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Abstract

Hierarchical graphs are an important class of graphs for modeling many real applications
in software and information visualization. In this paper, we investigate area requirements for
drawing hierarchically planar graphs regarding two di5erent drawing standards. Firstly, we show
an exponential lower bound for the area needed for straight-line drawing of hierarchically planar
graphs. The lower bound holds even for s-t hierarchical graphs without transitive arcs, in contrast
to the results for upward planar drawing. This motivates our investigation of another drawing
standard grid visibility representation, as a relaxation of straight-line drawing. An application of
the existing results from upward drawing can guarantee a quadric drawing area for grid visibility
representation but does not necessarily guarantee the minimum drawing area. Motivated by this,
we will present a new grid visibility drawing algorithm which is e:cient and guarantees the
minimum drawing area with respect to a given topological embedding. This implies that the
area minimization problem is polynomial time solvable restricted to the class of graphs whose
planar embeddings are unique. However, we can show that the problem of area minimization of
grid visibility for hierarchically planar graphs is generally NP-hard, even restricted to s-t graphs.
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1. Introduction

Automatic graph drawing [2,5,13,14,15,16,17,18] plays an important role in many
computer-based applications such as CASE tools, software and information visualiza-
tion, VLSI design, visual data mining, and Internet navigation. Directed acyclic graphs
are an important class [2] of graphs to be investigated in this area. The upward drawing
convention for drawing acyclic directed graphs has received a great deal of attention
since last decade; and a number of results for drawing upward planar graphs have
been published [2,4,6,11].
Consider [7,8,9,19] that directed graphs are not powerful enough to model every real-

life application. “Hierarchical” graphs are then introduced, where layering information is
added to a directed acyclic graph. Consequently, the “hierarchical” drawing convention
is proposed to display the speciGed layering information.
Due to the additional layering constraint, most problems in hierarchical drawing

are inherently di5erent to those in upward drawing. For example, testing for “upward
planarity” of directed acyclic graphs is NP-Complete [11], while it can be done in linear
time [3,12] for “hierarchical planarity”. Therefore, issues, such as, “planar”, “straight-
line”, “convex”, and “symmetric” representations have been independently investigated
[7,8,12] with respect to “hierarchically planar” graphs.
In this paper, we investigate the problem of area requirements for drawing hierar-

chically planar graphs with respect to a given resolution requirement. In [6], it has
been shown that exponential areas are generally necessary for drawing upward planar
graphs by the “straight-line” drawing standard. However, only quadric drawing areas
are required when “s-t” upward planar graphs are reduced, meaning that no “transitive”
arcs exist.
In this paper, we show that the results in [6] do not entirely hold for hierarchically

planar graphs. SpeciGcally, we show that by the straight-line drawing standard, expo-
nential drawing areas are necessary even for s-t hierarchically planar graphs without
transitive arcs. This is the Grst contribution of the paper.
Secondly, we study the drawing area problem when line segments are allowed to

represent vertices. In particular, we study the drawing area problem for “grid visibil-
ity representations”. An application of the algorithm VISIBILITY DRAW in [4] gives
the quadric area for the grid visibility representation of hierarchically planar graphs.
However, this algorithm does not necessarily guarantee the minimal drawing area—an
example will be given in Section 4. Motivated by this, we present a new and e:cient
algorithm for grid visibility representations of hierarchically planar graphs which guar-
antees the minimum drawing area with respect to a Gxed “planar embedding”. This is
the second contribution of the paper. The third contribution of the paper is to prove
that the problem of area minimization is NP-hard for the grid visibility representation
if a planar embedding is not Gxed. The NP-hardness holds even for s-t hierarchically
planar graphs.
The rest of the paper is organized as follows. Section 2 gives the basic terminology

and background knowledge, as well as the deGnitions of problems to be investigated.
Section 3 presents the Grst contribution. Section 4 presents the second and the third
contributions. This is followed by the conclusions and remarks.
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2. Preliminaries

The basic graph theoretic deGnitions can be found in [1].
A hierarchical graph H =(V; A; �; k) consists of a simple and directed acyclic graph

