore repeatedly con-
cludes that Condition N-C holds under the following hypothesis:

Condition 2-N-p (2 is Not a pth power). The number 2 is not a pth power residue, modulo 6.

Note that this hypothesis is always a necessary condition for Condition N-C to hold,
since if 2 is a pth power, then obviously 1 and 2 are nonzero consecutive pth powers; so
making this assumption is no restriction, and Germain is simply exploring whether 2-N-
p is also sufficient to ensure N-C.
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Figure 5. From the introduction of Manuscript A.

Joide catliv pme .

Always assuming this hypothesis, whose verification we shall discuss in Section 3.1.3, and
also the always necessary condition mentioned above (Section 3.1) that N is not a multiple
of 3, Germain’s analysis initially shows that if there exist two nonzero consecutive pth
power residues, then by inverting them, or subtracting them from —1, or iterating combi-
nations of these transformations, she can obtain more pairs of nonzero consecutive pth
power residues.?’

Germain proves that, under her constant assumption that 2 is not a pth power residue
modulo 6, this transformation process will produce at least 6 completely disjoint such pairs,
i.e., involving at least 12 actual pth power residues.”! Therefore since there are precisely 2N
nonzero pth power residues modulo 0, she instantly proves Condition N-C for all auxiliary
primes 0 with N = 1,2,4,5 as long as p satisfies Condition 2-N-p. Germain continues with
more detailed analysis of these permuted pairs of consecutive pth power residues (still
assuming Condition 2-N-p) to verify Condition N-C for N =7 (excluding p = 2) and
N = 8 (here she begins to use inductive information for earlier values of N).>

At this point Germain explains her general plan to continue the method of analysis to
higher ~, and how she would use induction on N for all p simultaneously. In a nutshell,
she argues that the existence of nonzero consecutive pth power residues would have to
result in a pair of nonzero consecutive pth powers, x, x + 1, for which x is (congruent to)
an odd power (necessarily less than 2N) of x + 1. She claims that one must then analyze

20 In fact these transformations are permuting the pairs of consecutive residues according to an
underlying group with six elements, which we shall discuss later. Germain even notes, when
explaining the situation in her letter to Gauss [Germain, 1819], that from any one of the six pairs, her
transformations will reproduce the five others.

2! Del Centina [2008, 367ff] provides details of how Germain proves this.

22 Del Centina [2008, 369ff] provides details for N = 7, 8.
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cases of the binomial expansion of this power of x + 1, depending on the value of N, to
arrive at the desired contradiction, and she carries out a complete detailed calculation
for N = 10 (excluding p = 2, 3) as a specific “example”?® of how she says the induction will
work in general **

It is difficult to understand fully this part of the manuscript. Germain’s claims may in
fact hold, but we cannot verify them completely from what she says. Germain’s mathemat-
ical explanations often omit many details, leaving much for the reader to fill in, and in this
case, there is simply not enough detail to make a full judgement. Specifically, we have dif-
ficulty with an aspect of her argument for N = 7, with her explanation of exactly how her
mathematical induction will proceed, and with an aspect of her explanation of how in gen-
eral a pair x, x + 1 with the property claimed above is ensured. Finally, Germain’s example
calculation for N = 10 is much more ad hoc than one would like as an illustration of how
things would go in a mathematical induction on N. It seems clear that as this part of the
manuscript ends, she is presenting only a sketch of how things could go, indicated by the
fact that she explicitly states that her approach to induction is via the example of
N = 10, which is not presented in a way that is obviously generalizable. Nonetheless, her
instincts here were correct, as proven by Wendt.

3.1.2. The interplay between N and p

Recall from above that proving Condition N-C for all N, each with finitely many
excepted p, does not immediately solve the Fermat problem.

What is actually needed, for each fixed prime p, is that N-C holds for infinitely many N,
not the other way around. For instance, perhaps p = 3 must be excluded from the valida-
tion of Condition N-C for all sufficiently large N, in which case Germain’s method would
not prove Fermat’s Last Theorem for p = 3. Germain makes it clear early in the manuscript
that she recognizes this issue, that her results do not completely resolve it, and that she has
not proved Fermat’s claim for a single predetermined exponent. But she also states that she
strongly believes that the needed requirements do in fact hold, and that her results for
N < 10 strongly support this. Indeed, note that so far the only odd prime excluded in
any verification was p = 3 for N = 10 (recall, though, that we have not yet examined Con-
dition 2-N-p, which must also hold in all her arguments, and which will also exclude certain
combinations of N and p when it fails).

Germain’s final comment on this issue states first that as one proceeds to ever higher val-
ues of N, there is always no more than a “very small number”>* of values of p for which
Condition N-C fails. If indeed this, the very crux of the whole approach, were the case,
in particular if the number of such excluded p were bounded uniformly, say by K, for all
N, which is what she in effect claims, then a little reflection reveals that indeed her method
would have proven Fermat’s Last Theorem for all but K values of p, although one would
not necessarily know for which values. She herself then states that this would prove the the-
orem for infinitely many p, even though not for a single predetermined value of p. It is in
this sense that Germain believed her method could prove infinitely many instances of Fer-
mat’s Last Theorem.

23 Manuscript A, p. 13.
24 Del Centina [2008, 369ff] also has commentary on this.
25 Manuscript A, p. 15.
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3.1.3. Verifying Condition 2-N-p

We conclude our exposition of Germain’s grand plan in Manuscript A with her subse-
quent analysis of Condition 2-N-p, which was required for all her arguments above.

She points out that for 2 to be a pth power mod 6 = 2Np + 1 means that 2*¥ = 1(mod 0)
(since the multiplicative structure is cyclic). Clearly for fixed N this can only occur for
finitely many p, and she easily determines these exceptional cases through N = 10, simply
by calculating and factoring each 2* — 1 by hand, and observing whether any of the prime
factors are of the form 2Np + 1 for any natural number p. To illustrate, for N = 7 she
writes that

24 _1=3.43.127=3-(14-3+1)-(14-9+1),

so that p = 3,9 are the only values for which Condition 2-N-p fails for this N.

Germain then presents a summary table of all her results verifying Condition N-C for
auxiliary primes 0 using relevant values of N < 10 and primes 2 < p < 100, and says that
it can easily be extended further.?® The results in the table are impressive. Aside from the
case of 0 =43 =14 -3 + 1 just illustrated, the only other auxiliary primes in the range of
her table which must be omitted are & = 31 = 10 - 3 + 1, which she determines fails Condi-
tion 2-N-p, and 0 = 61 = 20 - 3 + 1, which was an exception in her N-C analysis for N = 10.
In fact, each N in her table ends up having at least five primes p with 2 < p < 100 for which
0 = 2Np + 1 is also prime and satisfies the N-C condition.

While the number of p requiring exclusion for Condition 2-N-p may appear “small” for
each N, there seems no obvious reason why it should necessarily be uniformly bounded for
all N; Germain does not discuss this issue specifically for Condition 2-N-p. As indicated
above, without such a bound it is not clear that this method could actually prove any
instances of Fermat’s theorem.

3.1.4. Results of the grand plan

As we have seen above, Germain had a sophisticated and highly developed plan for prov-
ing Fermat’s Last Theorem for infinitely many exponents.

It relied heavily on facility with the multiplicative structure in a cyclic prime field and a
set (group) of transformations of consecutive pth powers. She carried out her program on
an impressive range of values for the necessary auxiliary primes, believed that the evidence
indicated one could push it further using mathematical induction by her methods, and she
was optimistic that by doing so it would prove Fermat’s Last Theorem for infinitely many
prime exponents. In hindsight we know that, promising as it may have seemed at the time,
the program can never be carried to completion, as we shall see next.

3.2. Failure of the grand plan

Did Germain ever know that her grand plan cannot succeed? To answer this question we
examine the published record, Germain’s correspondence with Gauss, and a letter she wrote
to Legendre.

26 The table is slightly flawed in that she includes § =43 =14-3+1 for N =7 despite the
excluding calculation we just illustrated, which Germain herself had just written out; it thus seems
that the manuscript may have simple errors, suggesting it may sadly never have received good
criticism from another mathematician.
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Published indication that Germain’s method cannot succeed in proving Fermat’s Last
Theorem, although not mentioning her by name, came in work of Guglielmo (Guillaume)
Libri, a rising mathematical star in the 1820s. We now describe Libri’s work in this
regard.

3.2.1. Libri’s claims that such a plan cannot work

It is a bit hard to track and compare the content of Libri’s relevant works and their dates,
partly because Libri presented or published several different works all with the same title,
but some of these were also multiply published. Our interest is in the content of just two
different works. In 1829 Libri published a set of his own memoirs [Libri, 1829]. One of these
is titled Mémoire sur la théorie des nombres, republished later word for word as three papers
in Crelle’s Journal [Libri, 1832b]. The memoir published in 1829 ends by applying Libri’s
study of the number of solutions of various congruence equations to the situation of Fer-
mat’s Last Theorem. Among other things, Libri shows that for exponents 3 and 4, there can
be at most finitely many auxiliary primes satisfying the N-C condition. And he claims that
his methods will clearly show the same for all higher exponents. Libri explicitly notes that
his result proves that the attempts of others to prove Fermat’s Last Theorem by finding
infinitely many such auxiliaries are in vain.

Libri also writes in his 1829 memoir that all the results he obtains were already presented
in two earlier memoirs of 1823 and 1825 to the Academy of Sciences in Paris. Libri’s 1825
presentation to the Academy was also published, in 1833/1838 [Libri, 1833], confusingly
with the same title as the 1829 memoir. This presumably earlier document?” is quite similar
to the publication of 1829, in that it develops methods for determining the number of solu-
tions to quite general congruence equations, including that of the N-C condition, but it does
not explicitly work out the details for the N-C condition applying to Fermat’s Last Theo-
rem, as did the 1829 memoir.

Thus it seems that close followers of the Academy should have been aware by 1825 that
Libri’s work would doom the auxiliary prime approach to Fermat’s Last Theorem, but it is
hard to pin down exact dates.”® Much later, Pepin [1876, 318-319; 1880] and Pellet [1886—
87, 93] (see [Dickson, 1920, 750, 753; Ribenboim, 1999, 292-293]) confirmed all of Libri’s
claims, and Dickson [1909a,b] gave specific bounds.

3.2.2. What Germain knew and when.: Gauss, Legendre, and Libri
Did Germain ever know from Libri or otherwise that her grand plan to prove Fermat’s
Last Theorem could not work, and if so, when?

%7 One can wonder when the document first published in 1833, but based on Libri’s 1825 Academy
presentation, was really written or finalized. Remarks he makes in it suggest, though, that it was
essentially his 1825 presentation.

2 For completeness, we mention that Libri also published a memoir on number theory in 1820, his
very first publication, with the title Memoria sopra la teoria dei numeri [Libri, 1820], but it was much
shorter and does not contain the same type of study or results on the number of solutions to
congruence equations.
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We know that in 1819 she was enthusiastic in her letter to Gauss about her method
for proving Fermat’s Last Theorem, based on extensive work exemplified by Manu-
script A.?° In the letter Germain details several specific examples of her results on
the N-C condition that match perfectly with Manuscript A, and which she explicitly
explains have been extracted from an already much older note (“d’'une note deja anci-
enne”?’) that she has not had the time to recheck. In fact everything in the extensive
letter to Gauss matches the details of Manuscript A. This suggests that Manuscript
A is likely the older note in question, and considerably predates her 1819 letter to
Gauss. Thus 1819 is our lower bound for the answer to our question.

