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ABSTRACT 

It  has been widely recognized that the imprecision and incompleteness inherent in 
real-world data suggests a f u z z y  extension f o r  information management systems. 
Various attempts to enhance these systems by f u z z y  extensions can be found  in the 
literature. Varying approaches concerning the fuzzification o f  the concept o f  a 
relation are possible, two o f  which are referred to in this article as the generalized 
fu z zy  approach and the fuzzy-set  relation approach. In these enhanced models, 
items can no longer be retrieved by merely using equality-check operations between 
constants; instead, operations based on some kind o f  nearness measures have to be 
developed. In fact, these models require such a nearness measure to be established 
fo r  each domain f o r  the evaluation o f  queries made upon them. An investigation o f  
proposed nearness measures, often fu z zy  equivalences, is conducted. The unnatural- 
ness and impracticality o f  these measures leads to the development o f  a new 
measure: the resemblance relation, which is defined to be a fuzzi f ied version o f  a 
tolerance relation. Various aspects o f  this relation are analyzed and discussed. It is 
also shown how the resemblance relation can be used to reduce redundancy in fuzzy  
relational database systems. 

KEYWORDS: fuzzy relational data model, fuzzy relations, nearness mea- 
sure, tolerance relation, resemblance relation 

1. INTRODUCTION 

The relational database model developed by Codd [1] is one of the most 
extensively studied models of an information management system and has found 
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widespread use in industry. Unfortunately, most of the available implementa- 
tions of relational database systems model the real world in a hard and 
deterministic manner and allow for only exact retrieval; in other words, the 
imprecision, vagueness, and incompleteness inherent in the real world have been 
totally ignored. 

The concept of fuzzy sets proposed by Zadeh [2] has been recognized as a 
potential mathematical tool and a logical framework for uncertainty manage- 
ment. The emphasis is on explicit representation of fuzziness in a system rather 
than on trying to eliminate or disguise it by some clever trick or to simply ignore 
it and oversimplify the modeling process unrealistically. Thus, the claim can be 
made that stored "approximate information" is in fact more precise than 
"traditional crisp data," since it models more realistically the present state of 
knowledge. If some crisp decisions need to be made, then this can still be 
achieved in these new models--now by controlling the effect of the fuzzy data on 
the decisions in an explicit and conscious manner. 

There are two general approaches to fuzzy extensions of such systems. The 
first considers the problem of approximate retrieval on precisely known values-- 
the retrieval of items that are sufficiently close to those requested. This is an 
approach of practical importance for the time being, since it could be an "add- 
on"  to existing conventional systems (Kacprzyk and Ziolkowski [3]). The 
second approach addresses the handling of values that are not precisely known, 
which also implicitly entails the problem of fuzzy retrieval (Prade and Testemale 
[4]). Since crisp data are simply special cases of fuzzy data, the second approach 
is the more general one and thus should gain more popularity in the future. This 
second route is therefore taken here; we concentrate primarily on the 
representation issue underlying this approach. 

Various attempts at enhancing the relational database models by fuzzy 
extensions can be found in the literature (Prade and Testemale [4], Buckles et al. 
[5], Rundensteiner et al. [6], Zemankova and Kandel [7]). These promise to 
capture real-world data more realistically and hence broaden the area of possible 
applications for these models. In these enhanced models, items can no longer be 
retrieved by merely using equality-check operations between constants; opera- 
tions based on some kind of similarity measure have to be developed. The need 
for the development of less strict nearness measures than the equality relation for 
a meaningful evaluation of queries in the context of fuzzy data has been 
recognized. An investigation of proposed nearness measures, however, reveals 
that not enough attention has been devoted to the development of an adequate 
one in the context of fuzzy relational databases. Since the concept of such a 
measure is essential for query evaluation purposes (Rundensteiner et al. [8]), it is 
worthwhile to study the desired properties of this measure. The unnaturalness 
and impracticality of existing measures leads to the proposal of a new measure, 
the resemblance relation, which appears to be an adequate tool for the 
evaluation of approximate queries based on fuzzy data. 
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The resemblance relation, which is defined as the fuzzified version of a 
tolerance relation (Schreider [9]), a reflexive and symmetric relation, is 
considered an enrichment to the theory of fuzzy sets and relations in general. In 
spite of its naturalness the tolerance relation has not been recognized outside of 
abstract modern algebra. This stands in sharp contrast to the situation of the 
equivalence relation, which has its place in the relation theory but which also is 
widely applied in various areas. 

Consequently, the attempt is made here to introduce the concept of 
resemblance into fuzzy set theory. Various concepts related to the resemblance 
relation are being developed, and their relationship with graph theoretical ideas 
is pointed out. 

2. T H E  CLASSICAL R E L A T I O N A L  R E P R E S E N T A T I O N  

This section introduces the basic concepts of the classical relational database 
model (Codd [1]) in order to clarify our terminology. 

A relational database consists of a set of  attributes Ai,  a set of domains Ui, 
which are sets of values upon which the attributes are defined, and a set of 
relations R i . 

DEFIrqITION 1 A relation on a set o f  attributes is defined as a subset o f  the 
Cartesian product  o f  the respective domains. More  precisely, a relation R 
on the set o f  n attributes {A1, " " ,  An} is defined on the respective 
domains Ul, U2, • " ' ,  Un i f  it is a subset o f  the Cartesian product  U1 × U2 
x • • • x Un. The Cartesianproduct  is these t  o fa l ln- tuples  (ul, "" ", un) 

such that ui E Uifor  all i. The relation R is then defined to have degree or 
arity n. 

The set of attributes {A1, "" ", An} upon which the relation R is defined is 
called a relation schema R ( A I ,  " " ,  An), or R. 

It helps to view a relation as a table in which each row is a tuple and each 
column corresponds to an attribute. Each column, or attribute, is given a distinct 
name within a relation. All data items in a column consist of values from the 
same domain. Consequently, each tuple within a relation has the same set of 
attributes. All rows, or tuples, are distinct; duplicates are not allowed. The row 
and columns can be ordered in any sequence at any time without affecting the 
information content involved. We can view tuples as mappings from attribute 
names to values in the domains of the attributes. Each relation consists of a 
relation name, a nonempty set of attributes with corresponding domains (the 
relation schema), a key, and a (possibly empty) set of tuples (Codd [1]). 

Once a database is designed, a specialized language is needed to interrogate 
and manipulate the content of the database. Languages for expressing queries in 
the relational model are called data manipulation languages (DMLs). A common 
DML is the relational algebra proposed by Codd [1]. Queries often refer to data 
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residing in several distinct relations, but there are no explicit and/or structural 
links such as pointers between these relations. The connections among these 
relations are implicit; asociations between relations are established solely by 
common values. Thus, these DMLs need to exploit this fact by matching data 
values in order to perform operations on data from more than one relation. 

3. FUZZY EXTENSIONS TO THE RELATIONAL 
REPRESENTATION 

This section introduces fuzzy set theory as proposed by Zadeh [2] and 
indicates how it can be applied as enhancement to the relational representation. 

DEFINITION 2 Let  U be a universe o f  discourse. F is a fuzzy subset o f  U i f  
there is a membership function #F: U -'* [0, 1], which associates with each 
element u E U a membership value #r(u)  in the interval [0, 1]. The 
membership value #F(U) for  each u E U represents the grade o f  
membership o f  the element u in the fuzzy  set F. 

Zadeh [2] proposed the following notation for a fuzzy set F: 

F={IZF(U)/UIU E U} 

Within the framework of fuzzy set theory, the concept of a fuzzy relation has 
been defined. A fuzzy relation has been described as a generalization of a fuzzy 
set, that is, as a fuzzy subset of the Cartesian product of some universe of 
discourse. 

DEFINITION 3 Let U be the Cartesian product  o f  n universes o f  discourse 
U1, " " ,  U,, that is, U = UI × U2 × "'" × U,. Then ann-a ry fuzzy  
relation R in U is a relation that is characterized by a n-variate 
membership function ranging over U, that is, 

#R : U--* [0, 1] 

A close connection between fuzzy sets and possibility theory can be established 
(Prade and Testemale [4]). The grade of membership #F(U) of U in the fuzzy set 
F may be interpreted as the degree of compatibility of u with the concept 
represented by F o r  as the degree of possibility of u given F (Zadeh [10]). This is 
stated more precisely in the following definition. 

DEFINITION 4 Let  F be a fuzzy  subset o f  U characterized by a membership 
function #F. Let  X be a variable that takes values in a universe U. Then 
the proposition "'X is F'" induces a possibility distribution Hx that is equal 
to F, that is, 

I L = F  
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This definition states that the possibility (relative to the fuzzy set F )  that the 
value u may be assigned to X is equal to the membership of u in the fuzzy set F. 
This can be formulated as Poss {X = u} = #F(U) for all u E U. Thus, a 
possibility distribution over a set U can be used to define a corresponding fuzzy 
set of U, or vice versa. 