(V; A), a positive integer k, and for each vertex u, an integer �(u)∈{1; 2; : : : ; k} with
the property that if u→ v∈A, then �(u)¿�(v). For 16i6k the set {u: �(u)= i} of
vertices is the ith layer of H and is denoted by Li. An arc u→ v in H =(V; A; �; k) is
a transitive arc if there exists another directed path from u to v. An arc u→ v is long
if it spans more than two layers, that is, �(u)− �(v)¿2.
For each vertex u in H , we use Au to denote the set of arcs incident to u, A+

u to
denote the set of arcs outgoing from u, and A−

u to denote the set of arcs incoming to
u. A sink u of a hierarchical graph H is a vertex that does not have outgoing arcs;
that is, A+

u = ∅. A source of H is a vertex that does not have incoming arcs; that is,
A−
u = ∅. H is s-t if it has only one sink and one source.
A hierarchical graph is proper if it has no long arcs. Clearly, adding �(u)−�(v)−1

dummy vertices to each long arc u→ v in an improper hierarchical graph H results in
a proper hierarchical graph, denoted by Hp. Hp is called the proper image of H . Note
that HP =H if H is proper.
To display the speciGed hierarchical information in a hierarchical graph, the hierar-

chical drawing convention is proposed, where a vertex in each layer Li is separately
allocated on the horizontal line y= i and arcs are represented as curves monotonic in y
direction; see Figs. 1(a)–(c). In this paper, we will discuss only hierarchical drawing
convention.
A hierarchical drawing is planar if no pair of arcs intersect except, possibly, at

common end points. A hierarchical graph is hierarchically planar if it has a planar
drawing admitting the hierarchical drawing convention.
An embedding EH of a proper hierarchical graph H gives an ordered vertex set Li

for each layer Li in H . For a pair of vertices u; v∈Li, u is on the left side of v if u¡v.
An embedding of an improper hierarchical graph H means an embedding of the proper
image Hp of H , and is also denoted by EH . Note that for an improper hierarchical graph
H , Li may contain more vertices than Li due to additional dummy vertices.
A hierarchical drawing � of H respects EH if for each pair of vertices u; v in a

Li, the x-coordinate value �(u) is smaller than that of �(v) if and only if u¡v. An
embedding EH is planar if a straight-line drawing of Hp respecting EH is planar.

Various representation standards exist for drawing hierarchically planar graphs. In
a straight-line drawing �, each vertex v is represented as a point �(u) and each arc
u→ v is represented as a line segment connecting �(u) and �(v); see Fig. 1(a). In a
polyline drawing, each long arc is allowed to be represented as a polygonal chain with
bends allocated on some of the k horizontal lines y= i for 16i6k; see Fig. 1(c). In
a visibility representation �, each vertex u is represented as a horizontal line segment
�(u) on y= �(u) and each arc u→ v as a vertical line segment connecting �(u) and
�(v), such that:
• �(u) and �(v) are disjoint if u �= v, and
• a vertical line segment and a horizontal line segment do not intersect if the corre-
sponding arc and vertex are not incident.
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y=4

y=3

y=2

y=1

(a): straight-line (b): visibility representation (c): Polyline

Fig. 1. Various representations of a hierarchical graph.

See Fig. 1(b), for example. Note that in a visibility representation, a line segment used
to represent a vertex may be degenerated into a point.
A straight-line drawing is a grid drawing if each vertex is at a grid position; and a

polyline drawing is a grid drawing if vertices and bends are at grid positions. Similarly,
in a grid visibility representation each horizontal line segment and vertical line segment
must use grid points as its ends.
The area of a hierarchical drawing is the area of the minimum isothetic rectangle that

contains the drawing. The width and the height of the drawing are width and height,
respectively, of this rectangle. Drawing a hierarchically planar graph H consists of two
phases: (1) Gnding a planar embedding EH , and (2) Gnding a hierarchical drawing of
H respecting EH .
Note that e:cient polynomial time algorithms [3,12] were proposed for phase 1.