We also know that by 1823 Legendre had written his memoir crediting Germain with her
theorem, but without even mentioning the method of finding infinitely many auxiliary
primes that Germain had pioneered to try to prove Fermat’s Last Theorem.’! We know,
too, that Germain wrote notes in 1822 on Libri’s 1820 memoir,’> but this first memoir
did not study modular equations, hence was not relevant for the N-C condition. It seems
likely that she came to know of Libri’s claims dooming her method, based either on his pre-
sentations to the Academy in 1823/25 or the later memoir published in 1829, particularly
because Germain and Libri had met and were personal friends from 1825 [Bucciarelli
and Dworsky, 1980, 117; Del Centina et al., 2004, 140], as well as frequent correspondents.
It thus seems probable that sometime between 1819 and 1825 Germain would have come to
realize from Libri’s work that her grand plan could not work. However, we shall now see
that she determined this otherwise.

3.2.3. Proof to Legendre that the plan fails for p = 3

Beyond arguing as above that Germain very likely would have learned from Libri’s work
that her grand plan cannot succeed, we have actually found separate direct evidence of Ger-
main’s realization that her method of proving Fermat’s Last Theorem will not be success-
ful, at least not in all cases.

While Manuscript A and her letter of 1819 to Gauss evince her belief that for every prime
p > 2, there will be infinitely many auxiliary primes satisfying the N-C condition, there is an
undated letter to Legendre (described in the Introduction) in which Germain actually
proves the opposite for p = 3.

2% Near the end she even expresses to Gauss how a brand new work by Poinsot [1820] will help her
further her efforts to confirm the N-C condition by giving a new way of working with the pth powers
mod 0 = 2Np + 1. She interprets them as the solutions of the binomial equation of degree 2N, i.e., of
x?N — 1 = 0. Poinsot’s memoir takes the point of view that the mod 6 solutions of this equation can
be obtained by first considering the equation over the complex numbers, where much was already
known about the complex 2N th roots of unity, and then considering these roots as mod p integers by
replacing the complex number v/—1 by an integer whose square yields —1 mod p. Del Centina [2008,
361] also discusses this connection.

39 Letter to Gauss, p. 5.

3! Del Centina [2008, 362] suggests that a letter from Legendre to Germain in late 1819, published in
Stupuy [1986], shows that he believed at that time that Germain’s work on Fermat’s Last
Theorem could not succeed. However, we are not certain that this letter is really referring to her
program for proving Fermat’s Last Theorem.

32 Germain’s three pages of notes [Germain, Nuovo Fondo Libri, cass. 7, ins. 56; Del Centina et al.,
2004, 233], while not directly about Fermat’s Last Theorem, do indicate an interest in modular
solutions of roots of unity equations, which is what encompasses the distribution of pth powers
modulo 0. Compare this with what she wrote to Gauss about Poinsot’s work, discussed in footnote 29.
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Sophie Germain began her three page letter by thanking Legendre for “telling” her “yes-
terday” that one can prove that all numbers of the form 6a + 1 larger than 13 have a pair
of nonzero consecutive cubic residues. This amounts to saying that for p = 3, no auxiliary
primes of the form 6 = 2Np + 1 satisty the N-C condition beyond N = 1, 2. At first sight this
claim is perplexing, since it seems to contradict Germain’s success in Manuscript A at proving
Condition N-C for almost all odd primes p whenever N =1,2,4,5,7,8,10. However, the
reader may check that for p = 3 her results in Manuscript A actually only apply for N =1
and 2, once one takes into account the exceptions, i.e., either when 0 is not prime, or when Con-
dition 2-N-p fails, or when she specifically excludes p = 3 for N = 10. So the claim by Legen-
dre, mentioned in Germain’s letter, that there are only two valid auxiliary primes for p = 3, 1is
conceivably true. Germain immediately writes a proof for him.

Since this proof is highly condensed, we will elucidate her argument here in our own
words, in modern terminology, and substantially expanded. Our aim is to verify her claim,
and at the same time experience the mathematical level and sophistication of Germain’s
thinking. Fig. 6 displays the end of the letter. The reader may notice that her last paragraph
of proof takes us fully twice as long to decipher and explain below.

The grand plan cannot work for p = 3. For any prime 0 of the form 6a + 1, with 0 > 13, there
are (nonzero) consecutive cubic residues. In other words, the N-C condition fails for
0 =2Np+ 1 whenp =3 and N > 2, so the only valid auxiliary primes for p = 3 for the N-C
condition are 0 = 7 and 13.

Proof. We consider only the nonzero residues 1, ..., 6a. Suppose that N-C is true, i.e., there
are no consecutive pairs of cubic residues (c.r.) amongst these, and suppose further that
there are also no pairs of c.r. whose difference is 2. (Note something important here. We
mean literally residues, not congruence classes, with this assumption, since obviously 1
and —1 are cubic congruence classes whose difference is 2. But they are not both actual res-
idues, and their residues do not have difference 2. So they do not violate our assumption.)
There are 2a c.r. distributed somehow amongst the 6a residues, and without any differences
of 1 or 2 allowed, according to what we have assumed. Therefore to separate these 2a res-
idues adequately from each other there must be 2a¢ — 1 gaps containing the 4¢ nonzero non-
cubic residues (n.c.r.), each gap containing at least 2 n.c.r. Since each of these 2a — 1 gaps
has at least 2 n.c.r., utilizing 4a — 2 n.c.r., this leaves flexibility for allocating only 2 remain-
ing of the 4a n.c.r. This means that all the gaps must contain exactly 2 n.c.r. except for either
a single gap with 4 n.c.r., or two gaps with 3 n.cr. in each.

We already know of the specific c.r. 1 and 8 (recall 0 = 6a + 1 > 13) and we know that 2
and 3 cannot be c.r. by our two assumptions. If 4 were a c.r., then so would be 8/4 =2
(alternatively, 8 — 4 = 4 would violate N-C), so 4 is also not a c.r. Now Germain writes
down a pattern for the sequence of c.r. that we do not understand, and claims that it is
obviously absurd for 0 > 13.*> We can easily arrive at a pattern and an absurdity ourselves.
From what Germain already has above, the c.r. sequence must clearly be the list
1,5,8,11,...,6a — 10,6a — 7,6a — 4, 6a, since the c.r. are symmetrically placed via negation
modulo 6 = 6a + 1, and we know the gap sizes. Notice that the two exceptional gaps must
be of three missing numbers each, located at the beginning and end. To see that this is
absurd, consider first, for > 6 -5+ 1 = 31, the c.r. 3° = 27. Notice that it contradicts the
pattern listed above, since it is less than 6a > 30, but is not congruent to 2 modulo 3, as are

33 Germain writes that the list is (presumably omitting those at the ends) 1 +4,5+ 3,8 + 3,11 + 3,
14+3,...,6a—17,6a — 4 [sic], 6a — 11,6a — 8,6a — 5.
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Figure 6. End of Germain’s letter to Legendre.

all the lesser residues in the list except 1. Finally, the only other prime 0 > 13 is 19, for
which 4° = 64 has residue 7, which is not in the list.

So one of the two initial assumptions must be false. If N-C fails, we are done. Therefore
consider the failure of the other assumption, that there are no pairs of c.r. whose difference
is 2. Let r and # then be c.r. with r — ¥/ = 2. Let x be a primitive root of unity modulo 0, i.e.,
a generator of the cyclic group of multiplicative units represented by the nonzero prime
residues. We must have 2 = x¥*!; i.e., the power of x representing 2 cannot be divisible by
3, since 2 is not a c.r.

Now consider r++#. We claim that r+##0, since if r+# =0, then
2=r—r =r—(—r)=2r, yielding r = 1, and hence r = 1, which violates r — ' = 2. Here
it is critical to recall that we are dealing with actual residues r and //, both nonnegative



666 R. Laubenbacher, D. Pengelley

numbers less than 6a + 1; i.e., the requirements » = 1 and r — ¥/ = 2 are incompatible, since
thereareno0 < r,”’ < 6a + 1 forwhichr = 1 andr — ¥/ = 2. Thisis related to the observation
at the beginning that the congruence classes 1 and —1 are not violating our initial assumption.

Since r + ' #0, it is a unit, and thus must be congruent to some power x”. If m were
divisible by 3, then the congruence r 4+ ' = x™ would provide a difference of c.r. yielding
another c.r., which violates N-C after division by the latter. So we have r + ' = x**!, Now
the sign in 3f £+ 1 must agree with that in 3g % 1, since if not, say r + ' = x*T!, then
=12 =(r—7r)(r+v) =2x%F! = x¥+x3F = 30+8) again producing a difference of
cr. equal to another cr., a contradiction. Finally, we combine r —# = x¥*! with
r+7 =x%¥* to obtain 2r = x¥*! 4+ X3! and thus x¥*r = x¥*! 4 X3¢+ becoming
r =1+ x3¢), again contradicting N-C. Thus the original assumption of Condition N-C
must have been false. [J

This is quite impressive for a proof developed overnight.

These dramatic failures of Condition N-C for p = 3 presumably greatly sobered Ger-
main’s previous enthusiasm for pursuing her grand plan any further. We mention in passing
that, optimistic as Germain was at one point about finding infinitely many auxiliary primes
for each p, not only is that hope dashed in her letter to Legendre, and by Libri’s results, but
even today it is not known whether, for an arbitrary prime p, there is even one auxiliary
prime 0 satisfying Condition N-C [Ribenboim, 1999, 301].

3.3. Germain’s grand plan in other authors

We know of no concrete evidence that anyone else ever pursued a plan similar to Sophie Ger-
main’s for proving Fermat’s Last Theorem, despite the fact that Libri wrote of several
(unnamed) mathematicians who attempted this method. Germain’s extensive work on this
approach appears to be entirely, independently, and solely hers, despite the fact that others were
interested in establishing Condition N-C for different purposes. In this section we will see how
and why other authors worked on Condition N-C, and compare with Germain’s methods.

3.3.1. Legendre’s methods for establishing Condition N-C

Legendre did not mention Germain’s full-scale attack on Fermat’s Last Theorem via
Condition N-C in his memoir of 1823, and we will discuss this later, when we evaluate
the interaction between Germain and Legendre in Section 8.3.3. However, even ignoring
any plan to prove Fermat’s Last Theorem outright, Legendre had two other reasons for
wanting to establish Condition N-C himself, and he develops N-C results in roughly the
same range for N and p as did Germain, albeit not mentioning her results.

One of his reasons was to verify Case 1 of Fermat’s Last Theorem for many prime expo-
nents, since, recall, Condition N-C for a single auxiliary prime is also one of the hypotheses
of Sophie Germain’s Theorem. Indeed, Legendre develops results for N-C, and for the sec-
ond hypothesis of her theorem, that enable him to find a qualifying auxiliary prime for each
odd exponent p < 197, which extends the scope of the table he implicitly attributed to
Germain. Legendre goes on to use his N-C results for a second purpose as well, namely
to show for a few small exponents that any solutions to the Fermat equation would have
to be very large indeed. We will discuss this additional use of N-C in the next section.