Now, since the traditional relational database model is based on the 
foundation of set and relation theory (both crisp), the proposal has been made to 
adopt the concept of a fuzzy relation from fuzzy set theory as given in Definition 
4 as the fuzzified version of the concept of a relation for the database model. 
This is a valid approach and has been proposed by several researchers (Prade 
and Testemale [4], Zadeh [10], Zvieli [11]). However, there is a different 
approach for a possible fuzzy extension of the relational representation that is 
also based on the sound theoretical foundation provided by Codd's relational 
database model [1] and theories of fuzzy sets and possibilities (Zadeh [2]). 

Recall that in general the relational database model consists of a set of 
relations comprised oftuples ti for i = 1, • • . ,  m of the form (uil, ui2, • • ", uin), 
where each of these data values uij is selected from a given fixed domain Uj. 
Thus, in the traditional data model, each of these data values u o is a single value 
from the respective domain. 

It is proposed to extend the set of possible domains to include domains such as 
membership function values. Then, the resulting enhanced relational representa- 
tion allows data values to take different forms as well as being constants (Dubois 
and Prade [12]). The data values for the fuzzy relational representation are 
extended to be 

1. A single scalar (e.g., Aptitude = good) 
2. A single number (e.g., Age = 24) 
3. A set of scalars (e.g., Aptitude = {average, good})  
4. A set of numbers (e.g., Age = {20, 21, 25}) 
5. A possibilistic distribution of scalar domain values (e.g., Aptitude = 

{0.4~average, 0.7~good}) 
6. A possibilistic distribution of number domain values (e.g., Age -- {0.4/ 

23, 1.0/24, 0.8/25}) 
7. A real number from [0, 1] (e.g., Heavy = 0.9) 
8. A designated null value (e.g., Age = unknown) 

Note that here the domain of the attribute Aptitude is also called Aptitude and is 
defined to be the set { very-good, good, average, bad}, and the domains of the 
attributes Age and Heavy are, respectively, the positive integers and the unit 
interval. 

It can easily be seen that all eight of these possible data value types can be 
described by some form of a possibility distribution (Zemankova and Kandel 
[7]). The first two cases correspond obviously to the crisp conventional form; 
for example, for Aptitude we have { 1 .0 /good}.  The third and fourth can be 
viewed as representing uncertainty in the data. An example of uncertain 
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information is a proposition such as "Joe is 20 or 21 years old." This statement 
implies that Joe's Age is either 20 or 21 and not both at the same time and that it 
is not possible that his Age is other than 20 or 21. Thus the data value {20, 21 } 
will be used to represent Joe's Age, which corresponds to the possibility 
distribution 1.0/20 + 1.0/21. Note that the larger the set of elements in a data 
value of type 3 or 4 is, the less precise our knowledge is. Thus, if all values of 
the universe have a possibility of 1, then this signifies a total "unknown." This 
is, in general, not practical, so a special symbol "unknown" is being used 
instead. This proposal of eight different data types corresponds to the approach 
of Zemankova and Kandel [7, 13]. Most other approaches in the literature 
restrict their models to a subset of the above. Buckles and Petty [4] and 
Oezsoyoglu et al. [15] allow only data types 1-4, while Umano [16] permits 1- 
4, 7, and 8. Many other use on 7 in addition to 1 and 2 (e.g., Zvieli [11] and 
Raju and Majumdar [17]. Now, the following can be defined: 

DEFINmON 5 Let Ai, for i from 1 to n, be attributes defined on the domain 
sets Ui, respectively. Let *r(Ai), for i from 1 to n, stand for possibilistic 
distributions on Ui (any of  the eight possible data types named 
previously). A fuzzy relation defined on these n sets Ui is a set of  n-tuples tj 
= (Trj(Al), 7rj(A2), " . . ,  ~rj(A,)). 

As in the classical relational database theory, it helps to view a relation (fuzzy or 
not) as a table in which each row corresponds to a tuple and each column to an 
attribute. The relation schemes are the same for both proposd fuzzy extensions. 
The tableau form, however, demonstrates the difference between two models of 
fuzzy extensions proposed here. 

The first approach proposes the fuzzy extension of the concept of a relation 
based on the fuzzy set concept (fs-type). This proposal is first considered in its 
simplest form, the unary relation. A fuzzy subset F in the universe of discourse 
U, as given in Definition 2, is, in fact, a unary fuzzy relation R on the one 
attribute U, according to the fuzzy relation concept given in Definition 3. This 
unary relation R is characterized by the membership function/xF: U ~ [0, 1]. 
Thus if U = { ul, u2, "" ", un }, then a fuzzy set F on U can be described by the 
following: 

F= { I£F(Ul)/Ul, IAF(U2)/U2, " ' ' ,  IAF(Un)/Un } 

Consequently, the unary relation R--that is, the fuzzy set F--can be captured 
by a tableau with two columns of the form shown in Figure 1. 

At first, it may seem peculiar that this unary relation R actually has two 
columns (attributes). This is easily explained, though, with the concept of 
fuzziness, which introduces an extra nonconventional attribute. The last attribute 
is a special column, which in the crisp case can be omitted since then this 
information is provided implicitly (i.e., if a tuple appears in the relation, this 
corresponds to the membership value of this tuple being 1; and if a tuple does not 
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U F 

ul  ~ F ( U i )  

U2 ~F(U2) 

u .  ~F(u,~) 

Figure 1. A Unary Relation R (or a Fuzzy Set F). 

appear in the relation, then its membership is 0). The above can now easily be 
extended to the n-ary case. Recall that a n-ary fuzzy relation R over attributes 
A1, A2, "" ", A ,  as defined in Definition 4 corresponds to a fuzzy subset of U~ 
× U2 × " '"  x U , ,  where Ui is the domain of A i for all i. A tuple tj of the 
relation R can thus be expressed as 

t j=  (Ujl, Uj2, " ' ' ,  Ujn, UR(Ujl, Uj2, " ' ' ,  Ujn)) 

Consequently, the relation R is captured by a tableau of the form shown in 
Figure 2. Various semantics have been associated with these tuple membership 
values /~R("" ") in the literature (Prade and Testemale [4], Buckles et al. [5], 
Zemankova and Kandel [7], Buckles and Petry [14], Anvari and Rose [18], 
Rundensteiner [19]). The previous paragraph has assumed that the membership 
value represents the degree to which the tuple belongs in the relation. Other 
possible semantics are the degree of accuracy of the represented information or 
the degree to which functional dependency holds. 

Next we show how the second proposal of a fuzzy extension of the concept of 
a relation can be described in tableau format. Let  U1, U2, • • ", U,  again be the 
universes of discourse upon which the fuzzy relation R is defined. Let 7r(Ai) be 
the possibility distribution of the attribute A i defined on the universe Ui for all i. 
Then a tuple tj of R has the form (,rj(Al), rj(A2), "" ", r j (A, ) ) .  The relation R 

U~ U2 ... V~ ~R 

ul1 ~1~ ... u~ a R ( ~ , ~ l ~ , . . . , ~ )  

Ujl uj~ ... uj~ # n ( u j i , u j 2 , . . . , u # , ~ )  

Figure 2. An n-ary Fuzzy Relation R in Tableau Format (fs-type). 
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A1 A2 ... Am 

7rl(A,) r , ( A 2 ) . . .  7h(A~) 

7r2(A,) ~r2(A2) ... ~r2(A,~) 

~rj(A,) 7rj(A2) ... rrj(A,~) 

Figure 3. An n-ary Fuzzy Relation R in Tableau Format (gf-type). 

can thus be represented by a tableau with n columns as shown in Figure 3 (gf- 
type). 

Both types of fuzzy extensions (shown in Figures 2 and 3) are valid forms of 
fuzzifying the relational representation, and both have been used by researchers 
of fuzzy set theory, although usually without acknowledging the existence of 
other approaches of fuzzifying the data model. They both have their justification 
and are suitable for the representation of certain types of applications. We 
proposed that the first type be referred to as "the fuzzy-set relation" (fs- 
relation) because of its origin in fuzzy set theory and the second one as the 
"generalized fuzzy relation" (gf-relation) since it captures a variety of 
different possible data value types. An example of the first of these two types 
follows. 

EXAMPLE 1. Suppose we want to capture the set of "intelligent" students in a 
university by a fuzzy relation of fs  type. Thus, this fuzzy relation could be 
identified by attributes identifying the student, such as Name and SSN, and by 
attributes that help determine their level of intelligence, such as GRE score, 
GPA, and perhaps Status in school. The relation in Figure 4 represents a 
description of a fuzzy set of "intelligent" students, where the last attribute 
characterizes the degree to which the respective student is actually considered 
intelligent. (Other semantics could have been chosen for this tuple membership 
value.) The emphasis in this relation is on the (n + 1)th attribute, the 
membership value of the particular student in the fuzzy set of intelligent 
students. If this is the only information that is supposed to be conveyed, then a 
relation just identifying the student and representing his grade of membership in 
this fuzzy set would be sufficient. (See Figure 5.) 