In this paper, we study the drawing area minimization problem. For a given hierar-
chical graph H , any hierarchical drawing of H has a Gxed height. Consequently, the
investigation of the drawing area problem is reduced to that of the drawing width
problem.

3. An exponential area lower bound

Below, we Grst deGne a class of s-t hierarchically planar graphs {Hn: n¿1} where
Hn=(Vn; An; �n; 4n− 1), such that:
1. |Vn|=10n− 6,
2. Hn has no transitive arcs, and
3. any planar straight-line drawing of Hn requires exponential width with respect to a

given vertex resolution requirement.

SpeciGcally, we iteratively deGne Hn by extending Hn−1 (for n¿2). The extension
follows the same topology.
The graph H1 consists of four vertices {t1; c1;1; c2;1; s1} and three layers L3 = {s1},

L2 = {c1;1; c2;1}, and L1 = {t1}. Four arcs connect H1 in a diamond shape (see
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Fig. 2. Construction of Hn.

Fig. 2(a)). To extend H1 to H2, ten vertices are added as depicted in Fig. 2(b). Gen-
erally, we construct Hi+1 from Hi by adding the following ten vertices in a way as
depicted in Fig. 2(c):

Vi+1 = Vi ∪ {si+1; ti+1; a1;i+1; a2;i+1; b1;i+1; b2;i+1; c1;i+1; c2;i+1; d1;i+1; d2;i+1}:
Therefore, the layers of Hn can be described below:
L1 = {tn}, L4n−1 = {sn}, L2n= {c1;1; c2;1}; and for 16x6n − 1, L2n+2x = {bj; x+1: 16j
62}, L2n+2x−1 = {sx}∪{aj; x+1: 16j62}, L2x+1 = {tn−x}∪{cj; n−x+1: 16j62}, and L2x
= {dj; n−x+1: 16j62}.
The arc set An of Hn consists of:
{s1 → cj;1; cj;1 → t1: 16j62}, {sx→ bj; x; sx→ cj; x: 16j62; 26x6n}, {sx→ sx−1: 26
x6n}, {bj; x→ aj; x; bj; x→ cj; x−1; aj; x→ tx−1; aj; x→dj; x: 16j62; 26x6n}, and {cj; x→
dj; x; dj; x→ tx; : 16j62; 26x6n}, {tx−1 → tx: 26x6n}.
Based on the structure of Hn, the following two lemmas can be immediately veriGed

by a mathematical induction,

Lemma 1. For n¿1, Hn is a hierarchically planar graph with no transitive arcs.

Lemma 2. For n¿1, the planar embedding EHn of Hn is unique up to a complete
reversal.

Theorem 1 presents the main result in this section.

Theorem 1. For each Hn, suppose that � is a hierarchically planar straight-line draw-
ing of Hn, where each pair of vertices in the same layer are at least distance 1 apart.
Then � has width at least �((2n− 1)!).

Proof. With respect to �, suppose that for 26i6n, the distance between �(c1; i) and
�(c2; i) is li.
Lemma 2 tells us that the planar embedding given by Fig. 2(c) is unique to any

hierarchically planar drawing of Hn up to a complete reversal.
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Fig. 3. Relationship among widths.

Without loss of generality, we may assume that � gives the planar embedding as
depicted in Fig. 2(c).
Thus, in � the relationship of the vertices orderings between � restricted to Hi+1 and

� restricted to Hi must be as the one illustrated in Fig. 2(c). Consider the two triangles
in Fig. 3 with respect to �. Since the drawing � is a planar straight-line drawing,
elementary geometry implies li+1=li¿2i(2i − 1). Hence, ln¿(2(n− 1))! Therefore the
Theorem holds.

Note that any hierarchical drawing of Hn has height 4n−2. Thus each hierarchically
planar straight-line drawing of Hn, in which each pair of vertices in the same layer are
at least distance 1 apart, has area at least �(n(2n− 2)!).
Note that Hn can be drawn upward planar in quadratic area (with respect to the

number of vertices in Hn) by the algorithm in [6], but the layering of Hn is not
preserved.