Having said that Legendre obtained N-C conclusions roughly similar to those of Ger-
main, why do we claim that her approach to N-C verification is entirely independent? This
is because Germain’s method of analyzing and proving the N-C condition, explained in
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brief above, is utterly unlike Legendre’s.>* We illustrate this by quoting Legendre’s expla-
nation of why Condition N-C is always satisfied for N = 2, i.e., for 6 = 4p + 1. As we quote
Legendre, we caution that even his notation is very different; he uses » for the prime expo-
nent that Germain, and we, call p. Legendre writes

One can also prove that when one has 6 = 4n + 1, these two conditions are also satis-
fied. In this case there are 4 residues r to deduce from the equation r* — 1 = 0, which
divides into two others r> — 1 = 0,7> + 1 = 0. The second, from which one must deduce
the number 4, is easy to resolve®”; because one knows that in the case at hand 0 may be
put into the form «? + b, it suffices therefore to determine y by the condition that a + bu
is divisible by 0; so that upon omitting multiples of 0, one can make p*> = —1, and the
four values of r become r = +(1, u).

From this one sees that the condition ' = r 4+ 1 can only be satisfied in the case of
u =2, so that one has = 5 and n = 1, which is excluded. ... [Legendre, 1823, §25]

We largely leave it to the reader to understand Legendre’s reasoning here. He does not
use the congruence idea or notation that Germain had adopted from Gauss, he focuses his
attention on the roots of unity from their defining equation, and he makes no use of the 2-
N-p condition, but he is interested in the consequences of the linear form 4n + 1 necessarily
having a certain quadratic form, although we do not see how it is germane to his argument.
In the next case, for N = 4 and 0 = 8n + 1, he again focuses on the roots-of-unity equation
and claims that this time the prime 8n + 1 must have the quadratic form a? + 2b%, which
then enters intimately into an argument related to a decomposition of the roots-of-unity
equation. Clearly Legendre’s approach is completely unlike Germain’s. Recall that Ger-
main disposed of all the cases N = 1,2,4,5 in one fell swoop with the first application of
her analysis of permuted placements of pairs of consecutive p-th powers, whereas Legendre
laboriously builds his analysis of 2Nth roots of unity up one value at a time from N = 1. In
short, Legendre focuses on the pth powers as 2Nth roots of unity, one equation at a time,
while Germain does not, instead studying their permutations as pth powers more generally
for what it indicates about their placement, and aiming for mathematical induction on N.*

3.3.2. Dickson rediscovers permutation methods for Condition N-C

Many later mathematicians worked to extend verification of the N-C condition for larger
values of N>’ Their aim was to prove Case 1 of Fermat’s Last Theorem for more exponents
by satisfying the hypotheses of Sophie Germain’s Theorem.

In particular, in 1908 L.E. Dickson published two papers [Dickson, 1908a,b] (also dis-
cussed in Dickson [1920, 763]) extending the range of verification for Condition N-C to
N < 74, and also 76 and 128 (each N excepting certain values for p, of course), with which
he was able to apply Sophie Germain’s theorem to prove Case 1 for all p < 6857.

34 Del Centina [2008, 370] also remarks on this.

35 From earlier in the treatise, we know that u here means a primitive fourth root of unity, which
will generate the four nth powers.

3¢ Despite the apparently completely disjoint nature of the treatments by Germain and Legendre of
the N-C condition, it is quite curious that their writings have a common mistake. The failure of N-C
for p = 3 when N = 7 is overlooked in Legendre’s memoir, whereas in Germain’s manuscript, as we
noted above, she explicitly calculated the failure of 2-N-p (and thus of N-C) for this same
combination, but then nonetheless mistakenly listed it as valid for N-C in her table.

37 Legendre went to N = 8 and Germain to N = 10, and actually to N = 11 in another very much
rougher manuscript draft [Germain, MS. FR9114, 209r-214v, 216r-218v, 220r-226r].
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In light of the fact that Germain and Legendre had completely different methods for ver-
ifying Condition N-C, one wonders what approach was taken by Dickson. Dickson com-
ments directly that his method for managing many cases together has “obvious
advantages over the procedure of Legendre” [Dickson, 1908b, 27]. It is then amazing to
see that his method is based directly (albeit presumably unbeknownst to him) on the same
theoretical observation made by Sophie Germain, that pairs of consecutive pth powers are
permuted by two transformations of inversion and subtraction to produce six more. He rec-
ognizes that these transformations form a group of order six, which he calls the cross ratio
group (it consists of the transformations of the cross ratio of four numbers on the real pro-
jective line obtained by permuting its variables [Stillwell, 2005, 112-113], and is isomorphic
to the permutations on three symbols). Dickson observes that the general form of these
transformations of an arbitrary pth power are the roots of a sextic polynomial that must
divide the roots of unity polynomial for any N. This then forms the basis for much of
his analysis, and even the ad hoc portions have much the flavor of Germain’s approach
for N > 5. In sum, we see that Dickson’s approach to the N-C condition more than
three-quarters of a century later could have been directly inspired by Germain’s, had he
known of it.

3.3.3. Modern approaches using Condition N-C

Work on verifying the N-C condition continued up to the close of the 20th century, lar-
gely with the aim of proving Case 1 using extensions of Sophie Germain’s Theorem.

By the middle of the 1980s, results on the distribution of primes had been combined
with extensions of Germain’s theorem to prove Case 1 of Fermat’s Last Theorem for
infinitely many prime exponents [Adleman and Heath-Brown, 1985; Fouvry, 1985]. It
is also remarkable that at least one yet more recent effort still harks back to what we
have seen in Germain’s unpublished manuscripts. Recall that Germain explained her
intent to prove the N-C condition by induction on N. This is precisely what a recent
paper by David Ford and Vijay Jha does [Ford and Jha, 1993], using some modern
methods and computing power to prove by induction on N that Case 1 of Fermat’s Last
Theorem holds for any odd prime exponent p for which there is a prime 0 = 2Np + 1
with 3tN and N < 500.

3.4. Comparing Manuscripts A and D. polishing for the prize competition?

We have analyzed Sophie Germain’s grand plan to prove Fermat’s Last Theorem, which
occupies most of Manuscript A. Manuscript D has the same title and almost identical
mathematical content and wording. Why did she write two copies of the same thing? We
can gain some insight into this by comparing the two manuscripts more closely.

Manuscript D gives the impression of an almost finished exposition of Germain’s work
on Fermat’s Last Theorem, greatly polished in content and wording over other much
rougher versions amongst her papers. And it is perfectly readable. However, it is not yet
physically beautiful, since Germain was clearly still refining her wording as she wrote it.
In many places words are crossed out and she continues with different wording, or words
are inserted between lines or in the margins to alter what has already been written. There
are also large parts of some pages left blank. By contrast, Manuscript A appears essentially
perfect. It is copied word for word almost without exception from Manuscript D. It seems
clear that Manuscript A was written specifically to provide a visually perfected copy of
Manuscript D.
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One aspect of Manuscript D is quite curious. Recall that Manuscript A contains a table with
all the values for auxiliary primes satisfying Condition N-C for N < 10and 3 < p < 100. Ger-
main explicitly introduces this table, referring both ahead and back to it in the text, where it lies
on page 17 of 20. Manuscript D says all these same things about the table, but where the table
should be there is instead simply a side of a sheet left blank. Thus Germain refers repeatedly to
atable that is missing in what she wrote. This suggests that as Germain was writing Manuscript
D, she knew she would need to recopy it to make it perfect, so she did not bother writing out the
table at the time, saving the actual table for Manuscript A.

This comparison between Manuscripts A and D highlights the perfection of presentation
Sophie Germain sought in producing Manuscript A. Is it possible that she was preparing
this manuscript for submission to the French Academy prize competition on the Fermat
problem, which ran from 1816 to 1820? We will discuss this further in Section 8.3.4.

4. Large size of solutions

While Germain believed that her grand plan could prove Fermat’s Last Theorem for infi-
nitely many prime exponents, she recognized that it had not yet done so even for a single
exponent. She thus wrote that she wished at least to show for specific exponents that any
possible solutions to the Fermat equation would have to be extremely large.

In the last four pages of Manuscript A, Germain states, proves, and applies a theorem
intended to accomplish this (Fig. 7). She actually states the theorem twice, first near the
beginning of the manuscript (Manuscript A, p. 3), where she recalls that any auxiliary prime
satisfying Condition N-C will have to divide one of the numbers x, y, z in the Fermat equa-
tion, but observes that to produce significant lower bounds on solutions this way, one
would need to employ rather large auxiliary primes. Then she says “fortunately one can
avoid such impediment by means of the following theorem:”>®

Theorem (Large Size of Solutions). “For the equation x” + y’ = 2 to be satisfied in whole
numbers, p being any [ odd] prime number, it is necessary that one of the numbers x + y,z — y,
and z — x be a multiple of the (2p — 1)th power of the number p and of the p™ powers of all the
prime numbers of the form [0 =|Np + 1, for which, at the same time, one cannot find two pth
power residues [ mod 0] whose difference is one, and p is not a pth power residue [ mod 0].”%

(N.B.: The theorem implicitly requires that at least one such 0 exists.)

It is this theorem to which Germain was undoubtedly referring when, as we noted earlier,
she wrote to Gauss that any possible solutions would consist of numbers “whose size fright-
ens the imagination.” Early in Manuscript A she says that she will apply the theorem for
various values of p using her table. She mentions here that even just for p = 5, the valid aux-
iliary primes 6 = 11,41,71, 101 show that any solution to the Fermat equation would force
a solution number to have at least 39 decimal digits.

38 “heureusement on peut éviter un pareil embarras au moyen du théoréme suivant:” (Manuscript
A, p. 3).
39 “pour 16 . PP — P e i<fai b . . b .
que I’équation x” + y” = 2/ soit satisfaite en nombres entiers, p étant un nombre premier
quelconque; il faut que I'un des nombres x +y,z —y et z — x soit multiple de la (2p —1)™
puissance du nombre p et des p*"* puissances de tous les nombres premiers de la forme Np + 1,
pour lesquels, en méme tems que I'on ne peut trouver deux résidus p'“™* puissances dont la
difference soit 'unité, p est non résidu puissance p'“™” (Manuscript A, p. 3 and p. 17).
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Figure 7. Beginning of the final section of Manuscript A, p. 17.

We will see below that, as given, the proof of Germain’s Large Size theorem is insuffi-
cient, and we will discuss approaches she made to remedy this, as well as an approach
by Legendre to large size of solutions. But we will also see that Sophie Germain’s Theorem,
the result she is actually known for today, validly falls out of her proof.

4.1. Germain’s proof of large size of solutions

Note first that the two hypotheses of Germain’s Large Size theorem are the same N-C
condition she already studied at length for her grand plan, and a second:

Condition p-N-p (p is Not a pth power). p is not a pth power residue, modulo 0.

Of course this is precisely the second hypothesis of Sophie Germain’s Theorem.
We now present a direct English translation of Germain’s proof.

4.1.1. The Barlow—Abel equations

The proof implicitly begins with the fact that the N-C condition implies that one of
the numbers x, y,z has to be divisible by 6. We also provide additional annotation, since
Germain assumes the reader is already quite familiar with many aspects of her

equations.

Assuming the existence of a single number subject to the double condition, I will prove
first that the particular number x, y or z in the equation x” + »” = z’ which is a multiple
of the assumed number [0], must necessarily also be a multiple of the number p>.

Indeed, if the numbers Xx, y, z are [assumed to be] relatively prime, then the [pairs of]
numbers

x+y and 71—y 4 — 0 fete
z—y and 24Py 42y 2 et

z—x and 7' 42 x4 223X 4 22743 + etc.