Next, an example of a relation of the g f  type of fuzzy extension is given. This 
relation again is designed to store the intelligent students in a university. It is an 
n-ary relation, and thus it requires only n columns. 
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Name SSN 

Jack 123456789 

Frank 112233445 

Dave 999933445 

GRE GPA Status F 

760 3.5 sr 0.8 

800 3.99 gr 1.0 

600 3.01 fm 0.7 

Figure 4. Intelligent Student Relation (fs-type). 

EXAMPLE 2. The information about the "intelligent" students of a university, 
measured here as "Aptitude," is stored in a relation of type gf. All 
characteristics known about these students are similar to those in the previous 
example. The values for any of these attributes might not be precisely known, 
and thus this lack of certainty has to expressed by allowing possibility 
distributions over the respective domains. (See Figure 6.) 

The relation of fs  type requires that all values but the last one in the relation be 
crisp values. The fuzziness is indeed an evaluation of how the values of the first 
n attributes determine the (n + 1)th characteristic, the tuple membership value. 
So, this (n + 1)th value refers back to the set of all previous values of the tuple 
within the context of certain semantics, for example, the concept of intelligence 
in Example 1. Viewed from this perspective, attributes that describe the object 
but do not contribute to the decision of whether the object is intelligent or not 
appear as extraneous information. An example of unnecessary information in 
Figure 4 would be the SSN attribute. Hence, in certain contexts a relation 
presented in Figure 5 may be sufficient to capture the essential information of 
Figure 4. Clearly, this (n + 1)th attribute has to be treated differently than the 
rest. Allowing the type 7 membership values as a possible data type in the g f- 
relation permits us to also capture fuzzy sets. This implies that the fs type is a 
specialized subset of the gf type of relation. 

Once the extension of the representation has been properly defined, the 
question of retrieval has to be addressed. The classical relational algebra has to 
be extended to apply to these enhanced forms of representation. 

Operations for the fs type of fuzzy relation have to take care of the 
membership value, the (n + 1)th attribute of the relation, since it is the only 
characteristic that distinguishes the fs-relation from crisp relations. Thus, Zadeh 
[2] extends the concept of the projection and join operation of the classical 
relational algebra by simply specifying how the membership value of the 
resulting tuple is to be determined from the two initial tuples. 

This approach cannot, of course, be taken for gf-relations, since its data items 
may have the form of any of the eight different data types previously discussed. 
Consequently, no simple equality check between data items can be performed. 
The relational algebra operations defined for the gf-type relations have to take 
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Name Intelligent Student 

Jack  

F r a n k  

Dave  

0.8 

1.0 

0.7 

Figure 5. Intelligent Student Relation (fs-typ¢). 

into consideration that any of the n attributes of a relation could be a fuzzy set. 
Thus, issues such as the comparison of two possibility distributions and a 
measure of  their similarity have to be studied. 

A relational database has no explicit links between its pieces of information; 
the relations, and therefore links denoting implicit relationships, are established 
during the evaluation phase of queries by matching data values. In the crisp 
model, this matching of values is determined by the identity function, which 
denotes values to be matchable if and ordy if they are identical. This identity 
function is also needed for the removal of identical, that is, redundant, tuples. 
Consequently, the extension of data values from single discrete values of type 1 
or 2 to sets of values or possibility distributions over the domain implies that this 
measure of a perfect matching of data values has to be relaxed to a measure o f  
nearness. Hence, associated with each domain set in the gf-type approach is a 
nearness relationship that is used to perform operations that entail the 
comparison of two values. This relationship can also be used to identify and 
remove redundant tuples, since it determines for two elements of a domain the 
degree to which they are considered to resemble each other. It is interesting to 
note here that these nearness measures are in general expressed as fs-relations. 

The rest of this paper will concentrate on an investigation of these nearness 
measures, which is a necessary basis for a sound defintion of an extended 
relational algebra. 

4. THE FUZZY RELATIONAL REPRESENTATION MODEL 

Considerations of the previous observations led to the first attempt at the 
representation of a conceptual model for a fuzzy relational representation (FRR). 
This model is presented in Figure 7. 

Name 

Jack 

Frank  

SSN 

123456789 

112233445 

GRE 

{780,800} 

790 

Age 

(23,24,25} 

{31,32} 

Aptitude 

{0.4~good, O.7 /very  - good} 

{ o . 9 / v e r v  - 9ood} 

Figure 6. Intelligent Student Relation (gf-type). 
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Database Management 

DB 
(gf-type relations) 

MDB 
(fs-type relations) 

Figure 7. The FRR Data Model. 

This model assumes a separation of its structure into two major data areas, the 
conventional database (DB) and the meta-database (MDB). The DB contains the 
actual data, such as the relations, the attributes, and the data values. Hence, the 
DB comprises most of what can be found in a crisp database. The MDB stores 
schema definitions and the like, as well as information that would not be found in 
a crisp database, such as definitions of fuzzy sets (e.g., OLD) and descriptions 
of fuzzy relations (e.g., nearness relations), which are needed for the 
interpretation and evaluation of queries. In short, the knowledge stored in the 
MDB helps to interpret the fuzzy information stored in the DB. 

This model implies that the DB component should posses the power to capture 
all facets of data and associated certainties and uncertainties. A richness ip 
representation is required. Hence, the relation schema employed in the DB is of 
the g f  type. In contrast to this, the relationships to be represented in the MDB 
lend themselves to the fs-type format of a relation. For the most part, they are 
literally descriptions of fuzzy sets, and thus the fuzzy set type of relation is 
appropriate. 

This model suggests that any definition of a query language ought to take into 
account whether the information should reside in the DB or the MDB. Research 
in this area is in progress. Existing proposals of fuzzy query languages have to 
be evaluated, and ideas from the fs- and the gf-type approaches to fuzzifying 
relations must be combined to form one coherent solution for a sound fuzzy 
relational algebra for this FRR data model. 

5. DISCUSSION OF VARIOUS NEARNESS MEASURES 

Several approaches to fuzzy databases [Buckles et al. [5], Buckles and Petry 
[14], Anvari and Rose [18]) can be found in the literature that are characterized 
by allowing data values to be elements o f  the power set of the strongly typed 
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domain base sets instead of just single values, that is, type 3 and 4. In our 
terminology, they could be classified as subsets of the gf-relation approach, 
allowing types 1-4 instead of all eight data types. In general, these approaches 
define nearness measures for discrete, finite domain sets to be a similarity 
relationship in the following sense. 

DEFINITION 6 Let ul,  u2, u3 E U. A similarity relation s is a fuzzy  binary 
relation on a discrete finite domain U that maps every pair o f  elements in 
the domain onto the unit interval [0, 1]: s: U × U --* [0, 1], such that the 
following properties hoM for  s: 

1. Reflexive: i~s(ul, u l )  = 1 (¥u l )  
2. Symmetric: ~s(ul, u2) = ~s(u2, u l )  ( vu l ,  u2) 
3. Transitive: iz~(ul, u3) >_ maxvu2ev {min [#~(ul, u2), tz~(u2, u3)]} 

(Vul,  u3) 

The #~(ul, u2) denotes the strength of the relationship s between ul and u2, 
or in the case of the similarity relation, the similarity between u 1 and u2. The 
#s(ul,  u2) can be referred to as s (u l ,  u2). These similarity relations can be 
represented in the natural data structure of the FRR model, in a relation of fs 
type. Note that these relations are part of the MDB of the model in Figure 7. A 
similarity relation for the discrete domain U is represented by 3-ary relations 
called SIM-U, where the first two attributes denote all possible combinations of 
value pairs from U, and the third attribute expresses the similarity value between 
the corresponding pairs. Since the reflexivity and symmetry of these special 
relations are assumed, all reflexive and symmetric pairs of values are redundant 
and hence are omitted. 

An example of such a similarity relation is given in Figure 8. If the similarity 
relation given for the Aptitude domain in Figure 8 is observed more closely, 
most people would intuitively object to the chosen similarity values. This is so 
because humans have connotations associated with the different elements of the 
domain Aptitude. To consider the characteristics of 'good' and 'bad' to be 

Aptitude 

very-good 

very-good 

good 

good 

average 

S-Aptitude 

good 

average 

average 

bad 

bad 

SIM 

0.5 

0.1 

0.1 

0.1 

0.3 

Figure 8. A Similarity Relation (fs-type) on the Domain Aptitude. 
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similar to the degree 0.1 is acceptable, but then it seems a natural consequence to 
demand that the similarity of the pair 'good' and 'average' should have a higher 
value, that is, they are more similar. Hence, one might propose to change this 
similarity relation to produce a better, more natural and intuitive interpretation 
of the similarity associated between elements of the domain Aptitude by setting 
the similarity of 'good' and 'average' to 0.2, that is, s(good, average) > s(good, 
bad) is achieved. This creates an inconsistency, because the third property of a 
similarity relation, the transitivity property, is violated, as demonstrated by the 
following example. 