4. Visibility representation

In this section, we study the problem of drawing area minimization for visibility
representation. As mentioned earlier, the area minimization problem can be reduced
to the drawing width minimization problem due to the Gxed drawing height for a
hierarchical graph. Below we formally present the problem.

Minimum area of grid visibility drawing (MAGVD).
Instance: A hierarchical planar graph H is given.
Question: Find a grid visibility representation of H such that the drawing width is

minimized.

Without loss of generality, we assume that in H , there is no isolated vertex—a
vertex without any incident arcs. In Section 4.2, we will prove that MAGVD is NP-
hard. Firstly, however, we show that it is polynomially solvable if the planar embedding
is given as part of the input.
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4.1. Area minimization for a ;xed planar embedding

Di Battista and Tamassia proposed a framework [4], VISIBILITY DRAW, for draw-
ing s-t upward planar graphs by a grid visibility representation. In fact the algorithm
can be immediately applied to hierarchically planar graphs with a Gxed planar embed-
ding. Below is the version for hierarchical graphs.

Algorithm VISIBILITY DRAW
Input: a hierarchically planar graph H and its planar embedding EH .
Output: a grid visibility representation of H respecting EH .
Step 1: Labelling. Give each arc a an integer l(a).
Step 2: Drawing. This step follows immediately Step 1 and draws H based on the

output of Step 1. It consists of the following two phases: drawing vertices and drawing
arcs of H .
Drawing vertices: For each vertex u∈H , let Au represent the set of arcs in H which

are incident to u. Assume u∈Li. Represent u by the horizontal line segment from
(mina∈Au {l(a)}; i) to (maxa∈Au {l(a)}; i).
Drawing arcs: Represent an arc a= u→ v with u∈Li and v∈Lj by the vertical line

segment from (l(a); i) to (l(a); j).

Suppose that the largest x-coordinate value assigned to a grid visibility represen-
tation � of H is N , and the smallest is 1. Then the width of � is N − 1. There-
fore, the key in applying the algorithm VISIBILITY DRAW to minimizing drawing
width is to optimize Step 1—Labelling. Note that in VISIBILITY DRAW, a dual
graph technique is adopted while labelling each arc, such that the label of each arc
takes the length of the longest path from the source to the node in dual graph which
corresponds to the right face of the arc. It is interesting to note that the length of
the longest path may be far from the minimum width for a given planar embed-
ding; and thus the labeling technique in [4] does not guarantee the minimality of
the drawing width for a Gxed planar embedding. This is shown by the following
examples.
A hierarchical graph H1 and its dual graph are illustrated in Fig. 4(a), where the

dual graph is depicted by rectangles and dotted arcs. An application of the algorithm
VISIBILITY DRAW produces the grid visibility representation of H1 with width 3 as
shown in Fig. 4(b). However, the minimum width of a grid visibility representation
of H is 2 as shown in Fig. 4(c). Actually, the drawing in Fig. 4(c) is output by our
algorithm.
We can generalize the example in Fig. 4 to the graph H2 as shown in Fig. 5,

where H1 in Fig. 4 is duplicated n times in H2. It can be immediately veriGed that
the length of the longest path from the source to the sink of the dual graph of H2

is 4n. Consequently, the width of the grid visibility representation of H2 produced by
the algorithm VISIBILITY DRAW is 4n − 1. However, it is easy to show that the
minimum width of a grid visibility representation of H2 is 3n− 1.

Next, we provide a new algorithm OPTIMAL LABELLING to Step 1, which guar-
antees the minimum drawing area for a hierarchically planar graph with a Gxed planar
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1 2 3 4 1 2 3

dual graph

(a) (b) (c)

Fig. 4. Counter example 1.

......