Sophie Germain’s grand plan to prove Fermat’s Last Theorem 671

can have no common divisors other than p.*

For the first pair, this last claim can be seen as follows (and similarly for the other pairs).
Denote the right-hand expression on the first line by ¢(x, y). If some prime ¢ other than p
divides both numbers, then y = —x (mod ¢), yielding ¢(x,y) = px*~! (mod ¢). Then x
and x + y are both divisible by ¢, contradicting the assumption that x and y are relatively
prime. This excludes all primes other than p as potential common divisors of x + y and

@(x,).

If, therefore, the three numbers x, y, and z were all prime to p, then one would have,
letting z = Ir, x = hn, y = vm,*!

x+y=0F XXy 7y -y pete =17 (1)
z—y=r 2422y Letc=n (2)
z—x=10 4+ O 2 pete =l (3)

Equations such as these were given by Barlow around 1810, and stated apparently inde-
pendently by Abel in 1823 [Ribenboim, 1999, Chap. III].

One can derive these equations as follows. In the first line, the assumption that x,y, z
are each relatively prime to p, along with the Fermat equation, forces x +y and
¢(x,y) to be relatively prime. Since the product of x 4+ y and ¢(x,y) is equal to z/, each
of them must therefore be a pth power, as she writes. The other lines have parallel
proofs.

4.1.2. Divisibility by p
The next part of Germain’s proof will provide a weak form of Sophie Germain’s Theo-
rem, proving that one of x, y,z must be divisible by p.

Without loss of generality I assume that it is the number z which is a multiple of the
prime number [0] of the form 2Np + 1, assumed to exist. One therefore has that

40 «“En supposant I’existence d’un seul des nombres assujettis a cette double condition, je prouverai
d’abord que celui des nombres x,y et z qui dans ’équation x” + ) = z sera multiple du nombre
supposé, devra necessairement étre en méme tems multiple du nombre p?.

“En effet lorsque x, y et z sont premiers entr’eux, les nombres

x+y et @' —x2y 432 — x4 et
z—y et 7422y 42237 2 fete

z—x et 27V 427 2x 4 2273x2 4 24X + etc.

ne peuvent avoir d’autres diviseurs communs que le nombre p” (Manuscript A, p. 18).
41 <Sj on voulait donc que les trois nombres x, y, et z fussent tous premiers a p on aurait, en fesant
z=1Ilr,x =hn,y = vm:

x+y=0F X' —x 2y 3 - x4y petc =1

z—y=W0 V42432 42 fetc=n?

z—x=10" PV 2x 423X 4 2743 et = mP”

(Manuscript A, p. 18).
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"+ +v” =0 (mod 2Np + 1). And since by hypothesis there cannot be, for this mod-
ulus, two pth power residues whose difference is 1, it will be necessary that it is / and
not r, which has this modulus as a factor. Since x +y =0 (mod 2Np + 1), one con-
cludes that px*~! = (mod 2Np + 1), that is to say, because x is a pth power residue,
p will also be a pth power residue, contrary to hypothesis; thus the number z must be a
multiple of p.*?

The N-C condition and the congruence /” + /' + ¥ =0 (mod 6 = 2Np + 1) imply that
either /, h, or v is divisible by 6. If one of /& or v were, then x or y would also be divisible
by 0, contradicting the assumption that x,y,z are relatively prime. This implies that / is
the number divisible by 6, and thus y = —x (mod 0). Substituting, we have ¢(x,y) =
px’~' =1 (mod 0), as claimed. Furthermore, since z =0 (mod 6), we conclude from
z — x = t¥ that x is a pth-power modulo 6. Therefore, p is also a pth-power modulo 6, a con-
tradiction to the other hypothesis of the theorem.

Thus we have derived a contradiction to the assumption that x,y,z are all prime to
p, which indeed forces one of x,y,z to be a multiple of p. This is already the weak form
of Sophie Germain’s Theorem. But it is not clear why z, the number divisible by 6, has
to be the one divisible by p; this uncertainty is indicative of a flaw we will shortly
observe.

In order to continue the proof, Germain now in effect implicitly changes the assumption
on z to be that z is the number known to be divisible by p, but not necessarily by 0, which in
principle is fine, but must be kept very clear by us. She replaces the first pair of equations by
a new pair, reflecting this change. (The remaining equations still hold, since x and y must be
relatively prime to p.)

4.1.3. Sophie Germain’s Theorem as fallout
Next in her proof comes the stronger form of Sophie Germain’s Theorem.

Setting actually z = Irp, the only admissible assumption is that

x+y="rpt, XXy 4 3y — X ete = pr?. (1)

Because if, on the contrary, one were to assume that

x+y="Pp, XWXy — X ete = p

then

(x+ ) = = X2y 3y +ete})

42 «“pour fixer les idées je supposerai que c’est le nombre z qui est multiple du nombre premier de la
forme 2Np + 1 dont on a supposé I’existence, on aura alors /” + /4’ + 1 =0 (mod 2Np + 1); et
puisque par hypothése il ne peut y avoir pour ce module deux résidus puissances p'™ dont la
difference soit I'unité, il faudra que ce soit / et non par r qui ait le méme module pour facteur. De
x+y =0 (mod 2Np + 1), on conclut px*~! = (mod 2Np + 1) c’est a dire, & cause de x résidu
™ puissance, p aussi résidu p'™ puissance, ce qui est contraire a ’hypothése, il faut donc que le
nombre z soit multiple de p” (Manuscript A, p. 18).
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would be divisible by p?~!. Observe that in the equation 2z — x — y = A’ + ¥ the form of
the right-hand side forces it to be divisible by p or p?. Consequently, one sees that with

the present assumptions z has to be a multiple of p2.%?

To see Germain’s first assertion one can argue as follows. Since z2 = x” + y” must be
divisible by p, we need only show that ¢(x,y) is divisible by exactly the first power of p.
If we set x + y = s, then

—x) P
QD(XJ’):MZSP1—<p>s/72x+~~—< P >sx1’2+< P )xl’l.
S 1 p—2 p—1

Now observe that all but the last summand of the right-hand side are divisible by p?, since p
divides s = x+y = x” + )’ =z (mod p) by Fermat’s Little Theorem, whereas the last
summand is divisible by exactly p, since x is relatively prime to p.

Finally, to see that this forces z to be divisible by p?, observe that the equation
2z — x —y = I’ + o” ensures that p divides /” + 1”. Furthermore, p divides / 4+ v by Fermat’s
Little Theorem, applied to /4 and v. Now note that, since 7 = —v (mod p), it follows that
W = —1” (mod p?). Thus p? divides z, since p* divides x + y by Germain’s new first pair of
equations above.

This much of her proof constitutes a valid demonstration of what is called Sophie Ger-
main’s Theorem.

4.1.4. A mistake in the proof
Germain continues on to prove the further divisibility she claims by 0.

The only thing that remains to be proven is that all prime numbers of the form
[0 =]2Np + 1, which are subject to the same conditions as the number whose existence
has been assumed, are necessarily multiples [sic]** of z.

In order to obtain this let us suppose that it is y, for example, and not z, that has one of
the numbers in question as a factor. Then for this modulus we will have /” — I” = v, con-
sequently v = 0,z = x, pz’~! = m?, that is to say, p is a pth power residue contrary to the
hypothesis.*’

43 “En prenant actuellement z = Irp, la seule supposition admissible est

2

x+y="rpt X X2y 4 Xy — xS ete = pr?,

car si on fesait au contraire
x+y="Ip, X xRy 4 3 — XY fete = pP N,
(ery)P—l _ {xp—l _ xp_2y+xp_3y2 Jretc}

serait divisible par p’~!, parconséquent si on observe que dans ’équation 2z —x—y =/ + 1’ la
forme du second membre veut qu’il soit premier a p, ou multiple de p? on verra que, dans les sup-
positions presentes, z aussi doit étre multiple de p>” (Manuscript A, p. 18).
4 Germain wrote “multiples” here, but presumably meant “divisors.”
45 “La seule chose qui reste a prouver est que tous les nombres premier de la forme 2Np + 1 qui sont
assujettis aux mémes conditions que celui de la méme forme dont en a supposé ’existence sont
necessairement multiples [sic] de z.

“Pour y parvenir supposons que ce soit y, par exemple et non pas z, qui ait un des nombres dont il
s’agit pour facteur, nous aurons pour ce module /’ — [/ = 1”, parconséquent v = 0,z = x, pz/~! = m?,
c’est a dire p residu puissance p*™® contre I’hypothése” (Manuscript A, pp. 18-19).
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Here Germain makes a puzzling mistake.*® Rather than using the equation (1), resulting
from the p-divisibility assumption on z, she erroneously uses the original equation (1), which
required the assumption that all of x, y, z are relatively prime to p. Subtracting (1) from (2) and
comparing the result to (3), she obtains the congruence /#’ —/” =" (mod 0), since
y =0 (mod 0). Although this congruence has been incorrectly obtained, we will follow
how she deduces from it the desired contradiction, partly because we wish to see how the
entire argument might be corrected. Since neither /4 nor / can be divisible by 0 (since neither
x nor z are), the N-C Condition implies that v = 0 (mod 0), hence z = x. Thus, pz/~! = m?
follows from the right-hand equation of (3). Further, z = /” follows from (2), since y = 0,
and, finally, this allows the expression of p as the residue of a pth power, which contradicts
the p-N-p Condition.

Except for the mistake noted, the proof of Germain’s theorem is complete. If instead
the correct new equation (1) had been used, then in place of the N-C Condition, the
argument as written would need a condition analogous to N-C, but different, for the
congruence

W—Pprt =

resulting from subtracting (1") from (2) instead of (1) from (2). That is, we could require the
following additional hypothesis:

Condition N-p~! (No p~! differences). There are no two nonzero pth-power residues that
differ by p~' (equivalently, by —2N) modulo 0.

Clearly, adding this condition as an additional hypothesis would make the proof of the
theorem valid.

4.1.5. Attempted remedy

Did Germain ever realize this problem, and attempt to correct it?

To the left of the very well-defined manuscript margin, at the beginning of the para-
graph containing the error, are written two words in much smaller letters and a thicker
pen. These words are either “voyez errata” or “voyez erratu.” This is one of only four
places in Manuscript A where marginal notes mar its visual perfection. None of these
appears in Manuscript D, from which Manuscript A was meticulously copied. So Ger-
main saw the error in Manuscript A, but probably later, and wrote an erratum about
it. Where is the erratum?

Most remarkably, not far away in the same archive of her papers, tucked apparently ran-
domly in between other pages, we find two sheets [Germain, MS. FR9114, 214r, 215v]
clearly titled “errata” or “erratu” in the same writing style as the marginal comment.

The moment one starts reading these sheets, it is clear that they address precisely the
error Germain made. After writing the corrected equations (1'), (2), (3) (in fact she refines
them even more, incorporating the p? divisibility she just correctly deduced), Germain notes
that it is therefore a congruence of the altered form

Ppr=' 40 +1¥ =0

that should hopefully lead to a contradiction. It is not hard to see that the N-p~! and p-N-p
conditions will suffice for this, but Germain observes right away that a congruence nullify-

46 Del Centina [2008, 365ff] does not seem to notice this mistake.
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ing the N-p~! condition in fact exists for the very simplest case of interest to her, namely

p=5and N =1, since 1 and —1 are both 5th powers, and they differ by 2N = 2.4
Germain then embarks on an effort to prove her claim by other means, not relying on
assuming the N-p~! condition. She develops arguments and claims based on knowledge
of quadratic forms and quadratic reciprocity, including marginal comments that are diffi-
cult to interpret. There is more work to be done understanding her mathematical approach
in this erratum, which ends inconclusively. What Germain displays, though, is her versatil-
ity, in bringing in quadratic forms and quadratic reciprocity to try to resolve the issue.