EXAMPLE 3. Given the similarity relation on the domain Aptitude as in Figure 
8 except for SAptitude(gOod, average) = 0.2. Then, the following demonstrates 
that the value of similarity between good and bad is also enforced to be altered 
due to the transitivity property: 

S Aptituae( good, bad) >- maxy~.4ptituae { min [s /tptituae( good, y ), S Aptitude( Y , bad)]} 

_> min [S.4ptitude(gOOd, average), SAptituae(average, bad)] 

= min(0.2, 0.3) 

=0 .2  

But SAptitude(gOodj bad) = 0.1. 

Note that the transitivity property forces the similarity value of the (good, 
bad) pair to increase in order to be able to increase the similarity of the (good, 
average) pair. This clearly contradicts human intuition, since it does not allow 
the database user to distinguish between the similarities of the two respective 
value pairs. It does not seem appropriate to enforce certain properties if they are 
not natural. 

Recently, Potoczny [20] analyzed the similarity measure as presented 
previously and developed the following characterization of it. 

THEOREM 1 The following conditions on U and s are equivalent: 
1. s is a similarity relation as defined in Definition 7. 
2. For any three values ul, u2, and u3 E U, either 

(a) the three similarity values s(ul,  u2), s(ul,  u3), and s(u2, u3) are 
equal or 

(b) two o f  the three values are equal and the third is larger. 

This theorem can easily be shown to be true because of the transitivity 
property of a similarity relation, but the conclusions to be drawn from it appear 
to be premature. Potoczny [20] uses this theorem to show that only a few 
similarity values of a similarity relation have to be known to determine all the 
others automatically. This is an important consideration, since it allows for the 
efficient storage of such a relation. But we see these results as an additional 
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bad 
0 

good 0.8 very-good 

(All values are unequal.) 

bad 
o 

good 

(One value is smaller than the other two.) 

0.5 very-good 
Figure 9. Not Permitted Similarity Values. 

support of our claim that this concept of a similarity relation is too rigid and 
unnatural, since, as Potoczny's theorem [20] points out, there is a strong 

'restriction on the values of similarities between any three elements of the 
universe. For example, consider the universe U = { very-good, good, bad}. 
Most of the similarities between these three elements are already predetermined 
by the syntactic rules of the similarity definition. For instance, the setting of 
similarity values as in Figure 9 will not be allowed by Theorem 1. Both of them 
fulfill neither condition (2a) nor (2b) of Theorem 1. 

The similarity relationship--being based on geometric models of similarity 
(Tversky [21])--is not appropriate for all possible domains (Zemankova and 
Kandel [13]). The max-min transitivity property can, for example, not be met by 
continuous domains. Hence, other approaches (Zvieli [11]) suggest a modified 
nearness measure for numeric domains; that is, they modify the similarity 
measure defined above by replacing the max-min transitive property by the 
product-transitive property. This nearness measure is then called a proximity 
relation. 

DEFINITION 7 Let pj be a proximity relation defined for  continuous domain 
sets. Given ul, u2, u3 E U s, pj is defined to have the reflexivity and 
symmetry properties o f  a similarity relation, but another form of  
transitivity appropriate for  number domains holds: 

3'. pj(ul,  u3) >_ maxvu2evj [(pj(ul, u2) x pj(u2, u3)] (Vul, u3) 

Several examples of functions fulfilling this max-product transitivity can be 
found in the literature (Zemankova and Kandel [7], Zadeh [22]). These 
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functional descriptions for proximity relations have several favorable features; 
for example, they are easily described, they are definable for infinite domains, 
and they are also efficiently storable. A major advantage of the functional 
description of a nearness measure is that this description of a nearness measures 
does not require a complete relational format but only some parameters, such as 
the lower bound, in order to determine all its values. Note that again these types 
of measures leave little flexibility for the user to set up values totally to his 
desire. This loss of flexibility produced by the predefined form of the function is 
compensated for by the ease of use. 

The use of the max-product transitivity is considered more appropriate than 
the use of the max-min transitivity (Zemankova and Kandel [7]). However, since 
neither can it be applied to all types of domains nor does it allow enough 
flexibility in defining similarity values according to intuition, it is not a 
completely satisfying solution. 

6. THE CHARACTERISTICS OF A NEARNESS MEASURE 

In the following, we investigate what properties a reasonable nearness 
measure needs to possess. First, reflexivity seems like a natural condition any 
nearness measure should have to fulfill, because any object should trivially be 
considered to be entirely similar (equal) to itself (Tversky [21]). Besides, it 
corresponds to the nearness measure implicitly chosen for the crisp data model, 
the identity relation. After all, a goal for this work is to guarantee that the 
classical relational database model is a special case of its extensions whenever 
possible in order to obtain a consistent fuzzy generalization. It is also reasonable 
to require that two objects either do or do not resemble each other, 
independently of the order in which they are considered. This property is 
explicated by the symmetry of the nearness measure. Since the transitivity of the 
nearness measure is by no means obligatory (Tversky [21]) and is often against 
human intuition, this transitivity property need not be enforced for a nearness 
measure. An even more convincing argument for the inappropriateness of the 
transitivity relationship in this context is the observation that distance measures 
come into conflict with the similarity measure inequality. This is demonstrated 
by Example 4. 

EXAMPLE 4. Let the domain of interest be the real line R. A useful and 
generally accepted nearness measure on R is the distance between two points on 
R. Let x, y E R. Let the distance d up to which points are considered to be close 
enough to each other to be called similar be 1 unit, that is, d = 1. Then the 
nearness measure of x, y is defined by 

s(x, y)= I do- [X-Y[ if Ix-Yl <_d 
otherwise 
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Figure 10. Points on the Real Line. 

Without loss of  generality, let x, y E R with I x - y I = d/2 and x < y. Note 
that there is an element z in R at a distance d/2 from y with z > y. This situation 
is depicted in Figure 10. 

By the transitivity property of  the similarity relation of  Definition 7, it can 
now be concluded 

s(x, z)>_max {min[s(x,  w), s(w, z)]} 
w E R  

_>min[s(x, y), s(y, z)] 

= min(d /2 ,  d/2) 

=d/2 

But note that the distance between x and z is I z - x[ = lY - z l + [Y - x l 
= d. This is a contradiction to the definition of  the nearness measure, which 

demands two points to have a distance less than or equal to d in order to be 
considered similar at all. In addition, the transitivity property would produce the 
absurd conclusion that all elements of  the real line are similar. Thus, we must 
use the above definition of  a nearness measure using distance to determine the 
similarity of  x and z even if the transitivity property is violated: 

s(x, z ) = d - I x - z [  = d - d = 0  

7. DISCUSSION OF T H E  SIMILARITY RELATION 

The reasons for selecting the strong version of  a nearness measure, the 
similarity relation, in various approaches to fuzzy extensions of  the relational 
representation are discussed in this section. 

Potoczny [20] claims that the transitivity property has to be enforced in order 
to avoid anomalous situations in a database. He uses the term anomaly in the 
sense that distinct tuples have the same interpretation, meaning that two distinct 
tuples can take on the same instantiation o f  values. The concept of  interpretation 
of  a tuple ti = ( d / l ,  dn, " " ,  din) with d O C Uj has been defined by Buckles and 
Petry [14] to be any assignment of  values A = (Uil, u,2, • " ' ,  uin) such that u U E 
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d U for allj .  For example, ({ red}, x) as well as ({ blue}, x) are interpretations of 
the tuple ({ red, blue }, x). An example of an anomalous situation would be the 
two tuples ({red, blue}, x) and ({green, red}, x) since these two have the 
common interpretation ({ red}, x). This situation, however, does not cause us 
too much concern. Instead, we propose that this problem should lead to an 
attempt to study the concepts of anomalies for a fuzzy database in order to 
generate an appropriate framework. It appears that new definitions for the 
concepts of anomaly have to be developed, since if we allow the capture of 
imprecise and vague information in a database, we cannot necessarily demand 
that no redundant information is to appear anywhere. 

The question why the similarity relation has been used as a nearness measure 
is answered by analyzing Buckles and Petry's work [14]. They restrict the 
possible domains that the system is able to appropriately represent to either finite 
sets that fulfill the previously discussed form of similarity relationship or infinite 
sets with the use of the identity relations as a nearness measure. This indicates 
that the fuzzification process of a database is only half-heartedly executed by 
applying the crisp nearness measure, the identity relation, for numeric and/or 
infinite domains. This is not very satisfactory, apart from the fact that some 
finite domains do not naturally fulfill the characteristics of a similarity relation 
and hence have to be forced artificially to fit it. Furthermore, it can be observed 
that this approach is based nearly entirely on the three properties of the similarity 
relation. What is meant by the claim that the fuzzy data model is based on these 
similarity relations? The similarity relation is a fuzzy version of the concept of 
an equivalence relation, since an equivalence relation is a crisp binary relation 
characterized by the three properties reflexivity, symmetry, and transitivity. An 
equivalence relation is known to induce a partition on the domain it is defined 
upon. This means that the domain can be partitioned into classes (blocks) so that 
the union of these blocks of the partition forms a covering of the domain and 
every object of the domain is in exactly one block. This partition is defined in 
such a way that any two objects of the domain are in the same block of this 
partition if and only if they are equal--also called equivalent or interchangeable. 
Now, the similarity relation is a generalization of the notion of an equivalence 
relation with the same three properties, though, of course, with fuzzified 
versions of these properties. 