Fig. 5. Counter example 2.

embedding. The basic idea is immediate—labelling each arc with the minimal possible
integer.
To describe OPTIMAL LABELLING, the following notation is needed. For two

di5erent arcs a1 = u1 → v1, a2 = u2 → v2 ∈H , a1 is on the left side of a2 with respect
to EH if and only if in EH there are a vertex u on a1 and a vertex v on a2 such that
u and v are in the same layer and u is on the left side of v. Note that EH is a planar
embedding of Hp, and thus u and v could be dummy vertices on the long arcs. By
adding the restriction that such two vertices u and v are always taken from the highest
possible layer, the all possible cases are then limited to four which are depicted in
Figs. 6(a)–(d), where dotted lines indicate possible extensions to long arcs. Note that
Fig. 6(c) also includes the horizontal Pip of case Fig. 6(d).
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Fig. 6. The four possible cases where a1 is on the left side of a2.
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32                        41

(b)(a) (c)

Fig. 7. OPTIMAL LABELLING.

An arc a in H is left-most with respect to EH if there is no arc in H that is on the
left side of a.
The algorithm OPTIMAL LABELLING iteratively Gnds the left-most arcs (with

respect to EH ) in H to label. In each iteration i:
S1: OPTIMAL LABELLING scans the hierarchical graph H from the top layer to the

bottom layer to label the left-most arcs in the current H with the integer i. Go to
S2.

S2: OPTIMAL LABELLING deletes all arcs labelled in this iteration; and deletes the
isolated vertices resulted after arcs deletion in H . Go to (i + 1)th iteration.

The algorithm terminates if all arcs in H are labelled.
For instance, Fig. 7(b) shows the result after applying OPTIMAL LABELLING

to the graph with respect to the planar embedding depicted in Fig. 7(a). Fig. 7(c)
illustrates the result after applying Step 2 in VISIBILITY DRAW to the output (Fig.
7(b)) of OPTIMAL LABELLING.
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It can be immediately veriGed that the drawing, produced by applying a combination
of OPTIMAL LABELLING and Step 2 in VISIBILITY DRAW, respects the given
planar embedding EH ; that is.

Lemma 3. The combination of OPTIMAL LABELLING and Step 2 in VISIBIL-
ITY DRAW gives a grid visibility representation of H respecting a given planar
embedding EH .

Below, we show that the labelling algorithm actually gives the minimum drawing
width for a Gxed planar embedding.

Theorem 2. Respecting a given planar embedding EH of a hierarchically planar graph
H , the grid visibility representation of H , produced by the combination of OPTI-
MAL LABELLING and Step 2 in VISIBILITY DRAW, has the minimum drawing
width.

Proof. Any grid visibility representation �′ of H that respects EH induces a labelling
l�′ of the arc set of H by assigning the abscissa of the vertical line, representing an
arc, as the label of this arc. Suppose that the maximal label in l�′ is N ′. The drawing
width of �′ is N ′ − 1. Note that �′ respects EH . It immediately implies that for each
pair of arcs a and a′, l�′(a)6l�′(a′)− 1 if a is on the left side of a′.
Applying mathematic induction and based on the above fact, we can immediately

verify that every arc has been assigned the minimum label, by the algorithm OPTI-
MAL LABELLING, for all possible visibility representations respecting EH . Therefore,
the theorem holds.

Note that a hierarchically planar graph with n nodes has O(n) arcs; and the num-
ber of labels produced by our algorithm OPTIMAL LABELLING are no more than
the number of arcs. Further, a hierarchical graph with n nodes spans at most n
layers. Therefore, the drawing given by our algorithm, a combination of our algo-
rithm OPTIMAL LABELLING with Step 2 in VISIBILITY DRAW, occupies area
O(n2).
Suppose that vertices in each layer Li in H are stored from left to right according

to their ordering given by EH , as well as the vertices in Li do. Assume that for each
vertex u, arcs in A+

u are also stored from left to right according their ordering. To
execute OPTIMAL LABELLING e:ciently, S1 and S2 can be integrated together in
each iteration. In each iteration i, start with the leftmost vertex u in the top layer of
the remaining H , and search down along the leftmost arc a= u→ v in A+

u to see if a
is the leftmost arc in the current H :
Case 1: If a is also the leftmost arc in the current H , then label a with i and

delete a from H . Consequently, delete any resultant isolated vertex from H . Continue
the iteration from the layer one level below the layer of v if A+

v is empty; otherwise
continue the iteration from the layer of v.
Case 2: If a is not the leftmost arc in the current H , then in the remaining H there

must be a vertex w such that the leftmost arc b= u1 → v1 of A+
w is on the left side
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of a and u1 is the leftmost vertex in the layer of u1. Choose such a vertex u1 that its
layer number is maximized. Then continue the iteration i from the layer of u1.