4.1.6. Verifying Condition p-N-p: a theoretical approach

We return now from Germain’s erratum to discuss the end of Manuscript A. Germain
follows her Large Size of Solutions theorem with a method for finding auxiliary primes
0 of the form 2Np + 1 satisfying the two conditions (N-C and p-N-p) required for applying
the theorem.

Even though we now realize that her applications of the Large Size theorem are unjus-
tified, since she did not succeed in providing a correct proof of the theorem, we will describe
her methods for verifying its hypotheses, in order to show their skill, their application to
Sophie Germain’s theorem, and to compare them with the work of others.

Earlier in the manuscript Germain has already shown her methods for verifying Condi-
tion N-C for her grand plan. She now focuses on verifying Condition p-N-p, with applica-
tion in the same range as before, i.e., for auxiliary primes § = 2Np + 1 using relevant values
of N < 10 and odd primes p < 100.

Germain first points out that since 8 = 2Np + 1, therefore p will be a pth power modulo 6
if and only if 2N is also, and thus, due to the cyclic nature of the multiplicative units mod-
ulo 0, precisely if (2N )2N — 1 is divisible by 6. Yet before doing any calculations of this sort,
she obviates much effort by stating another theoretical result: For N of the form 2’ in
which ¢ + 1 and b + 1 are prime to p, she claims that p cannot be a pth power modulo 6
provided 2 is not a pth power modulo 6. Of course the latter is a condition (2-N-p) she
already studied in detail earlier for use in her N-C analyses. Indeed the claim follows
because 2" p?*! = 2Np = (—1)”, which shows that 2 and p must be pth powers together
(although the hypothesis on b is not necessary for just the implication she wishes to con-
clude). Germain points out that this result immediately covers N = 1,2.4,8 for all p. In
fact, there is in these cases no need for Germain even to check the 2-N-p condition, since
she already earlier verified N-C for these values of N, and 2-N-p follows from N-C. Ger-
main easily continues to analyze N =5,7,10 for Condition p-N-p by factoring
(2N)2N — 1 and looking for prime factors of the form 2Np + 1. Astonishingly, by this
method Germain deduces that there is not a single failure of Condition p-N-p for the aux-
iliary primes 0 = 2Np + 1 in her entire previously drawn table of values satisfying Condi-
tion N-C.

Germain ends Manuscript A by drawing conclusions on the minimum size of solutions
to Fermat equations for 2 < p < 100 using the values for 0 in her table. Almost the most
modest is her conclusion for p = 5. Since her techniques have verified that the auxiliaries
11, 41, 71, 101 all satisfy both Conditions N-C and p-N-p, Germain’s Large Size theorem
(if it were true) ensures that if x° + y° = z° were true in positive numbers, then one of

47 In fact the reader may check in various examples for small numbers that the N-p~! condition
seems to hold rather infrequently compared with the N-C condition, so simply assuming the N-p~!
condition as a hypothesis makes a true theorem, but perhaps not a very useful one.
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the numbers x + y,z — y,z — x must be divisible by 5°11°41°71°101°, which Germain notes
has at least 39 decimal digits.

4.2. Condition p-N-p and large size in other authors

Legendre’s footnote credits Germain for Sophie Germain’s Theorem and for applying it
to prove Case 1 for odd primes p < 100 [Legendre, 1823, §22]. For the application he exhib-
its a table providing, for each p, a single auxiliary prime satisfying both conditions N-C and
p-N-p, based on examination of a raw numerical listing of all its pth power residues.

Thus he leaves the impression that Germain verified that her theorem was applicable for
each p < 100 by brute force residue computation with a single auxiliary. In fact, there is
even such a residue table to be found in Germain’s papers [Germain, MS. FR9114,
151v], which gives lists of pth power residues closely matching Legendre’s table.*® Legen-
dre’s table could thus easily have been made from hers. This, however, is not the full story,
contrary to the impression received from Legendre.

4.2.1. Approaches to Condition p-N-p

Both Legendre and Germain analyze theoretically the validity of Condition p-N-p as well
as that of N-C for a range of values of N and p, even though, as with Germain’s grand plan
for proving Fermat’s Last Theorem via Condition N-C, Legendre never indicates her
efforts at proving large size for solutions by finding multiple auxiliary primes satisfying
both Conditions N-C and p-N-p.

Moreover, since all Legendre’s work at verifying N-C and p-N-p comes after his footnote
crediting Germain, he is mute about Germain developing techniques for verifying either
condition. Rather, the clear impression his treatise leaves to the reader is that Sophie Ger-
main’s Theorem and the brute force table are hers, while all the techniques for verifying
Conditions N-C and p-N-p are his alone.

As we have seen, though, Germain qualifies auxiliaries to satisfy both N-C and p-N-p
entirely by theoretical analyses, and her table in Manuscript A has no brute force listing
of residues. In fact she developed general techniques for everything, with very little brute
force computation evident, and was very interested in verifying her conditions for many
combinations of N and p, not just one auxiliary for each p. In short, the nature of Legen-
dre’s credit to Germain for proving Case 1 for p < 100 leaves totally invisible her much
broader theoretical work that we have uncovered in Manuscript A.

We should therefore investigate, as we did earlier for Condition N-C, how Legendre’s
attempts at verifying Condition p-N-p compare with Germain’s, to see if they are
independent.

4.2.2. Legendre on Condition p-N-p
Legendre’s approach to verifying Condition p-N-p for successive values of N is at first
rather ad hoc, then based on the criterion whether 0 divides p*V — 1, slowly evolving to

8 There are a couple of small differences between Legendre’s table of residues and the one we find
in Germain’s papers. Germain states that she will not list the residues in the cases when N < 2 in the
auxiliary prime, suggesting that she already knew that such auxiliary primes are always valid. And
while Germain, like Legendre, generally lists for each p the residues for only the single smallest
auxiliary prime valid for both N-C and p-N-p, in the case of p = 5 she lists the residues for several of
the auxiliaries that she validated in Manuscript A.
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the equivalent divisibility of (2N)* — 1 instead, and appeals to his Théorie des Nombres for
finding divisors of numbers of certain forms.

Unlike Germain’s methods, there is no recognition that many N of the form 2°p” are
amenable to appeal to Condition 2-N-p. Suffice it to say that, as for Condition N-C, Legen-
dre’s approaches and Germain’s take different tacks, with Germain starting with theoretical
transformations that make verification easier, even though in the end they both verify Con-
dition p-N-p for roughly the same ranges of N and p. There are aspects with both the N-C
and p-N-p analyses where Germain goes further than Legendre with values of N and p, and
vice versa.

Even their choices of symbols and notation are utterly different. Legendre never uses the
congruence notation that Gauss had introduced almost a quarter century before, while
Germain is fluent with it. Legendre quotes and relies on various results and viewpoints from
the second edition of his Théorie des Nombres, and never considers Condition 2-N-p either
for N-C or p-N-p analysis, whereas it forms a linchpin in Germain’s approach to both. Ger-
main rarely refers to Legendre’s book or its results, but uses instead her intimate under-
standing of the multiplicative structure of prime residues from Gauss’s Disquisitiones.

We are left surprised and perplexed by the lack of overlap in mathematical approach
between Germain’s Manuscript A and Legendre’s treatise, even though the two are coming
to the same conclusions page after page. There is nothing in the two manuscripts that
would make one think they had communicated, except Legendre’s footnote crediting Ger-
main with the theorem that today bears her name. It is as though Legendre never saw Ger-
main’s Manuscript A, a thought we shall return to below. Four factors leave us greatly
perplexed at this disparity. First, years earlier Legendre had given Germain his strong men-
torship during the work on elasticity theory that earned her a prize of the French Academy.
Second, Legendre’s own research on Fermat’s Last Theorem was contemporaneous with
Germain’s. Third, Germain’s letter to Legendre about the failure of N-C for p = 3 demon-
strates detailed interaction. Fourth, we shall discuss later that Legendre’s credit to Germain
does match quite well with her Manuscript B. How could they not have been in close con-
tact and sharing their results and methods? In the end, at the very least we can conclude
that each did much independent work, and should receive separate credit for all the differ-
ing techniques they developed for analyzing and verifying the N-C and p-N-p conditions.

4.2.3. Legendre’s approach to large size of solutions

Legendre describes not just Sophie Germain’s Theorem and applications, but also large
size results similar to Germain’s, although he makes no mention of his large size results
having anything to do with her. Thus we should compare their large size work as well.

Germain presents a theorem about large size, and quite dramatic specific consequences,
but the theorem is flawed and her attempts at general repair appear inconclusive. Legendre,
like Germain, studies whether all qualifying auxiliary primes 6 must divide the same one of
X, y, z that p? does, which is where Germain went wrong in her original manuscript. Like
Germain in her erratum, Legendre recognizes that the N-p~!' condition would ensure the
desired 0 divisibility. He, like Germain, also presses on in an alternative direction, since
the condition is not necessarily (in fact perhaps not even often) satisfied. But here, just
as much as in his differing approach to verifying the N-C and p-N-p conditions, Legendre
again chooses a completely different alternative approach than does Germain.

Legendre analyzes the placement of the pth power residues more deeply in relation to the
various expressions in equations (1'), (2), (3) above, and finds additional conditions, more
delicate than that of N-p~!, which will ensure the desired 0 divisibility for concluding large
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size of solutions. Specifically, for example, when p = 5, Legendre has the same auxiliaries
0 =11,41,71,101 satisfying N-C and p-N-p as had Germain.** However, as Germain
explicitly pointed out for § = 11 in her erratum, Condition N-p~! fails; in fact, Legendre’s
calculations show that it fails for all four auxiliaries. While Germain attempted a general fix
of her large size theorem using quadratic forms and quadratic reciprocity, Legendre’s del-
icate analysis of the placement of Sth powers shows that 11, 71, 101 (but not 41) must divide
the same one of x, y, z as p?, and so he deduces that some sum or difference of two of the
indeterminates must be divisible by 5°11°71°101°, i.e., must have at least 31 digits. This is
weaker than the even larger size Germain incorrectly deduced, but it is at least a validly sup-
ported conclusion. Legendre successfully carries this type of analysis on to exponents
p =17,11,13, concluding that this provides strong numerical evidence for Fermat’s Last
Theorem. But he does not attempt a general theorem about large size of solutions, as
did Germain. As with their work on Conditions N-C and p-N-p, we are struck by the dis-
joint approaches to large size of solutions taken by Germain and Legendre. It seems clear
that they each worked largely independently, and there is no evidence in their manuscripts
that they influenced each other.

4.2.4. Rediscovery of Germain's approach to Condition p-N-p

Later mathematicians were as unaware of Germain’s theoretical analysis of Condition p-
N-p as they were of her approach to Condition N-C, again because Legendre’s published
approach was very different and introduced nothing systematically helpful beyond basic
calculation, and Germain’s work was never published [Bucciarelli and Dworsky, 1980,
Chap. 8].

In particular, the fact that for values of N of the form 2°p’ for which p and « are rela-
tively prime, Condition p-N-p follows from 2-N-p, was essentially (re)discovered by Wendt
in 1894 [Wendt, 1894] and elaborated by Dickson [1908a] and Vandiver®® [Vandiver, 1926]
in the 20th century.