Zadeh ([22], page 188) defines similarity classes induced by a similarity 
relation in accordance to (equivalence) classes in the case of an equivalence 
relation. 

DEFINITION 8 Let s be a similarity relation in the domain U = {ul ,  u2, 
• " ,  un } characterized by s(ui, uj). Each ui E U has associated a f u z z y  
set on U denoted by [ui] whose membership values are I~/uij(uj) = s(ui, 
uj ) f o r  all j E { 1, . . . ,  n }. These [ ui ] are the similarity classes induced by 
the similarity relation s. 
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An example is given next to demonstrate the form of these similarity classes 
defined by Zadeh [22]. 

EXAMPL~ 5. Let s be the similarity relation given in Figure 8 on the domain 
Aptitude. Then there are four similarity classes induced by s according to 
Definition 8. They are 

[very-good] = {(very-good, 1.0), (good, 0.5), (average, 0.1), (bad, 0.1)} 
[good] = {(very-good, 0.5), (good, 1.0), (average, 0.1), (bad, 0.1)} 
[a~erage] = {(very-good, 0.1), (good, 0.1), (average, 1.0), (bad, 0.3)} 
[bad] = {(very-good, 0.1), (good, 0.1), (average, 0.3), (bad, 1.0)} 

These classes [ui] are fuzzy sets over the domain U that are obtained by 
conditioning the similarity relation on ui. They do not express much about the 
similarity of their objects in general, or, in other words, they express a "one- 
sided" similarity from their one standard object to the rest of the objects in the 
block. So, for two objects uj, uk to be in the same block [ui] does not 
necessarily have any meaning, that is, it cannot be concluded that uj resembles 
uk to a particular degree. Altogether, these similarity classes do, of course, 
express the similarities between all pairs of objects in the domain. In fact, a lot of 
redundant information is contained in these classes, because, for example, the 
degree to which two objects uj and uk are similar to each other is explicitly 
represented twice, once as a membership value of uk in the class [uj], ~lujl(uk) 
= s(uj, uk), and once as a membership value of uj in the fuzzy set [uk], 
#tukl(Uj) = s(uk, uj ). By the symmetry o f s  it is known that I~tukl(uj) = s(uj, 
uk) = s(uk, uj ) = I~[ujl(uk). 

These similarity classes as defined by Zadeh are not, in general, disjoint, as 
they are in the case of an equivalence relation, as has been shown by the previous 
example. Hence they do not seem to be a useful tool for the treatment of 
partitioning a relation of the FRR into unique pieces of information (tuples). It is 
interesting to mention, though, that the s-level sets of the resolution of a 
similarity relation, a fuzzy binary relation, are equivalence relations on the 
domain (Zadeh [22]). 

TH~OI~M 2 Let s be a similarity relation on the set U. Then for  tx 
satisfying 0 < cx <_ 1, the tx-level sets S~ are equivalence relations in U. 

Recall that an et-level set S, of a fuzzy binary relation s on U × U is a 
nonfuzzy relation on U x U defined by S~ = {(ul ,  u2)ls(ul,  u2) _> et and 
(u l ,  u2) E U × U}. The proof of Theorem 2 is presented by (Zadeh [22, page 
186]). Clearly, the partition induced on the domain by S~ is a refinement of the 
one induced by S~, if tx _ or' (Zadeh [22]). 

Based on these latter results, Buckles and Petry [14] define two tuples to be 
redundant with respect to an or-level if corresponding domain value pairs of both 
are within one block of the partition induced by an o~-level set of the domain. 
Hence, this approach does not work with the similarity classes per se but reduces 
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the fuzziness inherent in those by just dealing with or-level sets (which are crisp 
sets); therefore, a "nonfuzzy" nearness measure, the equivalence relation, 
applies. The goal is that all objects contained in one block of this a-level set have 
to be within one tuple. This is, in fact, a desirable property for a fuzzy database, 
and it can be proved that a fuzzy relation derived by merging redundant tuples 
according to some u-level is unique. This makes use of the fact that only 
multiple values--crisp subsets of the domain (corresponding to data types 3 and 
4)--are allowed as domain values and the fact that a-level sets induce partitions. 
It is a favorable goal to guarantee this property in a fuzzy database approach, but 
it can be gained only at the cost of unrealistic assumptions. Unfortunately, this 
goal can no longer be met when the transitivity property is dropped. 

Models that allow more than the first four data types for their values can no 
longer make use of the properties of  the similarity relation. The reason is that in 
order to use the fact that the a-level sets of a similarity relation induce a 
partition, all domains of a relation must have this similarity relation as a nearness 
measure. The decision to allow more expressiveness in these models by 
admitting membership values (type 7), possibility distributions (data types 5 and 
6), and so on as domain values rules this out. Topics such as the determination of 
redundant tuples and the merging of tuples to get rid of redundancy are in 
general not addressed in these models. They are open problems. 

8. T H E  T O L E R A N C E  R E L A T I O N  

The notion of an acceptable nearness measure is hence defined as a relation 
that is reflexive and symmetric but not necessarily transitive. This measure is 
referred to from now on as a tolerance relation in order to avoid conflicts. The 
beauty of this definition of a tolerance relation is that the similarity relation and 
the proximity relation are both special cases. 

The rule of thumb for the development of the fuzzy data model FRR is to pose 
as few restrictions as possible and, of course, to have no rules contradicting 
human intuition. Fuzzy set theory has the goal of representing the real world by 
creating a model as realistic as possible, which implies it should fit with a 
human's conception of the world. 

An in-depth discussion of tolerance relations follows. Schreider [9], in his 
studies of the algebra of relations, discusses the notion of resemblance. He 
denotes a tolerance relation, a reflexive and symmetric relation, to be explicable 
of the concept of resemblance. Schreider is concerned with "normal , "  that is, 
crisp, relation theory, and hence the reflexivity and symmetry properties 
referred to are crisp properties. For a relation r on the set U to be reflexive 
means that, for all x in U, x r x  holds, and to be symmetric means that if xry  
holds thenyTx also has to hold. Recall that for a crisp relation x r x  to hold means 
in fuzzy set theory that/~r(x, y )  = 1. The concept of tolerance of objects is 
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described as their partial interchangeability--the possibility of mutual replace- 
ments with certain (permissible) losses. Consider the important claim made by 
Schreider [9, page 81], " I f  we are given only resemblances for some objects, 
then we cannot partition them into clearly defined classes, so that the objects 
within a class resemble each other, but there is no resemblance between objects 
from different classes. In the case of resemblance, a hazy situation with no clear 
boundaries arises." Each object of the domain carries some information about 
the objects resembling it, but not all such information. In other words, complete 
information, as in the case of equivalence relations, can no longer be assumed. 

In order to discover and understand the relationships between resembling 
objects, the properties of crisp resemblance relations, here termed tolerance 
relations, are reviewed in the following. This discussion is based on the work of 
Schreider [9]. Note that this section addresses crisp tolerance relations, but a 
relationship between this crisp measure and fuzzy set theory should be 
anticipated. Indeed, in a later section the results presented here are extended to 
the fuzzy context. 

DEFINITION 9 A set U with a tolerance relation r given in it, (U, r}, is called 
a tolerance space. A set P C U is called a preclass in {U, r} i f v x ,  y E P, x 
and y are tolerant, that is, i f  x z y  holds. 

Note that the set of all preclasses of a tolerance space is always covering, 
because Yx E U, {x} is a preclass by reflexivity. It is also true that in order for 
x and y to be tolerant, it is necessary and sufficient that there exists a preclass P 
in (U, r} containing both. The definition of classes given so far allows for a lot 
of redundancy, which should be diminished by the following notion. 

DEFINITION 10 A set T C U is called a tolerance class in (U, r} i f  T is a 
maximal preclass. 

This means that for all objects z of U outside of T there exists an object x in T 
that is not tolerant to z, and hence no object z can be added to the tolerance class 
T without destroying the preclass property of this class. It can be shown that 
every preclass P of (U, r} is contained in at least one tolerance class T of (U, r}. 
This implies that every object of the set U is contained in some tolerance class T 
of (U, r),  that is, the set of tolerance classes is a covering of U. The following is 
an example of a set of tolerance classes for a tolerance space (U, r). 