Clearly, the computation involved in the above two cases is proportional to a scan
of the Grst vertices in the layers spanned by a. Consequently, for a H =(V; A; �; k)
each iteration takes O(k) time. Note that the number of iteration must be less than the
number of arcs, because each iteration labels at least one arc. Therefore, the algorithm
OPTIMAL LABELLING runs in time O(k|A|). As H is planar, |A|=O(|V |); and thus
the algorithm runs in O(k|V |).

4.2. The complexity of MAGVD

In this section, we prove the NP-hardness of MAGVD. In fact, we are able to show
a bit stronger result; that is, MAGVD is NP-hard even restricted to s-t hierarchically
planar graphs. Clearly, we need only to prove the NP-completeness of the corresponding
decision problem.

Decision Problem for MAGVD (DPMAGVD)
Instance: An s-t hierarchically planar graph H , and an integer K .
Question: Is there a grid visibility representation of H such that its width is not

greater than K?

It is well known [10] that the 3-PARTITION problem is NP-complete. In our proof,
we will transform 3-PARTITION to a special case of DPMAGVD.

3-PARTITION
Instance: A Gnite set S of 3n elements, an integer B, and an integer weight s(e)

for each element e∈ S are given such that each s(e) satisGes B=4¡s(e)¡B=2 and∑
e∈S s(a)= nB.
Question: Can S be partitioned into n disjoint sets S1; S2; : : : ; Sn such that for 16i6n,∑
e∈Si s(e)=B?

Below, we transform an instance I3P of 3-PARTITION to an instance DI3P =
(HI3P ; KI3P) of DPMAGVD by applying a scaling technique. Without loss of gener-
ality, we can assume that n¿2. The s-t hierarchically planar graph HI3P has eight
layers, and is constructed as follows.
1. The top layer L8 and the bottom layer L1, respectively, contain only the source u0

and the sink v0; see Fig. 8(a).
2. Each element e∈ S corresponds to a graph Ge that has vertices on layers L1, L5, L6,
L7, L8. Here, Ge has only one vertex on L7 called “sub-source” of Ge, and has only
one vertex on L5 called “sub-sink” of Ge. Besides, Ge has 6n2 × s(e) + 1 vertices
on L6 connecting to the sub-sink and sub-source. Further, there is an arc from the
source v0 to the sub-source, called “source” arc of Ge. Similarly, Ge has an arc
from the sub-sink to the sink v0, called “sink” arc. Fig. 8(b) shows the topology
of Ge.
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Fig. 8. Transforming I3P .

3. In HI3P , we also duplicate 2n times a graph GB that takes a similar topology to that
of Ge, and is depicted in Fig. 8(c).

4. We assign KI3P as 6n3B+ (5n− 1).
Note that a planar embedding of Ge is not unique, neither is a planar embedding

of GB. However, any planar embedding of Ge is able to lead to a grid visibility rep-
resentation, produced by our algorithm, with the minimum width; this is also true for
GB. More speciGcally, the following lemma can be immediately veriGed based on the
structures of Ge and GB.

Lemma 4. The minimum drawing width of a grid visibility representation of Ge is
6n2 × s(e), and the minimum drawing width of GB is 3n2 ×B.

Below, we prove that KI3P is a lower bound of the drawing width for a grid visibility
representation of HI3P .

Theorem 3. Let wid� denote the width of a grid visibility representation � of HI3P .
Then wid�¿KI3P .

Proof. Clearly, in � each pair of GBs cannot have an intersection apart from v0 and
u0; and each GB takes a width at least 3n2 ×B. Note that there are 2n GBs, and each
pair must be 1 distance apart. Further, there are totally 3n sink arcs in Ges passing the
layer L3. From these, it immediately follows that wid�¿2n× (3n2B) + 5n− 1.