5. Exponents of form 2(8n+3)

We will consider now what we call Manuscript B, entitled Démonstration de I'impossib-
ilité de satisfaire en nombres entiers a I'équation z>®"+3) = y281%3) 1 x2873) By the end of the
manuscript, although it is written in a less polished fashion, it is clear that Germain has
apparently proven Fermat’s Last Theorem for all exponents of the form 2(8x 4 3), where
p = 8n =+ 3 is prime.

Germain states and proves three theorems, and then has a final argument leading to the
title claim. We shall analyze this manuscript for its approach, for its connection to her other
manuscripts and to Legendre’s attribution to her, and for its correctness.

49 Although Legendre never mentions the grand plan for proving Fermat’s Last Theorem, he is
interested in how many valid auxiliaries there may be for a given exponent. He claims that between
101 and 1000 there are no auxiliaries for p = 5 satisfying the two conditions, and that this must lead
one to expect that 101 is the last. This presages Libri’s claims that for each p there are only finitely
many auxiliaries satisfying N-C, and is the one hint we find in Legendre of a possible interest in the
grand plan.

>0 For comprehensive views of Vandiver’s contributions, especially in relation to Case 1, see [Corry,
2007, 2008].
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Although Germain does not spell out the big picture, leaving the reader to put it all
together, it is clear that she is proceeding to prove Fermat’s Last Theorem via the division
we make today, between Case 1 and Case 2, separately eliminating solutions in which the
prime exponent p = 8n + 3 either does not or does divide one of x?,)? z? in the Fermat
equation (x*) + (?)" = (2?)".

5.1. Case 1 and Sophie Germain’s Theorem

Germain begins by claiming to eliminate solutions in which none are divisible by p, and
actually claims this for all odd prime exponents, writing

First Theorem. For any [odd] prime number p in the equation z’ = x¥ + ), one of the
251

three numbers z, x, or y will be a multiple of p*.
Today we name this Case 1 of Fermat’s Last Theorem, that solutions must be p-divisible
(Germain claims a little more, namely p? divisibility). Note that there are no hypotheses as
stated, since Germain wishes to evince that Case 1 is true in general, and move on to Case 2
for the exponents at hand. She does, however, immediately recognize that to prove this, she
requires something else:

To demonstrate this theorem it suffices to suppose that there exists at least one prime
number 0 of the form 2Np + 1 for which at the same time one cannot find two pth power
residues [mod 6] whose difference is one, and p is not a pth power residue [mod 6].>

Today we recognize this as the hypothesis of Sophie Germain’s Theorem, whereas for
her it was not just a hypothesis, but something she believed was true and provable by
her methods, since she goes on to say

Not only does there always exist a number 6 satisfying these two conditions, but the
course of calculation indicates that there must be an infinite number of them. For exam-
ple, if p=5, then 0 =2-54+1=11,2-4-54+1=41,2-7-5+41=71,2-10-54+1=
101, etc.”?

Recall that Germain spends most of Manuscript A developing powerful techniques that
support this belief in Conditions N-C and p-N-p, and that confirm them for p < 100, so it is
not surprising that she wishes to claim to have proven Case 1 of Fermat’s Last Theorem,
even though she still recognizes that there are implicit hypotheses she has not completely
verified for all exponents.

Germain’s proof of her First Theorem is much like the beginning of her proof of the
Large Size theorem of Manuscript A, which we laid out in Section 4. Recall that the Large

Size proof went awry only after the p? divisibility had been proven, so her proof here, >* as

1 “Théoréme premier. Quelque soit le nombre premier p dans I'équation 2 = x + y? I'un des trois
nombres z,x ou y sera multiple de p*>” (Manuscript B, p. 92r).

32 “pour démontrer ce théoréme il suffit de supposer qu’il existe au moins un nombre premier 0 de la
form 2Np + 1 pour lequel en méme tems que ’on ne peut trouver deux residus puissances p'*™ dont
la difference soit I'unité p est non residu puissance p*™*” (Manuscript B, p. 92r).

33 “Non seulement il existe toujours un nombre 0 qui satisfait a cette double condition mais la
marche du calcul indique qu’il doit s’entrouver une infinité p=50=2-5+1=11,
2-4-541=41,2-7-5+41=71,2-10-5+1 = 101, etc.” (Manuscript B, p. 92r).

5% The proof of Theorem 1 in Manuscript B is largely reproduced, in translation, in Laubenbacher
and Pengelley [1999, 189ff].
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there, proves p? divisibility without question. This is the closest to an independent statement
and proof we find in her manuscripts of what today is called Sophie Germain’s Theorem.

However, most curiously, at the end of the proof of the First Theorem she claims also
that the p? divisibility applies to the same one of x, y,z that is divisible by the auxiliary
prime 6, which is the same as the claim, ultimately inadequately supported, where her Large
Size proof in Manuscript A began to go wrong. While she makes no use of this additional
claim here (so that it is harmless to her line of future argument in this manuscript), it leads
us to doubt a conjecture one could otherwise make about Manuscript B. One could imagine
that the First Theorem was written down as a means of salvaging what she could from the
Large Size theorem, once she discovered the flaw in the latter part of its proof. But since the
confusion linked to the flawed claim there appears also here (without proof), even though
without consequent maleffect, we cannot argue that this manuscript contains a corrected
more limited version of the Large Size theorem argument.

5.2. Case 2 for p dividing z

The rest of Manuscript B deals with Case 2 of Fermat’s Last Theorem, which is charac-
terized by Equations (1'), (2), (3) in Section 4.1. For completeness, we mention that Theo-
rem 2 contains a technical result not relevant to the line of proof Germain is developing.
Perhaps she placed it and its proof here simply because it was a result of hers about Case
2, which is the focus of the rest of the manuscript.”

As we continue with Case 2, notice that, by involving squares, the equation
(x*)" + ()" = (*)" has an asymmetry forcing separate consideration of z from x or y in
proving Fermat’s Last Theorem. Germain addresses the first of these, the p-divisibility of
z, in her Theorem 3, which asserts that z cannot be a multiple of p, if p has the form
8n+3,8n+ 5, or 81+ 7. She proves Theorem 3 by contradiction, by assuming that z is
divisible by p. Her proof actually begins with some equations that require some advance
derivation. Using the relative primality of the key numbers in each pair of the Case 2 equa-
tions (1'), (2), (3) of Manuscript A, for pairwise relatively prime solutions x?, y?, z> (once the
extra p? divisibility is built in), the reader may easily verify that the left trio of these equa-
tions becomes™®

X2yt = pilpr
Z2 o y2 — th
22— X =",
The text of Germain’s proof begins with these equations.
Germain quickly confirms Theorem 3 for p = 8n+ 3 and 8n 4+ 7 using the fact, long
known from Fermat’s time, that a sum of squares can contain no prime divisors of these
two forms. For p = 8n + 5 she must argue differently, as follows.

Because z — y and z+ y (respectively z — x and z + x) are relatively prime, one has
z4+y=(K)?and z + x = (')”, whence y* = (/')¥ (mod p) and x2 = (') (mod p), yielding

35 Theorem 2 asserts that in the Equations (1), (2), (3) pertaining in Case 2, the numbers r, m, n can
have prime divisors only of the form 2Np + 1, and that moreover, the prime divisors of » must be of
the even more restricted form 2Np? + 1. Legendre also credits this result to Germain in his footnote.
%% We do not see how she obtains 4p — 1 as exponent, rather than just 2p — 1, even after including
the stronger p? divisibility; but 2p — 1 suffices.
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(W) + (')” = 0 (mod p) since x? + y? is divisible by p. This, she points out, is a contradic-
tion, since —1 is not a biquadratic residue modulo 8z + 5.

The unfortunate flaw in this proof is perhaps not obvious at first. The 2pth power expres-
sions for z+ y and z + x rely on z — y and z + y (respectively z — x and z + x) being rela-
tively prime. This would be true from the pairwise relative primality of x,y,z, if the
numbers in each difference had opposite parity, but otherwise their difference and sum have
precisely 2 as greatest common divisor. Writing (x?)* + (3*)> = (z°)” and recalling basics of
Pythagorean triples, we see that opposite parity fails either for z — y or z — x. Suppose with-
out loss of generality that it is z — y. Then either z — y or z + y has only a single 2 as factor
(since y and z are relatively prime), so it cannot be a 2pth power. One can include this single
factor of 2 and redo Germain’s analysis to the end, but one then finds that it comes down to
whether or not —4 is a biquadratic residue modulo 8z 4 5, and this unfortunately is true,
rather than false as for —1. So Germain’s proof of Theorem 3 appears fatally flawed for
p=8n+5.

5.3. Case 2 for p dividing x or y

In her final argument after Theorem 3, Germain finishes Case 2 for p = 8n + 3 and
8n — 3 by dealing with the second possible situation, where either x or y is divisible by p.
This argument again builds from enhanced versions of equations similar to (1'), (2), (3),
but is considerably more elaborate, rising up through detailed study of the specific cases
p =5,13, 29, until she is able to end with an argument applying to all p = 8n + 3 and
8n — 3. However, since the argument proceeds initially as did the proof of Theorem 3, it
too relies on the same mistaken assumption about relative primality that misses an extra
factor of 2, and one finds that accounting for this removes the contradiction Germain aims
for, no matter what value p has.

5.4. Manuscript B as source for Legendre?

In the end we must conclude that this proof of the bold claim to have proven Fermat’s
Last Theorem for many exponents fails due to an elementary mistake. But what is correct
in Manuscript B fits extremely well with what Legendre wrote about Germain’s work. The
manuscript contains precisely the correct results Legendre credits to Germain, namely
Sophie Germain’s Theorem and the technical result of Theorem 2 about the equations in
the proof of Sophie Germain’s Theorem. Legendre does not mention the claims in the man-
uscript that turn out not to be validly proved. If Legendre used Germain’s Manuscript B as
his source for what he chose to publish as Germain’s, then he vetted it and extracted the
parts that were correct.

6. Even exponents

Another direction of Germain’s is provided by three pages that we call Manuscript C.>’
These pages contain highly polished statements with proof of two theorems.

37 Yet one more manuscript, claiming to dispense with even exponents by quite elementary means, is
[Germain, MS. FR9114, 90v—90r]. It contains a mistake that Germain went back to, crossed out, and
corrected. But she did not carry the corrected calculation forward, likely because it is then obvious
that it will not produce the desired result, so is not worth pursuing further.
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The first theorem claims that the “near-Fermat” equation 2z” = )" + x” (which
amounts to seeking three mth powers in arithmetic progression) has no nontrivial natural
number solutions (i.e., other than x = y = z) for any even exponent m = 2n with n > 1. In
fact Germain claims that her proof applies to an entire family of similar equations in which
the exponents are not always the same for all variables simultaneously. Her proof begins
with a parametric characterization of integer solutions to the “near-Pythagorean” equation
232 =b +a® (via ¢ = 2",b = y",a = x"), similar to the well-known parametric character-
ization of Pythagorean triples (solutions to ¢ = b* + @) used by Euler in his proof of Fer-
mat’s Last Theorem for exponent 4 [Laubenbacher and Pengelley, 1999, 178]. The
characterization of near-Pythagorean triples, stemming from a long history of studying
squares in arithmetic progression, would have been well known at the time [Dickson,
1920, Chap. XIV].