EXAMPLE 6. Let U be the powerset of { 1, 2, 3 } minus ~ ;  and let r on U be 
defined to be the following: Two elements x and y of U are considered to be 
tolerant, that is, xry ,  i f fx  tq y q: ~ ,  that is, if the sets x andy  contain at least 
one common element. Then examples of preclasses are 

P l = { { 1 } ,  {1,2}} 

P 2 =  {{1, 3}, {3, 2}} 

etc. 
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And there are many more preclasses. Next, the tolerance classes are given: 

T I = { { 1 } ,  {1,2},  {1,3},  {1,2 ,  3}} 

T 2 =  {{2}, {1, 2}, {2, 3}, {1, 2, 3}} 

r 3 =  {{3}, {1, 3}, {2, 3}, {l, 2, 3}} 

r4={{l ,  2}, {2, 3}, {1, 3}, {1, 2, 3}} 

These four classes are tolerance classes of (U, r) because none is a subset of 
one of the others and there are no other classes in (U, r) that contain any of these 
classes as proper subsets and are preclasses at the same time. 

This leads to the following lemma. 

LEMMA 1 In order f o r  two objects x and y o f  (U, r) to be tolerant, it is 
necessary and sufficient that there exist a tolerance class T o f  (U, r) that 
contains both x and y. 

This lemma is a natural consequence of the fact that tolerance classes form a 
covering of U. Finally, an interesting theorem can be stated. 

Tr~EOREra 3 Given a tolerance space (U, r), let H be the set o f  all its 
tolerance classes, and let S ~ be the powerset o f  H excluding the empty 
set. Define the elements hi ,  h2 E H to be tolerant i f f  h l  0 h2 ~: f~. 
Then there exists a mapping ~: U ~ S H such that x, y E U are tolerant i f f  
their images are tolerant in S H. 

This theorem can be shown by letting ~o be the mapping that assigns to each x E 
U the subset of H consisting of all tolerance classes containing x. 

Finally, the attempt is made to reduce the amount of redundancy inherent in 
the set of these classes even further. This leads to the notion of a basis which is a 
minimal collection of "sufficient" tolerance classes. 

DEFINITION 11 A collection HB = {K 1, K 2, " " ,  K m } o f  tolerance classes 
in (U, r) is called a basis i f  
1. For all tolerant pairs x, y in U there exists a tolerance class K in l ib  

such that x, y E K. 
2. The deletion o f  any class f rom Hn leads to the loss o f  property 1; that 

is, f o r  every K E HB, there exists a tolerant pair x, y fo r  which K is the 
only common tolerance class in HB. 

This concept of a basis of a tolerance space is what can be compared to a 
partition of an equivalence relation, where the first property guarantees the 
covering of the domain by the tolerance classes (the completeness of 
information) and the second the minimality of redundancy. Hence, the first 
refers to the sufficiency and the second to the necessity of selected classes. A 
basis contains only as much information as is necessary to express the tolerance 
relation and not any more; that is, any repetitive information is omitted 
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whenever possible. This concept of a basis might be useful to define when tuples 
can be considered to be redundant in the FRR database, and hence when tuples 
should be merged to decrease redundancy. It is possible to find a basis given a 
tolerance space by starting from the initial set of all preclasses (condition 1). 
First, these preclasses could be reduced to tolerance classes by checking for 
subset and superset relationships between them. If, after that, all superfluous 
classes (condition 2) are successively deleted, then a basis of the tolerance space 
is obtained at the end. It is always possible to obtain a basis by the described 
process, but it is obviously an inefficient approach. The complexity issue is 
further discussed in a later section. The following is an example of the selection 
process of a basis for a tolerance space. 

EXAMPLE 7. Let U and T be defined as in the previous example. Assume that 
the set of all preclasses has already been reduced to the collection of all tolerance 
classes, { T1, T2, T3, T4}. 

Note that none of these classes Ti can be enlarged without destroying this 
preclass property. Furthermore, note that the class T1 has to be included in any 
basis of the domain. The class T1 contains all sets that have the i as one element, 
and hence the sets of T1 are all tolerant on account of this common element 1. 
Since the singleton { 1} is not in any other class, the class T1 is the only 
tolerance class that contains the tolerant pairs where one of the objects is { 1 }. 
Consequently, T1 is needed in any basis. A similar argument applies to the 
classes T2 and T3, which contain the singletons {2} and {3}, respectively. 
Hence, T1, T2, and T3 are necessary classes. This cannot be said about class 
T4, which by condition 2 of a basis is superfluous and could be removed from 
any basis without a loss of information about the resemblance between objects. 
This is so because the information contained in T4 is dispersed over the other 
classes T I -  7"3. Hence, { T1, T2, T3 } is a basis. 

Note that we refer to " a "  basis instead of " the"  basis. This is not a mistake, 
as there is not, in general, one unique basis per tolerance space. There can be 
various sets that form a basis of a tolerance space, and, what is more, the number 
of classes in a basis is not invariant with respect to the choice of the basis. These 
are unwelcome facts that suggest that caution should be taken when exploiting 
these concepts for the FRR model. Algorithms have to be developed to, for 
example, find the basis with the minimal number of classes or to determine the 
number of different bases per tolerance space. The concepts presented here have 
been developed within the framework of relation theory (Schreider [9]). It is, 
however, possible to recast them in terms of graph theory. This is of advantage 
since graph theory problems have been well studied in the literature (Garey and 
Johnson [23]). Transforming a problem from one domain to another may help to 
shed light on the existence of algorithms and their complexity. 

A tolerance space, (U, z), corresponds to a graph G = (1I, E) ,  which is 
defined as follows. The set U--the objects in the tolerance space--corresponds 
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to the set of vertices V of the graph G. Clearly, [U I = [ V[. There is a 1-1 
mapping m such that each object x of U is mapped to a vertex v of  V. The 
tolerance relation r defined on the set U is represented by the set of  edges E on V 
of G. It is assumed that each vertex v E V has an edge to itself (a loop) to model 
the reflexivity of the tolerance relation. The symmetry of r is guaranteed by 
restricting the graph G to undirected edges, since an undirected edge can 
conceptually be viewed as consisting of two directed edges pointing in opposite 
directions. If  two objects x and y of U are represented by the vertices v 1 and 02 
of V, respectively, then there is an edge e between v 1 and v2 if and only if x and 
y are tolerant with respect to r. In short, there is a 1-1 mapping m between a 
tolerance space and an undirected graph with loops. 

Now, the relation theory concepts introduced in this section can be expressed 
in graph theory terminology. The concept of a preclass P in a tolerance space 
corresponds to a subgraph G '  of G, where G '  = ( V ' ,  E ' ) ,  the mapping m 
maps all objects of P to the set of vertices V' ,  and all vertices of V' are 
connected in G ' .  Such a complete subgraph has been called a clique in graph 
theory. Consequently, a tolerance class is a maximal clique. In these terms, a 
basis corresponds to the problem of finding a minimal cover of G in terms of 
maximal cliques. 

The problems of cliques and covers have been studied in the context of graph 
theory and are often computationally expensive (Garey and Johnson [23]). 
Hence, it is anticipated that the same is true for the relational problems. 
Consequences of this complexity issue are discussed at the end of the next 
section. For the following, the fact that a set of tolerance classes of a tolerance 
space with the properties of a basis exists and can be found is considered 
satisfying. Next, we propose fuzzy extensions of  the concepts just presented. 

9. THE NEW NEARNESS MEASURE: THE RESEMBLANCE 
R E L A T I O N  

In what follows, we discuss how the framework just presented can be 
extended to handle the possibilistic representation found in the FRR model. We 
define a nearness measure as a fuzzy version of a tolerance relation. The process 
of fuzzifying the tolerance relation was given implicitly by Zadeh [22] when he 
defined properties such as reflexivity and symmetry for fuzzy relations. We 
propose that the fuzzy version of a tolerance relation be called a resemblance 
relation because it expresses, as previously discussed, the resemblance of two 
or more objects. The resemblance relation is defined as follows. 

DEFINITION 12 A resemblance relation, res o f  U, is a fuzzy  binary relation 
on U x U that fulfills the foliowing properties: 
1. Reflexive: I.tres(X, x) : 1 (Vx) 
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2. Symmetric: I~res(X, y)  : I~res(Y, X) (VX, y)  
The strength o f  a resemblance relation ~res(X, y)  is referred to as res(x, y),  
that is, the degree o f  the resemblance between x and y. 

An a-level set can be defined on any fuzzy set; consequently, a lemma 
concerning the a-level sets of resemblance relations can be constructed. 

LEMMA 2 Let  res be a resemblance relation on a set U. For all a with 0 < 
a < 1, a-level sets R E S ,  are tolerance relations on U. 

Proof. Recall that an a-level set RES~ is a crisp binary relation on U defined 
by RES~ = {(ul,  u2)l/xres(ul, u2) -> a and (u l ,  u2) E U × U} f o r a  E (0, 
1] 

By assumption, the resemblance relation res is reflexive, that is, #res(u, u) = 
1.0 for all u E U. So we have (u, u) E RES,~ for all a;  that is, RES~is  
reflexive. 