We need the following notation. In a planar embedding of HI3P , the 2n GBs can be
ordered from left to right because there is no intersection between two GBs apart from
the source u0 and the sink v0. We call the middle space between the ith GB and the
(i+1)th GB (for 16i62n− 1) “ith bucket”, denoted by Qi. We denote the left space
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Fig. 9. Planar embedding for HI3P .

of the 1st GB by Q0, and denote the right space of the last (2nth) GB by Q2n. Q0 and
Q2n are also called buckets.
Next, we show that 3-PARTITION has a solution for I3P if and only if DPMAGVD

has a solution for HI3P . First, we show “if ” part.

Theorem 4. If 3-PARTITION has a solution to I3P , then DPMAGVD has a solution
for HI3P .

Proof. Suppose that I3P has a solution. Then, there are S1; S2; : : : ; Sn forming a disjoint
partition for S; and each Si has the total weight B. Clearly, each Si (for 16i6n) must
contain exactly three elements, because B=4¡B¡B=2.
For each Si, suppose that ei1; ei2; ei3 are the three elements in Si. We can construct

a planar embedding, such that Gei1 ; Gei2 ; Gei3 , the (2i − 1)th GB, and the 2ith GB are
neighbouring to each other as depicted in Fig. 9.
Applying our algorithm in the previous section, the planar embedding can be drawn

with the width 6n3B + 5n − 1. For illustration, the drawing of the subgraph in Fig. 9
is depicted in Fig. 10.

To show the “only if ” part, we Grst prove that if DPMAGVD has a solution then
any drawing with width less than or equal to KI3P must induce (respect) a planar
embedding with a similar topology to that in the proof of Theorem 4. This can be
proved step by step as follows.

Lemma 5. Suppose that for a grid visibility representation � of HI3P , wid�6KI3P , and
E is the planar embedding respected by �. Then, both the buckets Q0 and Q2n in E,
respectively, contains one and only sink arc from a Ge.
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Fig. 10. From 3-PARTITION to DPMAGVD.

Proof. Without loss of generality, we need only to prove that Q0 has this property,
while the proof for Q2n is similar. If Q0 does not have the property, then there are
two cases:
Case 1: Q0 does not contain any sink arc.
Case 2: Q0 contains at least two sink arcs.

For case 1, the minimum width of the Grst (leftmost) Ge1 is 6n2s(e1) according to
Lemma 4. The minimum width of the Grst GB is 3n2B. Therefore, wid�¿3n2B +
(6n2

∑
e∈S s(e) − 6n2s(e1)). This implies wid�¿6n3B + 3n2(B − 2s(e1)). Note that

B− 2s(e1)¿1. Therefore, wid�¿KI3P since n¿2; and it is contradictory.
For case 2, wid�¿6n2s(e1) + 2n ∗ 3n2B¿KI3P ; and it is contradictory.

Lemma 6. Suppose that for a grid visibility representation � of HI3P , wid�6KI3P , and
E is the planar embedding respected by �. Then, each bucket Qi (16i62n − 1)
in E must contain at least one sink arc but cannot contain more than two sink
arcs.

Proof. Suppose that there is a bucket Qi that does not contain any sink arc. Let Ge1 be
the closest space left to the ith GB, and Ge2 be the closest space right to the (i+ 1)th
GB. Then,

wid�¿2× 3n2B+
(
6n2

∑
e∈S

s(e)− 6n2s(e1)− 6n2s(e2)
)
:

Note that s(e1) + s(e2)¡B. Thus, wid�¿KI3P . This is contradictory. This means that
each bucket must contain at least one sink arc.
Suppose that there is bucket Qi in E that contains at least three sink arcs, and

the corresponding subgraphs are Ge1 ; Ge2 ; : : : ; Gej according to their order in E where
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j¿3. Clearly,

wid�¿6n2s(e2) + 2n× 3n2B¿KI3P :

This is contradictory. Thus the lemma holds.