We will not analyze Germain’s proof further here, nor pronounce judgement on its cor-
rectness, except to say that it likely flounders in its fullest generality near the beginning, as
did the proof above of Theorem 3 in Manuscript B, on another unjustified assumption of
relative primality of two expressions. However, this would still allow it to apply for “Case
1,” i.e., when Xx, y, z, are relatively prime to n. Someone else may wish to pursue deciphering
whether the entire proof is valid in this case or not. There is a substantial history of research
on the near-Fermat equation 2z = y” 4 x™. It was finally proven in 1997 by Darmon and
Merel [1997] to have no nontrivial solutions for m > 2, after partial results by Ribet [1997]
and Dénes [1952], among others. Much earlier, Euler had proved its impossibility for m = 4
[Dénes, 1952; Dickson, 1920, Chap. XXII; Ribet, 1997], and then for m = 3 [Dénes, 1952;
Dickson, 1920, Chap. XXI]. So Germain’s claim is now known to be true, and it would be
interesting to understand her method of proof well enough to see if it is viable for Case 1.

Germain’s second claim is to prove Fermat’s Last Theorem for all even exponents
greater than two, i.e., for z2" = y** + x> with n > 1, and her proof relies directly on the pre-
vious theorem. It seems to us that this proof too relies on the unsupported relative primality
of two expressions, in this case the two factors z — y and z" ! + yz" 2 + ... + y" 2z + y" 1 of
z" — y" under only the assumption that x,y, and z are pairwise relatively prime. It does
seem to us that Germain’s proof is fine, though, for “Case 1” (modulo appeal to the pre-
vious theorem, of course), i.e., provided that x, y, z, are relatively prime to n, in which case
the two factors above will be relatively prime. We note that it is under an almost identical
hypothesis that Terjanian proved Case 1 of Fermat’s Last Theorem for even exponents in
1977 [Ribenboim, 1999, V1.4; Terjanian, 1977].

7. Germain’s approaches to Fermat’s Last Theorem: précis and connections

Our analyses of Sophie Germain’s manuscripts above have revealed a wealth of impor-
tant unevaluated work on Fermat’s Last Theorem, calling for a reassessment of her
achievements and reputation. To prepare for our reevaluation and conclusion, we first sum-
marize (see Figs. 8, 9) what we have discovered mathematically in these manuscripts, and
how it is related to other documentary evidence.

7.1. The grand plan to prove Fermat’s Last Theorem
In Manuscript A, Germain pioneers a grand plan for proving Fermat’s Last Theorem for

any prime exponent p > 2 based on satisfying a modular non-consecutivity (N-C) condition
for infinitely many auxiliary primes. She develops an algorithm verifying the condition
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Consider xP + yP = zP, for p an odd prime.
Let 8 = 2Np + 1 be an auxiliary prime, with N not divisible by 3.

Letter to Gauss, 1819

FLT “Large size” of solutions FLT for exponents 2(8n +3)
[Ms. A] [Ms. A] [Ms. B]
“S. Germain’s Thm.” (Case 1) Case 2
©O-many 0 several 0 asingle 0 Key:
Ms. = Manuscript

T Condition N-C = no consecutive p-th powers mod 6
Condition p-N-p = p is not a p-th power mod 6
Condition N-C l Condition p-N-p l FLT = Fermat's Last Theorem

Figure 8. Conditions (hypotheses) for theorems.

within certain ranges, and outlines an induction on auxiliaries to carry her plan forward.
Her techniques for N-C verification are completely different from, but just as extensive
as, Legendre’s, although his were for the purpose of proving Case 1, and were also more
ad hoc than hers. That Germain, as opposed to just Legendre, even had any techniques
for N-C verification, has been unknown to all subsequent researchers who have labored
for almost two centuries to extend N-C verification for proving Case 1. Germain likely
abandoned further efforts at her grand plan after Legendre suggested to her that it would
fail for p = 3. She sent him a proof confirming this, by showing that there are only finitely
many valid N-C auxiliaries.

Unlike Legendre’s methods and terminology, Germain adopts Gauss’s congruence lan-
guage and points of view from his Disquisitiones, and thus her techniques have in several
respects a more group-theoretic flavor. Germain’s approach for verifying N-C was indepen-
dently discovered by L.E. Dickson in the twentieth century. He, or earlier researchers, could
easily have obtained a jump start on their own work by taking their cue from Germain’s
methods, had they known of them. Recent researchers have again approached N-C by
induction, as did Germain.

7.2. Large size of solutions and Sophie Germain’s Theorem

Also in Manuscript A, Germain writes a theorem and applications to force extremely
large minimal sizes for solutions to Fermat equations, based on satisfying both the N-C
and p-N-p conditions. She later realized a flaw in the proof, and attempted to repair it using
her knowledge of quadratic residues. The valid part of the proof yields what we call Sophie
Germain’s Theorem, which then allows proof of Case 1 by satisfying the two conditions.

Germain’s efforts to satisfy the p-N-p condition are based on her theoretical result show-
ing that it will often follow from the 2-N-p condition, which she has already studied for N-
C. This then makes it in practice very easy to verify p-N-p, once again unlike Legendre. Ger-
main’s result obtaining p-N-p from 2-N-p was also independently discovered much later, by
Wendt, Dickson, and Vandiver in their efforts to prove Case 1.
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| Condition N-C | | Condition p-N-p ‘
For each N, with finitely If N =22 pP for
many excepted p ged (a+1, p) =1

A\ /

Condition 2-N-p
(special case of N-C)

Algorithm based on

permutations: Key:

Verified for N=1,2,4,5, Condition 2-N-p = 2 is not a p-th power mod 6
continued by induction Condition N-C = no consecutive p-th powers mod 6
for N=7,8,10,..... Condition p-N-p = p is not a p-th power mad 6

Figure 9. Algorithms and propositions for satisfying conditions.

7.3. Exponents 2(8n + 3) and Sophie Germain’s Theorem

In Manuscript B, Germain makes a very creditable attempt to prove Fermat’s Last The-
orem for all exponents 2p where p = 8n £ 3 is prime. Germain begins with a proof of what
we call Sophie Germain’s Theorem, in order to argue for Case 1. Manuscript B provides us
with our best original source for the theorem for which she is famous. Her subsequent argu-
ment for Case 2 boils down to knowledge about biquadratic residues. This latter argument
contains a flaw related to relative primality. The manuscript fits well as a primary source for
what Legendre credited to Germain.

One could imagine that the appearance here of Sophie Germain’s Theorem might indi-
cate an effort to recover what she could from the flawed Large Size theorem in Manuscript
A, but the details of the proof suggest otherwise, since they betray the same misunderstand-
ing as in Manuscript A before Germain wrote its erratum.

7.4. Even exponents

In Manuscript C, Germain writes two theorems and their proofs to establish Fermat’s
Last Theorem for all even exponents, by methods completely unlike those in her other
manuscripts. She plans to prove Fermat’s Last Theorem by showing first that a slightly dif-
ferent family of Diophantine equations has no solutions. So she begins by claiming that the
“near-Fermat” equations 2z*" = y*" + x* (and whole families of related equations) have no
nontrivial positive solutions for n > 1. This has only very recently been proven in the liter-
ature. Her proof suffers from the same type of flaw for Case 2 as in Manuscript B, but may
otherwise be correct. Her proof of Fermat’s Last Theorem for even exponents, based on
this “near-Fermat result, ” also suffers from the Case 2 flaw, but otherwise appears to be
correct.

8. Reevaluation
8.1. Germain as strategist: theories and techniques

We have seen that Germain focused on big, general theorems applicable to infinitely
many prime exponents in the Fermat equation, rather than simply tackling single exponents
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as usually done by others. She developed general theories and techniques quite multifaceted
both in goal and methods. She did not focus overly on examples or ad hoc solutions. And
she also used to great advantage the modern point of view on number theory espoused by
Gauss. The significance of Germain’s theoretical techniques for verifying conditions N-C
and p-N-p is indicated by their later rediscovery by others, and a recent reapproach by
mathematical induction. Moreover, her approach was more systematic and theoretical than
Legendre’s pre-Gaussian and completely different methods.

For almost two hundred years, Germain’s broad, methodical attacks on Fermat’s Last
Theorem have remained unread in her unpublished papers. And no one has known that
all the results published by Legendre verifying conditions N-C and p-N-p, quoted and used
extensively by others, are due but uncredited to Germain, by more sophisticated and theo-
retical methods.

These features of Sophie Germain’s work demonstrate that, contrary to what has been
thought by some, she was not a dabbler in number theory who happened to light upon
one significant theorem. In fact, what we call Sophie Germain’s Theorem is simply fallout
from two much grander engagements in her papers, fallout that we can retrospectively iso-
late, but which she did not. It is we and Legendre, not Germain, who have created Sophie
Germain’s Theorem as an entity. On the other hand, Legendre in this sense also performed
a great service to Germain and to future research, since he extracted from her work and
published the one fully proven major theorem of an enduring and broadly applicable
nature.

Germain’s agenda was ambitious and bold. She tackled what we now know was one of
the hardest problems in mathematics. It is no surprise that her attempts probably never
actually proved Fermat’s Last Theorem for even a single new exponent, although she seems
to have come close at times.

8.2. Interpreting errors in the manuscripts

Mathematicians often make errors in their work, usually winnowed out through reac-
tions to presentations, informal review by colleagues, or the publication refereeing process.
We have found that several of Germain’s manuscripts on Fermat’s Last Theorem contain
errors in her proofs. Let us examine these in light of the unusual context within which we
have found them.

First, we are short-circuiting normal publication processes by peeking at Germain’s pri-
vate papers, works she chose never to submit for publication, even had she shown them to
anyone. Perhaps she knew of the errors we see, but chose to keep these papers in a drawer
for later revival via new ideas. We can see explicitly that she later recognized one big error,
in her Large Size of Solutions proof, and wrote an erratum attempting remedy.

Second, let us consider the mathematical nature of the mistakes in her manuscripts. In
elasticity theory, where the holes in her societally forced self-taught education were serious
and difficult to remediate on her own [Bucciarelli and Dworsky, 1980, 40ff], Germain suf-
fered from persistent conceptual difficulties leading to repeated serious criticisms. By con-
trast, Germain was very successful at self-education and independent work in number
theory. She was able to train herself well from the books of Legendre and Gauss, and
she shows careful work based on thorough understanding of Gauss’s Disquisitiones Arith-
meticae, despite its highly technical nature. The mistakes in her number theory manuscripts
do not stem from conceptual misunderstanding, but rather are slips overlooking the neces-
sity for relative primality in making certain deductions, even though elsewhere she shows
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clear awareness of this necessity. In particular, Germain’s entire grand plan for proving
Fermat’s Last Theorem, including algorithms for verifying Conditions N-C and p-N-p, is
all very sound. Even though Germain’s mistakes were conceptually minor, they happen
to have left her big claims about large size and proving Fermat’s Last Theorem for various
families of exponents unproven.

Further, we should ask what evaluation by peers Germain’s manuscripts received, that
should have brought errors to her attention. Here we will encounter more a puzzle than
an answer.

8.3. Review by others versus isolation

8.3.1. Germain’s elasticity theory: praise and neglect

There is already solid evidence [Bucciarelli and Dworsky, 1980, Chaps. 5-9] that during
Germain’s long process of working to solve the elasticity problem in mathematical phys-
ics,”® she received ever decreasing collegial review and honest critique of her work — in fact,
toward the end perhaps none.

Publicly praised as a genius and a marvel, she was increasingly ignored privately and
institutionally when it came to discourse about her elasticity work. There is no evidence
of any individual intentionally wishing her harm, and indeed some tried personally to be
quite supportive. But the existing system ensured that she lacked early solid training or suf-
ficiently detailed and constructive critique that might have enabled her to be more success-
ful in her research. Germain labored continually under marginalizing handicaps of lack of
access to materials and to normal personal or institutional discourse, strictures that male
mathematicians did not experience [Bucciarelli and Dworsky, 1980, Chaps. 7-9]. The evi-
dence suggests that Germain in effect worked in substantial isolation much of the time.