Also, for all (u l ,  u2) E RES~ we know that #res(Ul, u2) -> a.  By the 
symmetry property of the resemblance relation res, we get /~es(u2, u l )  = 
#res(ul, u2) -> a.  This implies that (u2, u l )  E RES~ and thus RES~ is 
symmetric for all o~. • 

To summarize, Lemma 2 results from the fact that a-level sets are crisp sets 
and that a tolerance relation is the crisp version of a resemblance relation. This 
result is an important observation since it guarantees the reduction of 
resemblance relations and associated concepts to tolerance relations. 

An a-level set, RESt, contains all pairs of values from U that resemble each 
other (at least to degree a). We now propose that the collection of the definitions 
and theorems related to the crisp tolerance relation and its properties be extended 
in a rather natural manner to those for its fuzzy counterpart, the resemblance 
relation. This is done with respect to an arbitrary but fixed a-value, however. 
These results are presented in a condensed version in the following. 

DEFINITION 13 Given a set U with a resemblance relation p as previously 
defined. Then, (U, Pl is called a resemblance space. A n  a-level set RES~ 
induced by p is termed an a-resemblance set. Define the relationship o f  
two values x, y, E U that resemble each other with a degree larger than or 
equal to c~, that is, p (x, y )  > a, as a-resemblant. The fol lowing notation is 
proposed f o r  the notion o f  two values x, y being a-resemblant: x p~ y. A 
set P C U is called an a-preclass on (U, Pl i f  wx, y E P, x and y are a- 
resemblant, that is, x p~ y holds. 

The concepts introduced in Definition 13 are demonstrated in Example 8. 

EXAMPLE 8. Let Aptitude be the set { very-good, good, average, bad, very- 
bad} or, for short, {vg, g, a, b, vb}. Let a resemblance relation res be defined 
on the set Aptitude as shown in Figure 11. Then the two values b and vb are a-  



Nearness Measures in Relational Data Models 291 

res v9 g a b vb 

1.0 vg 

g 

b 

vb 

0.8 0.3 

1.0 0.7 

1.0 

0.1 0.0 

0.2 0.1 

0.7 0.3 

1.0 0.8 

1.0 

Figure 11, Resemblance Relation on the Domain Aptitude. 

resemblant with a = 0.75, because they resemble each other with a degree 
larger than or equal to 0.75. Also, a = 0.75 induces the following u- 
resemblance set: 

RES~ = {(vg, vg), (g, g), (a, a), (b, b), (vb, vb), 

(og, g), (ob, b), (g, vg), (b, vb)} 

The following are 0.75 preclasses: 

P1 = {vg} P 2 =  {g} P 3 =  {a} P 4 =  {b} P 5 =  {vb} 

P6 = { b, vb } P7 = { g, vg } 

Note that the set of all a-preclasses of a resemblance space for a fixed c¢ is 
always covering, because vx  E U, {x} is an a-preclass by reflexivity of the 
resemblance relation. It is also trivial that in order for x and y to be a- 
resemblant, it is necessary and sufficient that there exist an a-preclass P in (U, 
P) containing both. 

D~FI~TtON 14 A set R C U is called an a-resemblance class in (U, p) i f  R is 
a maximal a-preclass. 

EXAMPLE 9. Given the resemblance relation as defined in Figure 11 and the 
Aptitude domain of the previous example. The following are a-resemblance 
classes for a = 0.75: 

R l = { a }  R 2 = { b ,  vb} R 3 = { g ,  vg} 

For a = 0.65, the following a-resemblance classes exist: 

R l = { v g ,  g} R 2 =  {g, a} R 3 = { a ,  b} R 4 = { b ,  vb} 

Trivially, it can be concluded that every ct-preclass P of (U, p) is contained in at 
least one or-resemblance class R of (U, P)- Since, as indicated in Lemma 2, the 
set RES~ on U is in fact a crisp relation, that is, a tolerance relation, every object 
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of the set U is contained in some a-resemblance class R of (U, p); that is, the set 
of a-resemblance classes is a covering of U. 

LEMMA 3 In order for two objects x and y of  (U, p) to be a-resemblant, it 
is necessary and sufficient that there exists an a-resemblance class T o f  
(U, p) that contains both x and y. 

In accordance with the notion of a basis for a tolerance space, the concept of 
an a-basis for a resemblance space is proposed next. 

DEFINITION 15 A collection HB = {pl, p2, . . . ,  pro} o f  a-resemblance 
classes on ( U, p) is called an a-basis i f  
1. For all a-resemblant pairs x, y in U, there exists an a-resemblance 

class T in HB such that x, y E T. 
2. The deletion of  any class from H8 leads to the loss of  property 1; that 

is, for every T E HB, there exists an a-resemblant pair x, y for which 
T is the only common a-resemblance class in HB. 

EXAMPLE 10. Let res be the resemblance relation from Example 9. Then the 
a-basis consists of all resemblance classes as listed in Example 9 for a = 0.75 
and for a -- 0.65, respectively. In other words, they are both unique. 

Again, an a-basis contains only as much information as is necessary to 
express the resemblance relation and not any more; that is, any repetitive 
information is omitted whenever possible. The property of a tolerance space of 
not having a unique basis does also hold for the fuzzy case, the a-resemblance 
space. Fortunately, however, in most practical cases the basis will be unique (as 
in Example 10). The results for a tolerance relation have been successfully 
transferred to those of a resemblance relation. 

Next, we show how these extended concepts can be expressed in terms of 
graph theory. A resemblance space, (U, p), corresponds to a graph G = (V, E )  
with undirected but labeled edges where each vertex has a loop. All edges that 
begin and end at the same vertex (loops) have a label of 1.0. All other edges are 
labeled by a real number taken from (0, 1]. Again, if two objects x and y of U 
are represented by two vertices vl and 02, respectively, of V, then there is an 
edge e between vl and 02 if and only if x and y are a-resemblant with a > 0. 
The label of edge e is given by sup~{alxpoy}. For a given a E (0, 1], the a-  
resemblance set RESo induced by p corresponds to an unlabeled graph Go = 
( Vo, Eo), where Vo = V and Eo consists of those edges of E that have a label 
greater than or equal to a in G. An a-preclass of a resemblance space, (U, p), 
corresponds to a clique in the graph G~ (with Go isomorphic to RESo). An a-  
resemblance class is a maximal clique in Go. Then, an a-basis corresponds to a 
minimal cover of Go in terms of maximal cliques. 

Given a user's perception of similarity, that is, an a-resemblance threshold, 
the issues related to the resemblance relation reduce to those of the correspond- 
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ing tolerance relation. It has already been indicated that the problems of cliques 
and covers have been studied in the context of graph theory and are known to be 
computationally expensive (Garey and Johnson [23]). Consequently, the 
calculation of a basis and other relational properties, which have just been shown 
to be isomorphic to these graph theoretic problems, is complex as well. 

In the following, we investigate how these concepts could be used as tools for 
handling the redundancy of fuzzy tuples. Note that the database designer is faced 
with a trade-off between the time invested in reducing redundancy in the 
database and the wasted space and possible problem of inconsistency due to 
redundant pieces of information kept in the database. This is a design decision 
the database designer should be aware of since it is likely to considerably 
influence the performance of the database system. It is expected that the decision 
depends on the application at hand as well as the database features desired by the 
database users. There are several routes one may consider. 

First, one may not be concerned about the redundancy that could accumulate 
in the database. An example of such a situation is an application domain that 
mainly requires retrieval operations and hardly any update operations. In this 
case, the proposed resemblance measure is used as a nearness measure in the 
retrieval process by, for example, determining how similar two tuples are, but it 
is not used to reduce redundancy. 

On the other hand, one may be interested in reducing the redundancy of the 
information stored in the database in order to create a very compact format. 
Then it is advisable to precompute the basis with the minimal number of 
resemblance classes for each attribute. Note that conceptually all objects in a 
resemblance class model the same piece of information, and thus these objects 
can be reduced to one combined object. This solution requires a long 
preprocessing time, which, fortunately though, will not affect the actual 
performance of the system during query processing. To increase the perform- 
ance it may further be of interest to develop indexing schemes that allow us to 
determine whether or not tuples belong to the same tolerance class of the 
precomputed basis. This approach not only avoids cluttering the database with 
redundant data but may also lead to performance improvement due to the fact 
that the retrieval operations have to deal with fewer data. This is an open 
question, however, that requires empirical evaluation. 

Then there are intermediate solutions that are located on a scale between 
possibly a lot of redundancy and little processing time versus little redundancy 
and a lot of processing time. One may want to reduce some of the redundancy 
without, however, insisting on the most optimal reduction. In the light of the 
problem complexity, one would not attempt to find a "minimal" basis. Instead 
one could adopt the approach of merging tuples pairwise as long as there are no 
violations of the preclass condition. Since there is no unique basis, this approach 
will not necessarily result in the exact same relation. In fact, the result will 
depend on the order in which one attempts to merge tuples. This is acceptable as 
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long as the information content is preserved. Clearly, these issues should 
investigated further and the trade-off just described should be empirically 
evaluated. However, this work goes beyond the scope of this paper. 