Lemma 7. Suppose that for a grid visibility representation � of HI3P , wid�6KI3P , and
E is the planar embedding respected by �. Then, Q1 and Q2n−1 in E must, respectively,
contain exactly one sink arc.

Proof. Without loss of generality, we need only to prove that Q1 has the property, as
the proof for Q2n−1 will be similar. If Q1 does not have the property, then Q1 must
contain two sink arcs by applying Lemma 6. Let Ge1 and Ge2 be the two subgraphs
whose sink links are on the left and right, respectively, of the leftmost GB. Then, we
have:

wid�¿6n2(s(e1) + s(e2)) + (2n− 1)3n2B:

Note that 2(s(e1) + s(e2))¿B+ 1. Thus, we have wid�¿KI3P . It is contradictory.

Applying a similar technique to the proof of Lemma 7, we can immediately prove
the following lemma.

Lemma 8. Suppose that for a grid visibility representation � of HI3P , wid�6KI3P , and
E is the planar embedding respected by �. Then, for each pair of Qi and Qi+1 in E
for 26i62n− 2, one of them must contain exactly one sink arc.

Now we are able to prove the “only if ” part.

Theorem 5. If DPMAGVD has a solution for HI3P , then 3-PARTITION has a solu-
tion for I3P .

Proof. Let � be a grid visibility representation of HI3P with wid�6KI3P , and E is
the planar embedding of HI3P respected by �. Applying the Lemmas 5–8, we can
immediately conclude that for 16i6n − 1, Q2i contains exactly two sink arcs, while
each other Qi contains exactly one sink arc. Consequently, we can divide S in I3P into
n disjoint sets {Si: 16i6n} such that for 16i6n, Si= {ei1; ei2; ei3} where the sink arc
of Gei1 is the right (if i¿1) one contained in Q2i−2, the sink arc of Gei2 is contained
in Q2i−1, and the sink arc of Gei3 is the left (i¡n) one contained in Q2i; see Fig. 9
for example.
Further, if there exists an Si such that s(ei1) + s(ei2) + s(ei3)¿B + 1, then for any

grid visibility representation � of E,

wid�¿6n2B+ 6n2 + (2n− 2)× 3n2B¿KI3P :

It is contradictory. Therefore, the total weight of each Si is B.
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Fig. 11. Apply the algorithm GRID DRAW.

Note that Theorems 4 and 5 do not necessarily imply that there is a polynomial time
transformation, with respect to the input size n of 3-PARTITION, between an instance
of I3P and DI3P , because B may be arbitrarily larger. However, it has been shown [10]
that 3-PARTITION is strongly NP-complete, that is, it is NP-complete even if B is
bounded by a polynomial of n. This, together with Theorems 4 and 5, proves that a
reduction from 3-PARTITION to DPMAGVD can be found. Consequently [10]:

Theorem 6. MAGVD is NP-hard even restricted to s-t hierarchically planar graphs.

5. Conclusions and remarks

In this paper, we have shown an exponential area lower bound for planar straight-
line drawings of hierarchically planar graphs without transitive arcs in contrast to the
result [6] for upward planar drawing. An e:cient algorithm has been presented for
producing a grid visibility representation with the minimal drawing area with respect
to a Gxed planar embedding. Further, we proved that the drawing area minimization
problem for grid visibility representation is generally NP-hard; the result holds even
for s-t hierarchically planar graphs. Note that a modiGcation of our proof construction
by adding two “walls” horizontally and vertically, to Gx the minimum height and
the minimum width, may immediately lead to the NP-hardness of the corresponding
problem for s-t upward planar graphs.
We should note that if the algorithm GRID DRAW [4] is applied to the output of

our algorithm in Section 3, then a grid polyline drawing is obtained, which guarantees
the following properties:
• each long arc is represented by a polyline with at most two bends;
• the drawing area is O(n2).
Fig. 11(b) shows the result after applying the algorithm GRID DRAW to the drawing
in Fig. 11(a).
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For a possible future study, we are interested in investigating:
• whether or not similar results in Section 4.1 exist for upward planar graphs;
• a good approximation algorithm for solving MAGVD; and
• symmetric drawing issues.
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