8.3.2. Germain’s interactions about Fermat's Last Theorem: the evidence

Given the social features dominating Germain’s work in elasticity theory, what was the
balance between collegial interaction and isolation in her work?

Specifically, we will focus on what to make of the disparity between the techniques of
Germain and Legendre for their many identical results on the Fermat problem. And we will
ask what of Germain’s work and results was seen by Legendre, or anyone?

We have no actual published work by Germain on Fermat’s Last Theorem. Even though
much of the research in her manuscripts would have been eminently publishable, such as
her theoretical means of verifying the N-C and p-N-p conditions for applying Sophie Ger-
main’s Theorem to prove Case 1, it never was published. While we could speculate on rea-
sons for this, it certainly means that it did not receive any formal institutional review. Nor
presumably could Germain present her work to the Academy of Sciences, like her male
contemporaries.

Despite having analyzed a wealth of mathematics in Germain’s manuscripts, we still have
little to go on when considering her interactions with others. Her manuscripts say nothing
directly about outside influences, so we must infer them from mathematical content.

Germain’s 1819 letter to Gauss focused on the broad scope of her work on Fermat’s Last
Theorem, but did not mention direct contact with others, and apparently received no

% The Academy’s elasticity prize competition was announced in 1809, and twice extended, and
Germain eventually received the award in 1816. Thereafter she carried out efforts at personal, rather
than institutional, publication of her work on elasticity theory, stretching long into the 1820s.



Sophie Germain’s grand plan to prove Fermat’s Last Theorem 687

response from Gauss. Gauss had earlier made clear his lack of interest in the Fermat prob-
lem, writing on March 21, 1816 to Olbers [Schilling, 1900, 629]: “I am very much obliged for
your news concerning the [newly established] Paris prize. But I confess that Fermat’s the-
orem as an isolated proposition has very little interest for me, because I could easily lay
down a multitude of such propositions, which one could neither prove nor dispose of.” This
could by itself explain why Germain did not receive a response from Gauss to her 1819
letter.

Thus the Fermat problem was in a very curious category. On the one hand, from 1816 to
1820 it was the subject of the French Academy’s prize competition, thereby perhaps greatly
attracting Germain’s interest. After all, with no access to presenting her work at the Acad-
emy, her primary avenues for dissemination and feedback were either traditional journal
publication or the Academy prize competition, which she had won in elasticity. On the
other hand, the Fermat problem was considered marginal by Gauss and others, and topics
such as the investigation of higher reciprocity laws certainly involved developing important
concepts with much wider impact. So Germain’s choice to work mostly on Fermat’s Last
Theorem, while understandable, contributed to her marginalization as well.

Regarding Germain’s interaction with Legendre about her work on Fermat’s Last The-
orem, we have two important pieces of evidence. First, while Legendre’s published footnote
crediting Sophie Germain’s Theorem to her is brief, we can correlate it very precisely with
content found in Germain’s manuscripts. Second, we have one critical piece of correspon-
dence, Germain’s letter to Legendre confirming that her grand plan will not work. Starting
from these we will now draw some interesting conclusions.

8.3.3. Legendre and Germain: a perplexing record

Legendre’s footnote and Germain’s letter to him indicate that they had mathematically
significant contact about the Fermat problem, although we do not know how frequently, or
much about its nature. What then does our study of her most polished manuscripts suggest?

First, it is a real surprise to have found from Manuscript A that Germain and Legendre
each had very extensive techniques for verifying Conditions N-C and p-N-p, but that they
are completely disjoint approaches, devoid of mathematical overlap. Their methods were
obviously developed completely independently, hardly what one would expect from two
mathematicians in close contact.

This phenomenon dovetails with a counterview about the effects of isolation suggested
to us by Paulo Ribenboim. If one works in isolation, one is not so much influenced by oth-
ers, so one has the advantage of originality, provided one has fresh, good ideas. Clearly
Germain had these, since we have seen that she developed her own powerful theoretical
techniques for verifying Conditions N-C and p-N-p, not derived from anyone else’s.

In contrast to Manuscript A, Legendre’s crediting footnote details exactly the results that
are correct from Germain’s Manuscript B, namely Sophie Germain’s Theorem and an addi-
tional technical result about the equations in its proof. So while Manuscript B, along with
her separate table of residues and auxiliaries, is an extremely plausible source for Legen-
dre’s credit to her, Germain’s Manuscript A shows completely independent but parallel
work left invisible by Legendre’s treatise.

So where does this leave Manuscript A? It contains Germain’s grand plan, along with all
her methods and theoretical results for verifying N-C and p-N-p, and her large size theorem.
This seems like her most substantial work, and yet we can find only a single speck of cir-
cumstantial evidence in Legendre’s 1823 treatise suggesting that he might even be aware of
the mathematics in Germain’s Manuscript A, despite her manuscript being placed by her
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letter to Gauss at prior to 1819. But even this speck is perplexing and can be viewed in
opposing ways, as follows.

Recall from footnote 49 that Legendre, in his treatment of large size of solutions, com-
ments that for p = 5 his data make him “presume” that there are no auxiliary primes larger
than 101 satisfying Condition N-C. This indicates that he was at least interested in whether
there are infinitely many auxiliaries, although he does not mention why. Why would he even
be interested in this issue, if it weren’t for interest in the grand plan? And why would he
even imagine that there might only be finitely many, unless he already had some evidence
supporting that, such as Germain’s letter to him proving failure of the grand plan for p = 3?
On the other hand, if he had her letter before writing his 1823 memoir, why did he not say
something stronger for p = 5, such as that he knew that for p = 3 there are only finitely
many primes satisfying N-C, supporting his presumption for p = 5?

The only direct evidence we have that Legendre knew of Germain’s grand plan is her let-
ter to him proving that it will not work for p = 3. But even if Germain’s letter proving fail-
ure of the grand plan for p = 3 occurred before Legendre’s 1823 treatise, so that the known
failure was his reason for not mentioning the plan in his treatise, why is Legendre mute
about Germain through the many pages of results identical to hers that he proves, by com-
pletely different means, on Conditions N-C and p-N-p for establishing Case 1 and large size
of solutions? Extensions of these results have been important to future work ever since, but
no one has known that these were equally due to Germain, and by more powerful methods.

If Legendre had seen Manuscript A, he knew all about Germain’s methods, and could
and should have credited her in the same way he did for what is in Manuscript B. We must
therefore at least consider, did Legendre, or anyone else, ever see Manuscript A and so com-
prehend most of Germain’s work, let alone provide her with constructive feedback? It is
reasonable to be skeptical. Earlier correspondence with Legendre shows that, while he
was a great personal mentor to her initially during the elasticity competition, and seems
always to have been a friend and supporter, he withdrew somewhat from mentorship in
frustration as the competition progressed [Bucciarelli and Dworsky, 1980, 63]. Did this
withdrawal carry over somehow to contact about Fermat’s Last Theorem? Without finding
more correspondence, we may never know whether Germain had much extensive or inten-
sive communication with anyone about her work on Fermat’s Last Theorem.

8.3.4. The Fermat prize competition

There was one final possible avenue for review of Germain’s work on the Fermat
problem.

At the same session of the Academy of Sciences in 1816 at which Sophie Germain was
awarded the elasticity competition prize, a new competition was set, on the Fermat prob-
lem. Extended in 1818, it was retired in 1820 with no award, and Sophie Germain never
made a submission [Bucciarelli and Dworsky, 1980, 86]. And yet, together, our manuscript
evidence and the 1819 date of her letter to Gauss strongly suggest that she was working
hard on the problem during the years of the prize competition.

Why did she not submit a manuscript for this new prize, given the enormous progress on
the Fermat problem we have found in her manuscripts, and the meticulous and comprehen-
sive appearance of her work in Manuscript A, which appears prepared for public consump-
tion? Was Germain’s reluctance due to previous frustrating experiences from her multiple
submissions for the elasticity prize through its two extensions—a process that often lacked
helpful critiques or suggested directions for improvement [Bucciarelli and Dworsky, 1980,
Chaps. 5-9]? Or, having been particularly criticized for incompleteness during the elasticity
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prize competition, did she simply know she had not definitely proved Fermat’s Last Theo-
rem in full, and hence feel she had nothing sufficient to submit?

8.4. Amateur or professional?

Goldstein [1989] analyzes the transformation of number theory from the domain of the
amateur to that of the professional during the 17th to 19th centuries. By Germain’s time
this transformation had shifted number theory mostly to the professional world, and to
be successful Germain needed to interact and even compete with degreed professionals
at institutions. Was she herself an amateur or a professional?

Germain had many of the characteristics of a professional, attained through highly unu-
sual, in fact audacious, personal initiatives injecting herself into a professional world that
institutionally kept her, as a woman (and therefore by definition uncertified), at arm’s
length. Her initiatives would hardly be dreamt of by anyone even today. She attained some
informal university education first through impersonation of LeBlanc, a student at the
Ecole Polytechnique, an institution that would not admit women, leading to mathemati-
cians such as Lagrange and Legendre serving as her personal mentors. She devoured much
professional mathematical literature in multiple disciplines, however, she presumably had
only what access she could obtain privately. And she initiated an also impersonated corre-
spondence with Gauss. Germain appears to have devoted her adult life almost entirely to
mathematical research, having no paid employment, spouse, or children. She competed
against professional mathematicians for the Academy prize on elasticity, she achieved some
professional journal publications, and she self-published her elasticity prize research when
the Academy would not publish it.

On the other hand, Germain had some of the characteristics of amateurs typical of ear-
lier periods, such as great reliance on personal contact and letters. Most importantly, she
was not employed as a professional mathematician. And after her death no institution took
responsibility for her papers or their publication, one substantial reason why much of her
extensive work has remained unknown. However, it seems that all this was ultimately due
precisely to her being a woman, with professional positions closed to her. One could say
that Germain was relegated to something of the role of an amateur by a world of profes-
sionals and institutions that largely excluded her because of her sex, a world to which she
aspired and for which she would have otherwise been perfectly qualified.

9. Conclusions

The impression to date, the main thesis of Bucciarelli and Dworsky [1980], has been that
Germain could have accomplished much more had she enjoyed the normal access to edu-
cation, collegial interaction and review, professional institutions, and publication accorded
to male mathematicians. Our study of her manuscripts and letters bolsters this perspective.

The evidence from Germain’s manuscripts, and comparison of her work with that of
Legendre and later researchers, displays bold, sophisticated, multifaceted, independent
work on Fermat’s Last Theorem, much more extensive than the single result, named Sophie
Germain’s Theorem, that we have had from Legendre’s published crediting footnote. It cor-
roborates the isolation within which she worked, and suggests that much of this impressive
work may never have been seen by others. We see that Germain was clearly a strategist,
who single-handedly created and pushed full-fledged programs towards Fermat’s Last
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Theorem, and developed powerful theoretical techniques for carrying these out, such as her
methods for verifying Conditions N-C and p-N-p.

We are reminded again of her letter to Gauss: “I will give you a sense of my absorption
with this area of research by admitting to you that even without any hope of success, I still
prefer it to other work which might interest me while I think about it, and which is sure to
yield results.”>® Sophie Germain was a much more impressive number theorist than anyone
has ever known.
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