10. SOME E X A M P L E S  

To tie the theoretical discussion of the previous sections back into the 
framework of fuzzy relational database models, some simple examples of how a 
resemblance relation could be used are presented next. 

For simplicity, let us first limit the discussion to fuzzy databases with data 
values of data types 1-4 as defined in Section 3. As discussed in a previous 
section, Buckles and Petry [14] have limited data values to similarity classes in 
order to deal with the concept of redundancy. Similarly we propose to limit data 
values to resemblance classes. Resemblance classes represent the criteria based 
on which we decide whether or not two tuples are redundant. The problem of 
redundancy corresponds to the question of when tuples are considered to be 
resemblant enough to be merged into one tuple. Two tuples being resemblant 
implies that all their corresponding values for all attributes are considered to be 
resemblant. Hence, the following definition can be given. 

DEFINITION 16 Let  x, y be two tuples o f  the relation R. Let  relation R be 
defined on the attributes A1,  A2 ,  • • ", A n  with domains D1, D2, • • ", 
Dn, respectively. Let  ~k E [0, 1] be the resemblance threshold and res~ be 
the resemblance relation f o r  the attribute A k ,  f o r  k = 1, • •. ,  n. Then 
tuple x is redundant i f  and only i f  it can be merged with another tuple y o f  
R without violating the constraints o f  the resemblance threshold otk f o r  
corresponding domain values x k  and y k  f o r  k = 1, • • . ,  n, which is 

x k  U y k  has to be a subset o f  an oLk-resemblance class. 

By the definition of an c~-resemblance class this is equivalent to the following 
lemma. 

LEMMA 4 Let  all definitions be given f r o m  Definition 16. Then the tuple x 
is redundant i f  and only i f  some tuple y exists in the relation R such that 

min {resk(zl, z2)}>_otk f o r  k =  1, . . . ,  n 
zl,z.2ExkUyk 

A relation R is redundant if it contains at least one redundant tuple. A redundant 
relation R is reduced by merging all its redundant tuples through set union. An 
example of a redundant relation and the merging process follows. 

EXAMPLE 1 1. Let the relation R be defined over the domains ANY = {A, B, 
C } and Aptitude. Let the resemblance relation of the domain ANY be the 
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identity relation and that of Aptitude be the relation res given in Figure 11. Let R 
consist of the three tuples x l ,  x2, and x3: 

x l  = ( x l l ,  x l E ) = ( { A  }, {vg}) 

x2 = (x21, x22) = ({B}, {g}) 

x a = ( x 3 1 ,  x 3 2 ) = ( { C } ,  {a}) 

For a resemblance threshold cq > 0.0 for the domain ANY, the relation R is not 
redundant since the first part of the tuples cannot be merged. Now assume the 
resemblance threshold Ctl = 0.0. Then, for ct2 = 0.75 the relation R is 
redundant. R can be reduced to 

x l ' = ( x l l ' ,  x l E ' ) = ( { A ,  B}, {vg, g}) 

x 2 '  =(x21 ' ,  x 2 2 ' ) =  ({C}, {a}) 

This can be done because { og, g} is a (proper) subset of an 0.75-resemblance 
class as shown in Example 9. For t~2 = 0.65 the relation R is also redundant. In 
this case R can be reduced to 

x l ' = ( x l l ' ,  x l 2 ' ) = ( { A ,  B}, {vg, g}) 

x2 '  = ( x 2 1 ' ,  x 2 2 ' ) = ( { B ,  C}, {g, a}) 

Again, this is so because { vg, g } and {g, a} are subsets of 0.65-resemblance 
classes as shown in Example 9. 

Example 11 shows that the concept of a resemblance relation as a nearness 
measure cannot guarantee that a relation has at most one tuple with any given 
interpretation of the domains. For instance, the interpretation (d l, d2)  = ({ B }, 
{g}) is contained in both tuples of the reduced relation for ot = 0.65. This does 
not seem really surprising. Given a nearness measure concept without 
transitivity, it cannot be expected that it will be possible to separate data values 
into crisp nonoverlapping partitions. 

The discussion is now extended to the fuzzy relational database model, which 
allows all eight data types described in Section 3. The results presented 
concerning the resemblance relation in Section 9 work with oL-level values, and 
thus it has been neglected that the actual data values are not necessarily crisp 
subsets but possibility distributions over the respective domains. These 
possibilities of the data values should have an impact on the evaluation of 
whether or not two tuples are considered to be redundant. Hence, we extend 
Definition 16 as follows. 

DEFINITION 17 Let  the attribute A i  defined over the domain Di, f o r  i = 1, 
• . ", n, be an attribute o f  a f u z z y  relation R (gf-type relation). A s s u m e  f o r  
a tuple x that the attribute A i  is described by the possibility distribution 
rAi(X) over the domain Di. The notation x . A i  refers to the value o f  the 
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tuple x f o r  the attribute Ai .  Le t  resi be a resemblance relation and ai E [0, 
1] be a resemblance threshold f o r  all i = 1, • • . ,  n. Le t  x and  y be tuples 
o f  the relation R.  Le t  x . A k  = ~xjeDkrx.Ak(Xj)/xj  and  y . A k  = 
Eyjeok ~ry.Ak(Yj ) / y j  f o r  k = 1, " " ,  n. Then x is considered redundant i f  
and  only i f  a tuple y exists in R such that f o r  all k = 1, , • . ,  n the 
fo l lowing  holds: 

1. minzl,z2~xkUyk with ~x.A~zl)>O and ~Cy.Ak(Z2)>O { resk(zl ,  Z2)} >_ ot~ 
2. minzjeok(1 - Irx.Ak(zj) - 7 r y . A k ( z j ) l )  >-- Ot 
where a expresses the matching threshold. 

The first condition states that the union of the domain values is a subset of an 
ak-resemblance class--it guarantees that the domain values resemble each other 
sufficiently. The second condition makes sure that the possibility distributions 
associated with the respective domain values are similar--it limits the difference 
between respective possibility distribution values. If  the second property is not 
to be enforced, then simply set a to zero. The importance of that second 
condition is demonstrated in the following. 

EXAMPLE 12. Let xi  = {O.O1/vg, 0.99/g} and yi  = {0.01/g, 0 .99 /0g} .  
Then these two values fulfill condition 1 of Definition 17 for ct = 0.75, since 
{ og, g } forms a resemblance class. They are not similar, however, since xi  is 
close to { g } and yi  is close to { vg }. This conclusion is in fact derived from the 
second condition, since min{ 1 - 10.99 - 0.01l, 1 - 10.99 - 0.01l} = (1 - 
0.98) = 0.02. This means that the matching of possibilities, or, is as low as 0.02. 

Again, a relation is defined to be redundant if it contains at least one redundant 
tuple. Given that two tuples are determined to be redundant, they are merged 
into one tuple in order to reduce the amount of information stored. Two tuples 
are merged by the union operation of fuzzy sets as defined by Zadeh [2]. To 
clarify the concepts introduced in the Definition 17, an example of a redundant 
relation and the resulting reduced relation is given in the following. 

EXAMPLE 13. Let the relation student be the relation described in Figure 6. 
Assume that a project operation returns only the last column of that relation. Let 
the resemblance of the domain Aptitude be as given in Figure 11. For O~Ap~t~de --< 
0.7, the two domain values of this derived relation are in the same o~- 
resemblance set (condition 1 of Definition 17). For the second condition of 
Definition 17, we get 

min (1 - [(7~ Aptitude(Jack) ( Z )  - -  7C Aptitude(Frank) (Z)[) 
z E Aptitude 

= min(1 - 1 0 . 0 - 0 . 4 1 ,  1 -10 .9 -0 .701 )  

= min(1 - 0.4, 1 - 0 . 2 )  

= min(0.6, 0.8) 

=0 .6  
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Thus, for ot _< 0.6, the relation is considered redundant and could be reduced 
by merging the two tuples to {0.4/g,  0.9/og}.  

II .  S U M M A R Y  A N D  C O N C L U S I O N  

We have presented a general framework for the fuzzy extension of the 
relational representation, called the FRR model. The inappropriateness of 
existing approaches for the development of nearness measures has been shown. 
We have demonstrated the minimal and maximal characteristics of an acceptable 
nearness measure. This analysis led to the proposal of a new nearness measure, 
the resemblance relation. Examples of how one may apply the proposed 
nearness measure are given at the end of the paper. 

This investigation is considered important, since the nearness measure 
concept constitutes the basis for a sound development of the query language of 
any fuzzy relational database model. 

Throughout this paper, several areas for extending the work described herein 
have been proposed. There is the application of algorithms for the proposed 
concepts, for example, how to find a preclass and how to determine whether a 
given set of objects is a-resemblant. Then an empirical study should be 
conducted on comparing the approaches presented in Section 9. Such a study 
may either reveal that one of these approaches is superior to the others or 
determine some criteria for choosing among them. 
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